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Abstract
In this work, we investigate the Earth–Moon system, as modeled by the planar circular
restricted three-body problem, and relate its dynamical properties to the underlying structure
associatedwith specific invariantmanifolds.We consider a range of Jacobi constant values for
which the neck around the Lagrangian point L1 is always open, but the orbits are bounded due
to Hill stability. First, we show that the system displays three different dynamical scenarios in
the neighborhood of theMoon: twomixed ones, with regular and chaotic orbits, and an almost
entirely chaotic one in between. We then analyze the transitions between these scenarios
using the monodromy matrix theory and determine that they are given by two specific types
of bifurcations. After that, we illustrate how the phase space configurations, particularly the
shapes of stability regions and stickiness, are intrinsically related to the hyperbolic invariant
manifolds of the Lyapunov orbits around L1 and also to the ones of some particular unstable
periodic orbits. Lastly, we define transit time in a manner that is useful to depict dynamical
trapping and show that the traced geometrical structures are also connected to the transport
properties of the system.

Keywords Restricted three-body problem · Chaos · Invariant manifolds

1 Introduction

The dynamics of nonintegrable Hamiltonian systems is characterized by the coexistence of
both chaotic and regularmotion or by the complete lack of the latter. Thefirst case corresponds
to a mixed phase space, which is composed of regions of stability and areas filled by chaotic
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orbits, while the second one corresponds to a large chaotic sea in the phase space (Lichtenberg
and Lieberman 1992).

A good understanding of this type of system comes from analyzing how such phase space
scenarios are affected by the value of the constants of motion. A complete description, how-
ever, also involves the underlying geometrical structures, which are related to the hyperbolic
invariant manifolds associated with unstable periodic orbits in the chaotic sea and whose
properties can influence the systems’ dynamics.

Chaotic behavior is a common feature in Celestial Mechanics since many systems are
represented by a nonintegrable Hamiltonian function. Such behavior is associated with, for
example, the motion of asteroids and of the solar system itself (Poincaré 1890; Laskar 1989;
Ferraz-Mello 1999). Invariant manifolds have been extensively investigated in this field as
well and employed in a variety of applications, ranging fromnatural transport to spacemission
design (e.g., Koon et al. 2008; Gawlik et al. 2009; Perozzi and Ferraz-Mello 2010).

In this work, we adopt the planar Circular Restricted Three-Body Problem (CRTBP) as
a model to investigate the dynamical properties of the Earth–Moon system. Specifically, we
are interested in how dynamical objects, such as periodic orbits, invariant tori, and hyperbolic
invariant manifolds, behave as the value of the Jacobi constant varies. Our analysis is focused
on a Poincaré section in the neighborhood of the Moon.

Periodic solutions of the CRTBPwere widely studied considering the mass parameter that
corresponds to the Earth–Moon system (e.g., Szebehely 1967; Broucke 1968; Hénon 1997).
We are especially interested in the Lyapunov orbits around L1 and the Low Prograde Orbits
and Distant Prograde Orbits, both of which are part of the direct periodic orbits around the
Moon (Restrepo and Russell 2018). Given that connections between these and other periodic
solutions of the system provide low-cost transfers between different regions of the phase
space (Mingotti et al. 2012; Cox et al. 2020), it is useful to know which orbits coexist for the
same Jacobi constant value in order to definewhich transfers are accessible (Folta et al. 2015).

It is worth mentioning that the periodic and transfer orbits of the planar CRTBP are also
used as a reference for calculating orbits in more complicated models which considers, for
instance, the mass of the third particle, the eccentricity of the lunar orbit and the influence of
the Sun (Szebehely 1967; Leiva and Briozzo 2008).

In some situations, invariant manifolds are also responsible for stickiness, where chaotic
orbits in Hamiltonian systems spend a significant amount of time around a regular region
(Contopoulos 2004). The occurrence of stickiness in the system then implies a higher concen-
tration of orbits behaving similarly around a given area of the phase space. This phenomenon
is associated with invariant manifolds, e.g., in the dynamics of spiral galaxies (Contopoulos
and Harsoula 2010).

In the presentmanuscript, we consider a range of values for the constant ofmotion inwhich
all orbits analyzed are bounded within the system and we use numerical tools to obtain the
periodic orbits and their respective invariant manifolds. In order to investigate stickiness, we
are also interested in the unstable periodic orbits that are formed from the destruction of an
invariant KAM torus and that live in the neighborhood of a given regular region, additionally
to the periodic orbits mentioned before.

We show how the invariant manifolds of the main periodic orbits of the system occupy
the available area of the phase space as the Jacobi constant changes, a relevant aspect for
practical purposes. Furthermore, we present a visual description of how these structures
affect the transport of the system and, consequently, the chaotic dynamics, a relevant aspect
for natural phenomena. In summary, our results illustrate how geometrical structures relate
to the phase space scenarios, thus contributing to understanding the fundamental connection
between dynamics and geometry in the Earth–Moon system.
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This paper is organized as follows. In Sect. 2, we present the planar CRTBP and its
dynamical features. In Sect. 3, we describe the phase space configuration for the considered
range of Jacobi constant and discuss the bifurcations that occur in the stability regions. In
Sect. 4, we trace the invariant manifolds associated with the Lyapunov orbits around L1 and
illustrate their relation to the phase space configuration. Later, we consider the stickiness
effect by tracing the manifolds associated with selected unstable periodic orbits in the mixed
phase space scenarios. In Sect. 5, we define transit time in a suitable manner and examine
the transport properties of the system. Finally, we give our conclusions in Sect. 6.

2 Physical system

The framework we use is the planar CRTBP, which provides a good first approximation to
the dynamical behavior of the Earth–Moon system (Murray and Dermott 1999). It describes
the motion of a body of negligible mass under the gravitational influence of two massive
bodies moving in circular orbits around their common center of mass.

We assume that the third body moves in the same plane as the two-body system. This
is a useful assumption because both the planar version of the problem and the geometrical
structures that we deal within this work have the advantage of being naturally represented in
a two-dimensional surface of section.

In a synodic reference frame, which rotates with the same frequency as the system formed
by the primaries and is centered at its center of mass, the dimensionless equations of motion
in terms of the variables (x, y, ẋ, ẏ, t) are1

ẍ − 2 ẏ = ∂Ω

∂x
,

ÿ + 2ẋ = ∂Ω

∂ y
,

(1)

where the pseudo-potential Ω is given by

Ω = 1

2
(x2 + y2) + 1 − μ

√
(x + μ)2 + y2

+ μ
√

(x − (1 − μ))2 + y2
. (2)

The primaries are located at (−μ, 0) and (1 − μ, 0), with μ being the mass parameter,
the ratio between the mass of the least massive primary and the system’s total mass. For
the Earth–Moon system, we have μ = 1.2150 × 10−2. A schematic representation of the
system around the Moon is presented in Fig. 1, along with some important concepts which
are addressed later in this paper.

There is one unstable Lagrangian equilibrium point on each side of the Moon, namely
L1 (left) and L2 (right). These equilibrium points are collinear to the primaries, and their
positions in the x-axis depend only on μ (Gómez et al. 2001). For the Earth–Moon system,
their locations are given by xL1 ≈ 0.8369 and xL2 ≈ 1.1556.

The system has one constant of motion, called Jacobi constant C , which is given by

C = 2Ω − ẋ2 − ẏ2, (3)

and, as the constantC is a constraint of the system, the dynamics effectively occurs in a three-
dimensional subspace. Additionally, since ẋ2 + ẏ2 > 0, Eq. (3) defines the area accessible
to the third body in the coordinate space x-y for a given C,

1 For the equations of motion in Hamiltonian form see, e.g., Belbruno (2004).
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Fig. 1 Physical model in the
vicinity of the Moon. The third
body moves in the white area, the
Hill region, and Σ represents the
Poincaré surface where the orbits
are analyzed. As the Jacobi
constant C goes from C1 to C2,
the neck around the Lagrangian
point L1 becomes larger. The
Lyapunov orbit is also depicted
for both situations

Fig. 2 Accessible area for the full
system. The Hill regionH is
composed by an innerHI and an
outerHO area, which are
disconnected. The five
Lagrangian points are
represented by the small black
circles, while the primaries are
represented by the bigger ones.
For C1 > C > C2, L1 is the only
Lagrangian point in H

J = 0.188 J = 0.1725

H = {(x, y) ∈ R
2 | 2Ω − C > 0}, (4)

called theHill region. In Fig. 1,H is represented by thewhite area. Furthermore,C1 ≈ 3.1883
and C2 ≈ 3.1722 are the Jacobi constants at the Lagrangian points L1 and L2, respectively.

It is important to note that, for the range of Jacobi constant chosen in this work, C1 >

C > C2, H is divided in two disconnected areas, that we define as the inner region HI and
the outer region HO , as shown in Fig. 2. Consequently, the orbits that lie in the vicinity of
either primary are bounded and cannot exit the system (Hill stability).

The boundaries of both HI and HO are given by the zero velocity curves, which can be
obtained by setting ẋ = ẏ = 0 in Eq. (3). Furthermore, the Lagrangian point L1 separates
the inner Hill region HI into two realms,

Earth’s realm = {(x, y) ∈ HI | x < xL1},
Moon’s realm = {(x, y) ∈ HI | x > xL1},

(5)

where xL1 is the position of L1 in the x-axis.
Since our analyses involve numerical calculations, it is necessary to deal with the singu-

larities in Eq. (2). This is achieved by using the Levi-Civita transformation (Szebehely 1967).
Let (u, v, u′, v′, τ ) be the new set of variables in the system and let us define z = x + iy and
ω = u + iv. The transformations are then given by z = ω2 − μ + 1 for regularization in a
vicinity of the Moon and z = ω2 − μ for regularization in a vicinity of the Earth. In both
cases, the relation between the time variables is given by dt = 4(u2 + v2)dτ .

In the new set of variables, the equations of motion, Eq. (1), become

u′′ − 8(u2 + v2)v′ = ∂V

∂u
,

v′′ + 8(u2 + v2)u′ = ∂V

∂v
,

(6)
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where the new pseudo-potential V is

VM (u, v) = 4μ + 2(u2 + v2)

{
(u2 + v2)

2 + 2(1 − μ)(u2 − v2)

+(1 − μ − C) + 2(1 − μ)
√
1 + (u2 + v2)

2 + 2(u2 − v2)

⎫
⎬

⎭
(7)

for the Moon and,

VE (u, v) = 4(1 − μ) + 2(u2 + v2)

{
(u2 + v2)

2 − 2μ(u2 − v2)

+(μ − C) + 2μ
√
1 + (u2 + v2)

2 − 2(u2 − v2)

⎫
⎬

⎭
(8)

for the Earth.
The regularization procedure is performed locally about the singularities. In practice, we

establish two radii with values δM = 1.00 × 10−2 around the Moon and δE = 3.67 × 10−2

around the Earth.We then switch between Eqs. (1) and (6) as soon as the orbits are detected to
enter or exit one of these regions. Since the integration steps are kept small and δE and δM are
large enough, it is not necessary to compute the exact point of intersection between the orbits
and the circle defined by each regularization radius. In physical units, we have δM = 3844.0
km and δE = 14107.5 km, while the mean radii of the primaries are rM = 1737.4 km and
rE = 6371.0 km.2

In both transformations, the system is re-centered to one of the primaries andwe can verify
in Eqs. (7) and (8) that V is finite when (u, v) → (0, 0), thus removing the singularities from
these locations.

3 Order-chaos-order

We now proceed to study the dynamical properties in the vicinity of the Moon. In order to
do so we choose a surface of section Σ between the Moon and L2 defined by

Σ = {x = (x, y, ẋ, ẏ) | 1 − μ < x < xL2 , y = 0, ẏ > 0}, (9)

where xL2 is the position of L2 in the x-axis. In Fig. 1, we depictΣ for C � C1 and C � C2.
Figure 3 shows the system’s phase space x-ẋ for different values ofC . The initial conditions

are chosen in a 36 by 36 grid on Σ , and the orbits are integrated up to t = 5 × 103 both
forward and backward in time, which corresponds to approximately 748.5 years. Numerical
integration of the equations ofmotion is carried out using the explicit embeddedRunge–Kutta
Prince–Dormand 8(9) (Galassi et al. 2001), and errors associated with the Jacobi constant
along the orbit and with the intersection between orbit and surface of section are kept below
10−10.

The first feature we observe is the existence of three different scenarios as the Jacobi
constant is decreased: I. (C = 3.188, 3.187 and 3.185) the system presents a mixed phase
space and the region of stability decreases in size; II. (C = 3.184 and 3.183) all orbits
analyzed are chaotic and hence the former stability region was destroyed; III. (C = 3.181,

2 Values from https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html.
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Fig. 3 Phase space in the surface
of section Σ for the selected
range of Jacobi constant C . The
system goes from and back to a
mixed scenario but with different
stickiness behavior. The black
circles mark the location of stable
periodic orbits, while the black
crosses indicate the location of
unstable periodic orbits

3.176, and 3.173) the phase space becomes mixed again with the creation, enlargement, and
subsequent slight decrease in size of a new stability region.

We can use Newton’s Method and the symmetry of the model to calculate both stable and
unstable periodic orbits in the system for adequate initial conditions. In order to understand
then what happens with the stability regions in both mixed phase space scenarios, we follow
the periodic orbits in each case and study their stability by computing the eigenvalues of their
respective monodromy matrices.

Themonodromymatrix has four eigenvalues, twoofwhich are always unitary. The remain-
ing two eigenvalues determine the stability of the periodic orbit as follows: if the orbit is stable,
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Fig. 4 Bifurcation analysis for
both mixed phase space
scenarios. The real part of the
eigenvalues Re(λ) as a function
of the Jacobi constant C is shown
for (a) the center orbit in
Scenario I and (b) the period-1
stable and unstable orbits in
Scenario III. In (c), the orbits in
Scenario III are shown to collide
as their x-axis components tend
to the same value (a) Scenario I (b) Scenario III

(c) Scenario III

the eigenvalues are complex conjugate to each other; however, if the orbit is unstable, the
eigenvalues are real and one is the inverse of the other (Meyer et al. 2008).

Since we are investigating the dynamics of the system on Σ , we consider the period
of a periodic orbit as the number of times said orbit crosses our surface of section before
closing in on itself. In Scenario I, there is one periodic orbit of period 1 which is initially
located at the center of the stability region (see Fig. 3). In Fig. 4a, we evaluate the real part of
both eigenvalues of this orbit which are associated with stability as a function of the Jacobi
constant. We observe that the orbit is stable for C = 3.1875 and it eventually becomes
unstable as C is lowered. We have, in this case, a direct or inverse bifurcation3 (Contopoulos
2004), which happens at approximately C1

bi f = 3.18451.
In Scenario III, there are two more periodic orbits of period 1: the stable one at the center

of the stability region and its unstable counterpart to the left of it, just outside the stability
region and inside the chaotic sea (see Fig. 3). We perform the same analysis as before for
both orbits, but this time we increase the Jacobi constant. The results are shown in Fig. 4b.
For C = 3.180, all four eigenvalues are distinct and, as C is increased, they all tend to the
same value. We have, in this case, a saddle-node bifurcation (Contopoulos 2004), which
happens at approximately C2

bi f = 3.18266. After the bifurcation is reached, both periodic
orbits disappear. In Fig. 4c, we present the position in the x-axis of both orbits up until their
collision.

We note from Fig. 4 that the eigenvalues go through −1 in Scenario I and to 1 in Scenario
III. Hence, the trace of the monodromy matrix goes to 0 and 4, respectively, both of which
indicate the occurrence of a bifurcation in two-degree of freedom Hamiltonian systems (de
Aguiar et al. 1987).

3 The direction of the bifurcation determines the stability of a new periodic orbit which appears outside Σ

and hence it is not relevant to our analysis.
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Table 1 Overview of the three
different scenarios that are
present in the system

Scenario Range Type Stickiness

I C1 > C > C1
bi f Order Non-localized

II C1
bi f > C > C2

bi f Chaos Absent

III C2
bi f > C > C2 Order Localized

The families of periodic orbits that are presented in Fig. 3 and analyzed in Fig. 4 belong
to a class of direct periodic orbits around the smaller primary, the Moon, which is referred
to as the g class (Szebehely 1967). The family in Scenario I along with the stable family in
Scenario III are formed by the Low Prograde Orbits, while the unstable periodic orbits in
Scenario III are the Distant Prograde Orbits (Restrepo and Russell 2018).

The second feature which stands out in Fig. 3 is the difference in the stickiness behavior
in both mixed phase space scenarios. In Scenario III, there is a higher orbit concentration just
about the stability region as is usually the case. However, for higher values of C in Scenario
I, the stickiness effect reaches deep into the chaotic sea and far from the stable portion of
phase space, which suggests that it is being caused by invariant manifolds associated with
unstable periodic orbits around the stability region (Contopoulos and Harsoula 2010).

We present a summary of the three dynamical scenarios in Tab. 1. The type order indicates
the presence of stability regions in the system. As discussed before, the Hill region H is
composed of two disconnected areas and it is important to note here that it remains as such
in all scenarios.

4 Invariant manifolds

The Lagrangian point L1 is the only equilibrium of the system which is inside the Hill region
for the range of Jacobi constant thatwe considered. Furthermore, there exists an uniparametric
family of unstable periodic orbits around this point, namely the Lyapunov orbits. We are able
to calculate a Lyapunov orbit for any value of C using a continuation method along with the
linear solution around L1 (Gómez et al. 2001). For illustration, the orbits corresponding to
C = 3.1880 � C1 and C = 3.1725 � C2 are shown in Fig. 1.

Let p be a point of the unstable periodic orbit α. As described in Sect. 3, the monodromy
matrix calculated at p has a pair of real eigenvalues which determine the orbit’s stability.
These eigenvalues, with moduli lower and greater than one, are related to eigenvectors that
define a stable and an unstable direction, respectively. Therefore, there is a set of orbits that
originate in a neighborhood of p and that tend to it as time goes to ±∞. If we extend this set
to the whole space, we define the stable manifold Ws( p) and the unstable manifold Wu( p)
associated with p. Formally, we write

Ws( p) = {x ∈ U ⊂ R
4 | ϕt (x) → p as t → ∞},

Wu( p) = {x ∈ U ⊂ R
4 | ϕt (x) → p as t → −∞}, (10)

where ϕt (x) is the solution of the system at time t with initial condition x. We can then
define the stable manifoldWs(α) and unstable manifoldWu(α) associated with the unstable
periodic orbit α as

Ws,u(α) =
⋃

p∈α

Ws,u( p). (11)
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Fig. 5 Projection on the
coordinate space x-y of the
invariant manifolds W (L)

associated with the Lyapunov
orbit for C = 3.188. (a) Close-up
near the Lyapunov orbit showing
both branches with cylindrical
shapes. (b) Evolution of the right
branches crossing the surface of
section Σ inside the lunar realm

(a) (b)

To numerically trace W (α), we first calculate one monodromy matrix eigenvector and
then propagate it to the other points of the discretized orbit α by multiplying it with the
transition matrix. We then take one initial condition on each vector with a distance of 10−6

from the orbit and integrate them forward or backward in time, depending on the eigenvector
stability. Both Ws(α) and Wu(α) have two branches that are associated with an eigenvector
and to its counterpart in the opposite direction.

Due to the fact that the dynamics in our system effectively occurs in a three-dimensional
subspace, α is an one-dimensional curve and W (α) are two-dimensional surfaces that are
locally homeomorphic to cylinders (Ozorio de Almeida et al. 1990). In Fig. 5, we present
the invariant manifolds W (L) associated with the Lyapunov orbit for C = 3.188 projected
onto the coordinate space x-y.

The manifolds in Fig. 5a were traced from 100 points on the Lyapunov orbit. We can
observe two aspects here: first, the cylindrical shapes of these structures near the Lyapunov
orbit; and second, the right branches of the invariant manifolds start inside the lunar realm,
while the left ones start inside the Earth’s realm. In Fig. 5b, we show the evolution of the right
branches inside the lunar realm and we note the perpendicular crossings of these structures
with our surface of section. In this case, we discretized the Lyapunov orbit in 50 points to
trace the invariant manifolds.

Let us now define Γ as the intersection between the invariant manifolds and our surface
of section, which can be naturally ordered by following the dynamics onW and counting the
crossings with Σ . We have

Γ s,u(α) = Ws,u(α) ∩ Σ =
∞⋃

i=1

Γ
s,u
i (α). (12)

Γ is a set of one-dimensional curves. IfΣ is always transversal toW , the curves are open,
similar to manifolds in two-dimensional maps. Otherwise, some Γi may have ellipse-like
shapes as W crosses Σ in a perpendicular fashion. Hence, the representation of invariant
manifolds in phase space depends on how they intersect the surface of section.

Figure 6 shows the first few Γi (L) = W (L) ∩ Σ for the same Jacobi constant values as
in Fig. 3. The first aspect we observe is that the area enclosed by the manifolds gets bigger
as we lower C , therefore occupying a larger region in phase space for a similar number of
crossings. This is a consequence of the fact that the system is area-preserving, and an element
of the family of Lyapunov orbits is larger in length than the other elements with higher Jacobi
constants.

The most significant result to be noted here is the fine interplay between Lyapunov orbit
manifolds and phase space configuration. Initially, the manifolds intersect the surface of
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Fig. 6 First few components of
Γ s (L) (blue) and Γ u(L) (red) in
phase space. The invariant
manifolds associated with the
Lyapunov orbits evolve along the
phase space configuration as the
Jacobi constant C is lowered

section far from the stability region. As we start to lower the Jacobi constant, they begin to
travel across a larger area of phase space and spread toward the stability region, which gets
smaller accordingly. Eventually, they cover all the stability region and the stable periodic orbit
at its center bifurcates and changes stability. After the global chaos scenario, another region
of stability emerges in an area of the phase space that is not yet covered by the invariant
manifolds. In the end, these structures start to ripple around and invade the new stability
region.

Another interesting aspect we observe from Fig. 6 is the apparent relationship between the
spatial disposition of the invariant manifolds and the properties of the stickiness phenomenon

123
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Fig. 7 Stable (blue) and unstable
(red) manifolds associated with
the main unstable periodic orbits
(black) in the mixed phase space
scenarios. In Scenario I, we have
Γ (P7

I ) in (a) full size and (b)
zoomed-in. In Scenario III, we
have (c) Γ (P8

I I I ) and (d)
Γ (P1

I I I )

(a) C = 3.187 (b) C = 3.187

(c) C = 3.176 (d) C = 3.181

in both mixed phase space scenarios. In Scenario I, the manifolds do not yet occupy a large
portion of the phase space, which makes it possible for the stickiness to reach far into the
chaotic sea. In Scenario III, on the other hand, the manifolds are spread around the new
stability region and the stickiness is then confined next to it.

As we discussed before, the stickiness effect is likely caused by invariant manifolds
associated with particular unstable periodic orbits in phase space. In order to verify this
assertion, we choose suitable values of C for both mixed scenarios and we calculate the
main unstable periodic orbit located around each regular region, which were formed from
the destruction of the last KAM torus. We then trace the invariant manifolds associated with
these orbits and compare them to the stickiness observed in Fig. 3. For Scenario I, we choose
C = 3.187 and we calculate an unstable periodic orbit of period 7 which we call P7

I . For
Scenario III, C = 3.176 and the orbit P8

I I I has period 8. The results are shown in Fig. 7.
In Fig. 7a and b, we observe that Γ (P7

I ) extend deep into the chaotic sea and closely
reproduce the structure corresponding to the stickiness effect. Furthermore, Fig. 7c shows
that Γ (P8

I I I ) are concentrated around the stability region, as we expected, also reproducing
the stickiness behavior. In Fig. 7d, we present the manifolds associated with the unstable
periodic orbit of period 1, P1

I I I , that is created after the second bifurcation at C
2
bi f . The value

of the Jacobi constant here isC = 3.181, and we observe thatΓ (P1
I I I ) do not have a complex

geometry apart from the small oscillation near the saddle. However, it is interesting to note
that a ghost effect is observed before the bifurcation with the same shape as given by these
manifolds, as we can see in Fig. 3 for C = 3.183.

Finally, we depict an overview of the system in Fig. 8 for the chosen Jacobi constant in
eachmixed phase space scenario. It is clear that each group of invariant manifolds contributes
differently to the phase space configuration and that all of them are necessary for a broad
description of the system.
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Fig. 8 Overview of the system’s
geometrical structures in phase
space for (a) Scenario I and for
(b) Scenario III. Stable manifolds
are depicted in blue and unstable
manifolds in red. These structures
have a close relation to the phase
space configuration

(a) C = 3.187 (b) C = 3.176

Fig. 9 Orbit with initial condition
x ∈ Σ exiting the Moon’s realm
for C = 3.188. The system is
integrated (a) forward and (b)
backward on time until the
trajectory enters the Earth’s
realm. The integration time in
each case is given by (a) t f > 0
and (b) tb < 0. Our transit time is
defined as |t f × tb|

(a) (b)

5 Transport analysis

Another aspect regarding the phase space configuration is the presence of less dense areas in
the chaotic sea. We can observe it more clearly in Fig. 3 for C = 3.188. If we compare it to
Fig. 6, we note that the less dense areas are the ones enclosed by the traced manifolds. This
phenomenon comes from the fact that W (L) are responsible for transporting orbits between
the Moon’s and Earth’s realms (Koon et al. 2008). The orbits inside the first few Γ s

i (L) go
through the Lyapunov orbit onto the Earth’s vicinity faster than other areas and hence they
are less populated in phase space.

In order to dynamically quantify the geometric structures of the system, we choose orbits
that begin in our surface of section and calculate how long it takes for each of them to transfer
to the Earth’s realm both forward t f and backward tb in time. We then define transit time
as the absolute value of the product of t f and tb. An example is given in Fig. 9. This is
a convenient definition because our transit time highlights orbits that stay inside the lunar
realm for a very long time and also for a very short time.

Figure 10 shows the transit time for a grid of 512 × 1024 initial conditions in Σ and the
same Jacobi constants of Figs. 3 and 6 . The system is integrated up to t = ± 5×103, and only
orbits which do eventually exit the lunar realm are considered for analysis. We can readily
observe the influence of invariant manifolds in the system’s dynamics. Regions with shorter
transit times correspond exactly to the interior of Γ (L), especially inside the intersections
betweenΓ s(L) andΓ u(L) for these are the orbits that most rapidly enter and exit theMoon’s
realm. In addition, regions with longer transit times correspond to the invariant manifolds
associated with the main unstable periodic orbits in the mixed phase space scenarios, namely
Γ (P7

I ) and Γ (P8
I I I ).

Hence, what we observe is the coexistence of two effects. On the one hand, we have the
Lyapunov orbit manifolds which are responsible for the transport between the Moon’s and
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Fig. 10 Profile of the transit time
on a logarithmic scale for
different Jacobi constants. The
initial conditions are chosen in
the surface of section Σ

Earth’s realms and, on the other hand, we have the manifolds associated with higher-order
unstable periodic orbits which are accountable for dynamically trapping the orbits.

All orbits in the chaotic sea, except for a set of measure zero, move from one realm
to the other for a large enough integration time, which suggests that the Lyapunov orbit
manifolds are dense in this area. The first few Γi (L) are homeomorphic to circles, but they
eventually lose this property (Gidea andMasdemont 2007). This phenomenon is the outcome
of the intersection between two-dimensional manifolds of different stabilities. We explore
this further in Fig. 11.

Figure 11a shows the Lyapunov orbit manifolds in phase space for C = 3.188. We
observe that the first crossing of the unstable manifold Γ u

1 intersects the seventh crossing
of the stable manifold Γ s

7 . But, since all orbits inside Ws will at some time go through the
Lyapunov orbit, the intersection between Ws and Wu has the following consequence. After
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Fig. 11 Intersect and break
process in the Lyapunov orbit
manifolds as seen from the (a)
phase space and the (b)
coordinate space for different
Jacobi constants. The unstable
manifold eventually breaks if it
intersects the stable manifold.
One part of it moves to the
Earth’s realm, while another part
of it crosses Σ again divided in
two pieces (a) C = 3.188 (b) C = 3.175

the seventh crossing with Σ , the orbits that compose Wu are divided in three parts: the ones
that are inside Ws when the intersection occurs go through the Lyapunov orbit and on to the
other realm; the ones that are exactly in the stable manifold are the homoclinic orbits and
go to the Lyapunov orbit; the rest of the orbits cross the defined surface of section again Γ u

8
although this time divided in two pieces that asymptotically approach Γ u

1 .
The described process happens indefinitely for all intersections between the unstable and

stable manifolds which, by consequence, fill the chaotic sea. In Fig. 11b, we present the
same scenario for C = 3.175 but now in coordinate space. In this situation, both manifolds
intersect each other at the first crossing and hence the unstable manifold breaks much faster.
We can see a part of the manifold crossing the Lyapunov orbit, while the other part revolves
around the Moon and crosses Σ again.

The structures that emerge from the intersect and break process are visible in Fig. 10,
specially for C = 3.188. Furthermore, it is interesting to note that a somewhat similar
situation occurs with the Lyapunov orbit manifolds and those associated with the higher-
order unstable periodic orbits, since these structures also intersect each other. ForC = 3.187,
for example, we can observe the auto-similar structure formed by the intersection between
W (L) and W (P7

I ).
Our final step is to examine what happens when we consider collisions with the primaries

in our model. Since the structures formed by the invariant manifolds are closely related to
the dynamical properties of the system, it is important for us to understand their role in this
case. In order to mimic the effects of a collision, we define a radius by hand around the Moon
and stop the integration if an orbit reaches this region. In practice, this added feature works
as leaking (de Assis and Terra 2014) for these orbits have a finite existence and therefore do
not contribute to our analysis.

We present the transit time profiles for this situation in Fig. 12. The parameters chosen are
the same as before and the radius of collision with the Moon is given by rM = 4.52× 10−3.
By comparison to Fig. 10, we can see that the presence of a collision radius affects the
dynamics of the system in two different ways. First, there is a riddled structure formed by the
collisional orbits which initially covers all the analyzed space and, as we lower the Jacobi
constant, it becomes more localized, mostly around the new stability region. This scheme
shows a close relationship between the riddled structure and the manifolds associated with
the main unstable periodic orbits in the mixed phase space scenarios.

The second effect is the appearance of collision areas which grow larger as we lower C ,
delimiting the space available to the riddled structure. Analogously, this scheme shows a
close relation between collision areas and the invariant manifolds of the Lyapunov orbit. It
is worth noting that if we had considered collisions in Fig. 6, for example, there would be
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Fig. 12 Profile of the transit time
on a logarithmic scale for
different Jacobi constants, but
this time discarding collisional
orbits. The initial conditions are
chosen in the surface of section
and are the same as in Fig. 10

parts of the manifolds missing and therefore their relation to the phase space configuration
would be harder to visualize.

6 Conclusions

In this work, we showed that the planar Earth–Moon system, as modeled by the restricted
three-body problem, presents three different scenarios, each onewith its particular dynamical
and geometrical properties. Even though the Hill region remains topologically unchanged,
the system goes from amixed scenario with far-reaching stickiness, to the absence of stability
regions, and back to a mixed scenario but now with localized stickiness, just by varying the
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Jacobi constant. Moreover, the transition between these scenarios is given by two different
type of bifurcations, namely, the direct or inverse and the saddle-node bifurcation.

We also illustrated how some hyperbolic invariant manifolds in the system evolve along
with the phase space configuration. On the one hand, we have the manifolds associated
with the Lyapunov orbits, which determine the shape and size of stability regions. On the
other hand, there are particular unstable periodic orbits whose invariant manifolds determine
the behavior of stickiness. These groups of manifolds are all two-dimensional surfaces,
although they cross the unidimensional surface of section in differentmanners, hence defining
geometrical structures with different properties.

Lastly, with a reasonable definition of transit time, we were able to depict the influence
of the invariant manifolds in the system’s transport properties. We observed a fine interplay
between the Lyapunov orbit manifolds, which are responsible for the motion between the
realms, and the ones associated with the higher-order unstable periodic orbits, which tem-
porarily trap the orbits near the stability regions. In summary, this work provided a broad
picture of the dynamics of the planar Earth–Moon system and reinforced the importance of
better understanding the connection between dynamics and geometry.
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