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Convexity of noncontextual wirings and how they order the set of correlations
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The resource theory of contextuality considers resourceful objects to be probabilistic data tables, known as
correlations or behaviors, that fail to have an explanation in terms of Kochen-Specker noncontextual models. In
this work, we advance this resource theory, considering free operations to be noncontextual wirings (NCWs). We
show that all such wirings form a convex set. When restricted to Bell scenarios, we show that such wirings are
not equivalent to local operations assisted by a common source of classical shared randomness (LOSR). The set
of all NCW operations contains LOSR, but is strictly larger. We also prove several elementary facts about how
different resources can be converted via NCW. As a concrete example, we show that there are pairs of behaviors
that cannot be converted one into the other using NCW. Since resource conversion mathematically induces a
pre-order over the set of all behaviors, our results reveal the intricate ordering induced by NCW in scenarios
beyond Bell scenarios.
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I. INTRODUCTION

Kochen–Specker (KS) contextuality [1,2] is a well-known
resource for quantum computation [3–10] and quantum com-
munication [11,12]. This resource is formally defined in terms
of so-called compatibility scenarios (also known as measure-
ment scenarios). When KS noncontextual models can explain
the probability distributions from experimental data, the afore-
mentioned applications lack any form of quantum advantage.
Beyond these applications, KS contextuality has also been
shown useful for self-testing [13–16], dimension witnessing
[17–19], and even in quantum foundations, for analyzing the
quantum Cheshire cat protocol [20], or allowing the introduc-
tion of new extended Wigner friend arguments [21,22].

The term “resource” alone is vague and unclear. Within
the resource theories framework [23,24] such terminology
has a simple and precise meaning. Consider a set U and
a proper subset denoted as F . The term resource refers to
some generic property that can be of quantum states [24,25],
quantum channels [26,27], probability distributions (as those
we consider), or yet other properties such as nonclassicality
of common cause [28], satisfied by elements in U \ F but not
by elements in F . The intuition behind the word “resource”
is that access to U \ F allows one to do “more” than if only
access to F is granted. Elements of F are called “free.”
For our case of interest, KS contextuality, a property held
by behaviors in compatibility scenarios, will be our defining
notion of resource. Free resources will be behaviors having a
KS noncontextual model.

*These authors contributed equally to this work.
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In the resource theories framework, given that we have a
notion of free objects determined by elements from the set F ,
we can also have a notion of free operations as those that, at
least, preserve this set. In other words, mappings T : U → U
such that T (F ) ⊆ F . Different works have considered differ-
ent choices of free operations, meaning in our case those that
do not create KS contextual correlations from KS noncon-
textual ones [29–35]. Noncontextual wirings (NCWs) [36,37]
is one such choice of free operations. These wirings can be
intuitively described as the composition of pre- and postpro-
cessing, combined with adaptivity between KS noncontextual
correlations. They form a useful working subset of all possible
free operations for a resource theory of KS noncontextuality.
However, there are currently two outstanding issues regarding
the definition of noncontextual wirings.

The first issue is the relation between NCW with the set
of free operations known as local operations with shared ran-
domness (LOSR), which has two nonequivalent formulations,
one investigated by Gallego and Aolita [38], and the other in-
troduced by Vicente [39] and Geller and Piani [40]. That these
two formulations are not equivalent was pointed out by Wolfe
et al. [28]. In light of this, noncontextual wirings have been
claimed to be equivalent to Gallego and Aolita’s description of
LOSR, which we call LOSR◦, when we restrict wirings to act
on compatibility scenarios mathematically equivalent to Bell
scenarios. In this setting, it is unclear which relation (if any)
exists between NCW and the Vicente-Geller-Piani description
of LOSR, which we call LOSR•. Beyond that, it has also
been pointed out recently by Karvonen [33] that general free
operations for noncontextuality should also allow for wirings
between different parties when applied to compatibility sce-
narios mathematically equivalent to Bell scenarios. This also
suggests some further revision of the definition of NCW, or
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some previous results, as when restricted to Bell scenarios,
this feature pointed out by Karvonen would imply that NCW
is inequivalent even to LOSR◦, contrary to what was claimed
in Refs. [36,37].

The second issue concerns the convexity of the set of NCW
operations. As pointed out by Wolfe et al. both the sets LOSR◦

and NCW satisfy that the pre- and postprocessings allowed
have independent sources of classical randomness. This is
the reason why LOSR◦ is a nonconvex subset of LOSR•, the
latter allowing for the same common source of randomness
between pre- and postprocessing behaviors. This discussion
suggests either that NCW operations should form a nonconvex
subset, or that we should revise its definition to allow for a
common source of randomness. However, this is not entirely
clear since, as pointed out by Ref. [34, Remark 28], having
access to a common source of shared randomness or to some
form of adaptivity on the free operations results in similar
expressive power regarding the possible free transformations.
Anything one can do, operationally, the other can also do, and
vice versa.

In this work, we resolve both the issues raised above. First,
we show that both LOSR◦ and LOSR• are proper subsets of
NCW when restricted to compatibility scenarios mathemati-
cally equivalent to Bell scenarios. Hence, for such scenarios,
any definition of LOSR is not equivalent to NCW. We also
show that type-dependent NCW operations always form con-
vex sets (in fact, convex polytopes) by showing that, due to
the adaptivity, it is always possible to rewrite the definition
of a noncontextual wiring as if both pre- and postprocessing
boxes have a common source of shared randomness.

Beyond the relationship between LOSR and NCW, we
also prove structural results on how NCW operations can act
on behaviors in compatibility scenarios. One aspect of the
expressive power of free operations is their ability to relate
different resources. If there exists a free operation T such that
T (A) = B we write that A → B. This free arrow defines a
pre-order (a relation that is both reflexive and transitive) on
the set of all possible objects in a resource theory. As part of
the characterization of noncontextual wirings, we investigate
some specific properties of how different objects can be trans-
formed one into another.

(1) We show that there are objects B1 and B2 such that
neither B1 can be transformed using NCW operations into B2,
and vice versa. When this happens we write B1 � B2, and say
that the two behaviors are incomparable.

(2) We also show that there are uncountably infinite sets
where every pair of elements satisfy this property, i.e., every
pair of objects is incomparable.

(3) We prove the existence of triplets B1, B2, B3 satisfying
that B1 � B2 � B3 but B3 → B1.

(4) We also show there are infinite chains of behaviors
B1 → B2 → B3 → · · · comparable in sequence.

(5) Finally, we show that there are infinitely many equiv-
alence classes [B] := {A : B → A and A → B}, within the
interval B1 → B → B2 marked by some pair of elements B1

and B2.
We refer to these structural properties as global compara-

bility properties. These results are perhaps unsurprising be-
cause these properties were also shown in Ref. [28] to be true
for correlations violating the Clauser-Horne-Shimony-Holt

(CHSH) inequalities [41] and when considering LOSR•

as the free operations. Here we improve these findings
by showing that, for compatibility scenarios known as the
n-cycle scenarios [42], for every integer n � 3, we can find
families of behaviors satisfying all the global properties listed
above when considering NCW as the free operations.

The structure of our work is as follows: We start reviewing
the theoretical concepts necessary to present our main results.
In Sec. II A we introduce the resource theories framework,
with a presentation focusing on providing physical intuition
to the mathematical descriptions introduced. Our presenta-
tion in this section is aimed towards researchers less familiar
with mathematical topics, and motivations behind using this
framework, implying that we have filled this section with
examples and applications of different resource theoretic no-
tions. Section II B reviews KS noncontextuality and Sec. II C
the resource theory framed around noncontextual wirings
introduced in Ref. [36]. We suggest Sec. II C even to read-
ers familiar with noncontextual wirings, as our presentation
is significantly different from existing ones [34,36,37]. Our
main results regarding the relation between NCW and LOSR
are presented in Sec. III A. The convexity of type-dependent
NCW operations is shown in Sec. III B. In Sec. III C we
present the comparability results described before and make
some final remarks in Sec. IV.

II. BACKGROUND

We begin by describing the basic mathematical elements
of the resource theories framework [43,44] in Sec. II A.
Although at first the presentation will often seem quite ab-
stract, we complement the mathematical definitions with
physically motivated interpretations. Section II B introduces
compatibility scenarios and the notion of Kochen-Specker
noncontextuality. We then define the resource theory of
Kochen-Specker contextuality where the free operations are
noncontextual wirings in Sec. II C.

A. Resource theories

Let us start by defining an abstract resource theory:
Definition 1. A resource theory is a triplet R = (U ,F , T ),

where U is a set of objects, F � U is a proper subset of objects
called free, and T is a set of transformations T : U → U
satisfying T (F ) ⊆ F , called free transformations or free op-
erations.

Intuitively, U is the set of all objects under study. For
example, in static quantum resource theories [24], U = D(H),
the set of all possible quantum states of a quantum system H.
Each object in this case is a quantum state ρ ∈ D(H). Above
in Def. 1, the notion of sequential composition is given by the
notion of composition of maps T2 ◦ T1 as T2(T1(·)).

The subset F is the set of free objects. The set of free
objects corresponds to those that lack a certain property of
interest, which we refer to as the resource. Then, elements
in U \ F will correspond to resourceful objects. We select
some property of interest to be studied, but the terminology
of resource clearly suggests that we use resourceful objects
to perform some task, that would not be possible without the
presence of the resource.
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The definition of a resource theory has a clear operational
intuition. However, being too strict with this intuition can
sometimes lead to a very narrow view of the framework. For
instance, objects in F are not necessarily those that are easily
accessible in practice, with current technology, as the term
free suggests. For example, in the resource theory of nonsta-
bilizerness [45,46], crucial for quantum computation, highly
entangled pure multipartite states are considered free. Yet,
it is significantly challenging to prepare such states [47,48].
Neither the set U \ F must be viewed as the set of scarce or
rare objects. Almost every pure quantum state is entangled
[49], and still this resource powers many information tasks
[50]. Finally, objects in U \ F should also not be considered
as those that are hard to prepare with current technology. For
instance, highly nontrivial coherent states can be prepared
with current technology [51,52], and still the resource theory
of coherence is one of the most widely investigated resource
theories in practice [53,54].

Finally, the set T is considered the set of transformations
that can be freely performed, in the precise sense that they do
not generate resources. For entanglement theory, an example
is the set of local operations and classical communications
[50]. In this case, any free transformation T acting on separa-
ble states will output another separable state. Another example
of free operations in entanglement theory, which is a subset of
the one just described, is the set of all local operations with
shared randomness introduced in Ref. [55] and subsequently
developed in Refs. [28,39,40,56,57].

When U ⊆ V is a subset of some vector space V it is im-
portant to characterize the geometry of F . For example, when
the set of free objects is convex, some monotones such as
the contextual fraction [5] and robustness [58], can be defined
and calculated using standard linear programming techniques.
Moreover, some general results within the resource theory
approach, such as an operational interpretation using discrim-
ination tasks [59,60] and being able to map problems to conic
programming problems [61] are only possible if F is a convex
(or also compact) set. It is also useful when the set T is
convex, especially when F itself is convex, for consistency.
One of our main results (presented in Sec. III B) will be that
the set of all noncontextual wirings of a fixed type is convex.
The notion of the “type” of a transformation will become clear
later.

1. Pre-order induced by free operations

We now introduce the idea of the pre-order of objects
in a resource theory. This idea intimately connects to (in-
ter)conversion between objects via free operations. Given two
objects A, B ∈ U , we are interested to learn if there is a
free transformation T ∈ T such that T (A) = B, denoted as
A → B. This problem has a practical motivation. If it is
possible to freely obtain B from A, it is sufficient to have
access only to A and one obtains B (and a whole class of
other objects) by freely acting on A. However, we will be
interested in the somewhat foundational side of this question,
where free transformations fix a structure of which objects are
comparable through the lenses of the operations in T .

Note that for most resource theories, there exists a free
operation A → A. One possibility is to assume that the

identity map id : U → U satisfying id(A) = A is a free op-
eration. Moreover, free operations are also assumed to be
transitive, i.e., if A → B and B → C then A → C, for any
A, B,C ∈ U . The conjunction of these two properties implies
that resource conversion → induces a pre-order to the set U .
In mathematically oriented literature, one usually denotes the
order relation as �. In our case,

A � B ⇔ ∃ T ∈ T : T (A) = B. (1)

The notation � is more common in mathematical literature,
while → is commonly used in physics-oriented literature,
as it passes the intuitive idea that one object is being trans-
formed into another. In what follows we only make use of
→. It is, therefore, equivalent to defining a resource theory
by specifying a set of free operations, or by specifying a
certain pre-order of the objects U . The fact that this relation
is only a pre-order, as opposed to a total or a partial order,
introduces most of the “richness” of a given resource theory.
This richness is represented by the plurality of possible (or
impossible) ways to compare different objects.

Definition 2 , Equivalent, inequivalent and incomparable
objects. Let R = (U ,F , T ) be a resource theory and B1, B2 ∈
U . We say that

(1) B1 is equivalent to B2 when B1 → B2 and B2 → B1.
Otherwise, we say that B1 and B2 are inequivalent.

(2) B1 is incomparable to B2 when B1 � B2 and B2 � B1.
Here, we denote A � B if there exists no T ∈ T such that

T (A) = B.
From the perspective of the pre-order induced by free

transformations, the definition above focuses on local compa-
rability properties of a pair of objects. Given two objects, how
do they relate under free operations? Incomparability is partic-
ularly striking as, in a precise sense, discovering incomparable
objects signals inequivalent classes of resourceful objects. In
entanglement theory, for instance, it led to the discovery of
different entanglement classes [62,63].

Lemma 1, Free objects are equivalent. Consider R =
(U ,F , T ) to be any resource theory. Suppose there exists
� ∈ U such that, for any A ∈ F we have � → A and A → �.
Then, every pair A, B ∈ F is equivalent.

Proof. Due to �, B → � → A and A → � → B for ev-
ery A, B ∈ F . But since → is a pre-order, it is transitive,
and therefore B → A and A → B, implying A and B are
equivalent. �

From above, it is often the case that all free objects of a
given resource theory are equivalent. One can interpret � as a
reference object, and free objects as those that can be freely
constructed from the reference. Moreover, one can imagine
that any object can be discarded towards this reference object
if we consider discarding to be a free operation.

In this work, we also investigate global comparability prop-
erties, which can be understood as comparability properties
beyond a single pair. They provide a broader view of the action
of the pre-order. We focus on the following global properties,
already recognized as relevant elsewhere [28,44]:

Definition 3, Global properties. Let R = (U ,F , T ) be a
resource theory, and let → be the pre-order induced by the
free operations T .
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(1) When the pre-order is such that every pair of objects is
either strictly ordered or equivalent, the set of objects is said
to be totally pre-ordered.

(2) If for every triplet of objects A, B,C ∈ U , all distinct,
such that when A � B and B � C then A � C, we say that
the pre-order is weak.

(3) A chain is a subset of objects where every pair of
elements is strictly ordered. The height of the pre-order is the
cardinality of the largest chain in this pre-order.

(4) Likewise, an antichain is a subset of elements where
every pair of elements is incomparable. The width of the pre-
order is the cardinality of the largest antichain contained in the
pre-order.

(5) We say that an object B2 lies in the interval of objects
B1 and B3 if and only if both B1 → B2 and B2 → B3 hold. If
the number of equivalence classes [B] that lie in the interval of
a pair of objects (B1, B2) is finite for every pair of inequivalent
objects (B1, B2), we say that the pre-order is locally finite,
otherwise it is said to be locally infinite.

On the last point above, note that a pre-order does not
define an equivalence relation, since it does not need to be
symmetric. However, we can define a new relation A ∼ B :
⇐⇒ A → B and B → A. In this case, this new relation is an
equivalence relation and divides U into equivalence classes,
which are those mentioned above in the last point of Def. 3.

2. Resource monotones

One of the most important uses of a resource theory for-
malism is for quantifying the resources contained in objects
of the theory.

Definition 4, Resource monotones. Let (U ,F , T ) be any
resource theory. We define a resource monotone as a pre-order
preserving function m : U → R̄ := R ∪ {−∞,∞}, such that
for all A, B ∈ U ,

A → B ⇒ m(B) � m(A).

Note that, if the conditions of Lemma 1 apply the mono-
tone is constant for all free resources. Since for every A, B ∈
F we have that m(A) � m(B) and m(A) � m(B) we then
have that, ∀ A ∈ F , m(A) = m� constant, which is usually
taken to be equal to zero m� = 0.

Intuitively then, a monotone function gives a quantitative
measure of how resourceful an object is. Because of their
order-preserving property, these functions give us insightful
information about the resource theory, as we see in Sec. III C.
If we write B = T (A) (since A → B) for some T ∈ T then
m(B) = m(T (A)) � m(A). Or from another angle, for any
two objects A, B such that m(A) > m(B) there exists no free
transformation T such that T (B) = A. Intuitively, this ex-
presses the idea that since A is more resourceful than B one
cannot freely go to A from B.

It is worth mentioning that the pre-order structure of ob-
jects in a resource theory is more fundamental than any single
resource monotone. Clearly, any monotone maps the pre-order
over U into the total order of real numbers. A resource mono-
tone captures certain aspects of the pre-order by assigning
numerical values to the objects, but unless the pre-order is a
total order (implying that all elements in U are comparable),
it can never contain the complete information available in the

pre-order [37]. Even though there were early works (specifi-
cally in early advances in entanglement theory) in which one
of the goals was to find what would be the correct resource
monotone, once incomparable objects were discovered, it be-
came clear that this was a wrong path. The pre-order is the
fundamental structure, with any particular resource monotone
being a coarse-grained description of the resource theory.

It is unclear if resource monotones can be used to inves-
tigate global properties, given that they totally order objects
from U . Surprisingly, this is the case. As highlighted in
Ref. [44], global properties of the pre-order can be charac-
terized by finding sufficiently many resource monotones [28].
Another example is Ref. [64], which introduced contextuality
monotones to study geometrical aspects of particular sets of
possible behaviors (free objects or not) inside and outside
the quantum set of correlations. Later in our work, we use
two resource monotones (so-called cost and yield monotones)
to investigate the global comparability properties of the pre-
order induced by noncontextual wirings.

B. Kochen–Specker contextuality

Contextuality can be viewed as the impossibility of think-
ing about statistical results of measurements as revealing
pre-existing objective properties of that system, which are
independent of the actual set of measurements one chooses
to make [1,2]. In our treatment, it is a property of behaviors
defined with respect to compatibility scenarios (also known as
measurement scenarios [34]).

1. Compatibility scenarios

Definition 5, From Refs. [36,37,65]. A compatibility sce-
nario is a triplet ϒ := (M, C,OM), where M is a finite set of
measurements, C is a family of subsets of M, called maximal
contexts, and OM = ∏

x∈M Ox, where Ox are the outcomes
of x ∈ M. For all γ , γ ′ ∈ C, γ ⊆ γ ′ implies γ = γ ′.

Each context γ ∈ C represents a set of measurements in
M that can be jointly performed. For each context γ , the
set of all possible outcomes for the joint measurement of the
measurements in γ is the set Oγ . When we jointly perform the
measurements of γ , our output is encoded in a tuple s ∈ Oγ .
Later we consider scenarios where Ox = Ox′

for all x, x′ ∈
M, i.e., where all measurements have the same outcomes, and
we simply denote such sets of outcomes as Ox = Ox′ = O.
Whenever this happens, we also simply write ϒ = (M, C,O)
instead of (M, C,OM) to simplify the notation.

2. Behaviors (or boxes)

Kochen-Specker noncontextuality will be viewed as a
constraint satisfied by probabilistic data over compatibility
scenarios, which we now define:

Definition 6, Behaviors. Given a scenario ϒ =
(M, C,OM), a behavior (also known as a box) B in this
scenario is a family of probability distributions, one for each
maximal context γ ∈ C,

B =
{

pγ : Oγ → [0, 1]

∣∣∣∣∣
∑
s∈Oγ

pγ (s) = 1, γ ∈ C
}

. (2)
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FIG. 1. Diagrammatic representation of pγ (s) in a compatibility
scenario. (left) Given a certain classical input γ ∈ C and a prepared
system P we perform joint measurements (or equivalently, sequen-
tial ideal measurements) selected from a set M and obtain joint
outcomes s ∈ Oγ . Labels in the wires denote the type of classi-
cal information they carry. Blue (colored) regions represent generic
operational primitives (quantum, classical, or postquantum). White
(noncolored) regions represent classical operational primitives only.
(right) When we have a noncontextual behavior, each element pγ (s)
in it takes the form of Eq. (4). We can interpret the preparation
P as some state λ sampled according to some randomness source
p(λ). In this case, the white (noncolored) regions depict classicality
(noncontextuality).

Experimentally, behaviors are the result of running many
times a protocol that prepares a certain system and per-
forms sequential (ideal) measurements in γ ∈ C returning
joint outcomes s ∈ Oγ . Because of that, they are also called
correlations, probabilistic data-tables, or simply data tables.
They are only well defined with respect to a compatibility
scenario.

Sometimes we also call a behavior a box (see Fig. 1).
Both terms are encountered in the literature, and we use them
interchangeably in our work. The intuition behind the term
box is the following: Imagine the elements of M as buttons
of the box, and, for each measurement x, we imagine the box
having |Ox| output lights that inform us of the result of the
measurements. The box has, therefore, certain rules as certain
buttons cannot be jointly pressed (corresponding to certain
measurements being incompatible). The information of al-
lowed buttons to be jointly pressed is provided by maximal
contexts γ . In this view, instead of sequential measurements
one, equivalently, imagines that an experimental implementa-
tion is performing jointly all compatible measurements.

Behaviors may or may not satisfy what we call the
no-disturbance condition. Given two contexts γ and γ ′, no-
disturbance implies that the marginals for their intersection
are well defined, and agree. If we have, for example, γ =
{x, y} and γ ′ = {y, z}, the no-disturbance condition implies:∑

a

p{x,y}(a, b) =
∑

c

p{y,z}(b, c).

Definition 7, No-disturbance set of behaviors. The
no-disturbance set ND(ϒ) is the set of behaviors that
satisfy the no-disturbance condition for any intersection of
contexts in the scenario ϒ .

The defining idea of noncontextuality is the possibility of
assigning a single probability distribution to the whole set
OM, that has marginals in each maximal context consistent
with the behavior B. We call this probability distribution pM :

OM → [0, 1] a global section for the scenario, which satisfies

pM|γ (s) :=
∑

t∈OM:t|γ =s

pM(t) = pγ (s) (3)

for all contexts γ ∈ C of ϒ and all s ∈ Oγ . If this is possible,
we say that the behavior B = {{pγ (s)}s∈Oγ }γ∈C is KS noncon-
textual.

Definition 8, Noncontextual set of behaviors. The noncon-
textual set NC(ϒ) is the set of all behaviors for which there
exists a global section with marginals over the maximal con-
texts of ϒ returning the same distributions of the behavior.

From the Abramsky-Brandenburger theorem [66], KS non-
contextual behaviors can be equivalently written as

pγ (s) =
∑

λ

p(λ)
∏
γi∈γ

pγi (si|λ), (4)

where λ ∈ � are any set of variables, and p(λ) is a probabil-
ity distribution over these variables, i.e., satisfies

∑
λ p(λ) =

1 and 0 � p(λ) � 1 ∀ λ. Also, pγi (si|λ) are so-called re-
sponse functions, satisfying that for any given λ the mapping
pγi (·|λ) yields a valid probability distribution over Oγi , for
any γi ∈ γ and also any γ ∈ C. The above description has
been historically linked to the existence of a noncontextual
hidden-variable model for the behavior. When a behavior
B ≡ {{pγ (s)}s}γ has this precise form, it is said to be fac-
torizable [66,67]. All noncontextual behaviors satisfy the
no-disturbance condition. Different notions of noncontextu-
ality have been proposed for behaviors that do not respect
no-disturbance [68–71]. Any such approach will have certain
drawbacks [72].

We say that R = (UND,FNC, TNC) is a resource the-
ory of KS contextuality if UND := ⊔

ϒ ND(ϒ) and FNC :=⊔
ϒ NC(ϒ), and the (disjoint) union is taken over all possible

compatibility scenarios. For each fixed scenario ϒ the objects
are nondisturbing behaviors and free objects are noncontex-
tual behaviors. Free operations are those that preserve the
noncontextuality of behaviors mapped across different com-
patibility scenarios. In this work, we focus on a specific set
of free operations, that we characterize later. Other opera-
tions can be taken as free, as was done in Refs. [32–34],
that considered as free a broader class of operations than the
noncontextual wirings.

3. The n-cycle noncontextuality inequalities

The only infinite family of compatibility scenarios that
have been completely characterized is the family of n-cycle
scenarios [42], which we denote as ϒn. In such scenarios, one
has n dichotomic measurements M = {xi}n

i=1 and all maximal
contexts are given by {xi, xi+1}, where here summation is
taken to be module n. All vertices and facet-defining inequal-
ities of the polytope ND(ϒn) are known [42]. Moreover, the
set of all facet-defining inequalities of NC(ϒn) is also known
and given by

I (n)
k (B) =

n−1∑
i=0

ai〈xixi+1〉 � n − 2, (5)

with each value of k being associated with a particular choice
of values for ai ∈ {−1,−1} such that the number of terms
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ai = −1 is odd. Above, we are mapping behaviors B from
ϒn to two-point correlation functions via, letting p{xi,x j}(ab) ≡
p(ab|xix j ),

〈xixi+1〉 = +p(00|xixi+1) + p(11|xixi+1)

− p(10|xixi+1) − p(01|xixi+1).

Each label k is therefore associated with a different facet of
NC(ϒn), for each fixed choice n. The sets of points {〈xix j〉}i, j

are called the sets of correlations. In Sec. III C we investi-
gate how noncontextual wirings order such sets, focusing on
the scenarios ϒn. For such scenarios, there is a one-to-one
correspondence between the set of behaviors and the set of
correlations [42].

Various properties of the polytopes NC(ϒn) are known.
For every contextual behavior B there is a unique k for which
I (n)
k (B) > n − 2. Reference [73] investigated liftings of these

inequalities to other compatibility scenarios. The values for
the maximal quantum violations of the inequalities (5) are
known, and given by [42]

Imax
Q =

{
3n cos ( π

n )−n

1+cos ( π
n ) for odd n

n cos
(

π
n

)
for even n.

(6)

Behaviors for which the value of the I function is larger
than Imax

Q will also be of interest. Specifically, those that reach

the algebraic maximum I (n)
k (B) = n will be used later.

C. Resource theory of Kochen–Specker
contextuality under wirings

1. Pre- and postprocessing

To define the free operations of our resource theory, we
begin by defining certain special operations that take behav-
iors (our objects) in a given scenario into other behaviors,
potentially in another scenario.

One of the basic operations is the operation of preprocess-
ing a behavior. Assume that we start with a given scenario
ϒ = (M, C,OM). We introduce a new scenario ϒPRE =
(MPRE , CPRE ,OPRE ),1 with new measurements, contexts, and
measurement outcomes. Behaviors in this scenario are de-
noted as BPRE . We associate each output of BPRE with an
input of B, in such a way that every output configuration
of BPRE defines a possible input configuration in B, that is,
associated with every output r ∈ OPRE , we have a possible
context f (r) = γ ∈ C.

With this, we define a new behavior WPRE (B) given by

pβ (s) =
∑

r∈Oβ
PRE

pβ (r)pγ= f (r)(s), (7)

where the sum runs over all outputs r associated with the
context β in CPRE . The probability distribution pβ (r) is given
by the behavior used for the preprocessing. Figure 2 presents a
diagrammatic representation of such a behavior. The function
f : Oβ → C translates information of the outputs of a behav-
ior BPRE in information for the inputs of a behavior in B, that

1To ease the notation, we write here and in the remaining of our
work OPRE ≡ OMPRE

PRE , and similarly for the scenarios ϒPOS .

s

P

M
Oγ

C

r

P ′

MPRE

β

Oβ
PRE

CPRE

r

f : Oβ
PRE → C

γ = f(r)
∑

r

FIG. 2. Diagrammatic representation of a preprocessing defined
by pβ (s) from Eq. (7). We start with some initial behavior BPRE

(lower box) that outputs some set of outcomes. Using these out-
comes, and a function f that consistently maps outcomes r ∈ Oβ

PRE

of this behavior to contexts C in another scenario, we input some
choice of context γ = f (r) ∈ C to perform measurements in M.
Note that we average over all possible outcomes r to get the prob-
ability pβ (s).

corresponds to information about the context. Moreover, this
function f can be any, insofar as its image is a subset of C.

Analogously, we can define the postprocessing of a
behavior. We again introduce ϒPOS = (MPOS, CPOS,OPOS )
together with a behavior BPOS . The same association is made
between outputs s ∈ Oγ and contexts g(s) = δ ∈ MPOS . The
new behavior obtained WPOS (B) is given by

pγ (t) =
∑
s∈Oγ

pγ (s)pδ=g(s)(t). (8)

We provide a diagrammatic representation of this behav-
ior in Fig. 3. The probability pγ (s) is the probability that
upon inputting the classical information of the context γ we
obtain the joint outcome s. This joint outcome is then con-
sistently mapped, by some function g : Oγ → CPOS towards
some choice of context δ = g(s) ∈ CPOS . At this point, g can
be any function. Later, when we allow g to have information
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s

P

M
Oγ

C

t

P ′′

MPOS

Oδ
POS

CPOS

γ

s

g : Oγ → CPOS

δ = g(s)
∑

s

FIG. 3. Diagrammatic representation of pγ (t) from Eq. (8). We
start with a behavior B that outputs joint outcomes s. Using these
outcomes, and some function g that consistently maps s ∈ Oγ to
maximal contexts in CPOS we input some choice δ = g(s) to perform
measurements in MPOS . Note that we average over all possible
outcomes s to obtain pγ (t).

about inputs and outputs of BPRE , this same function will need
to be restricted, for the operation to remain free.

Both pre- and postprocessing behaviors introduced were
considered in full generality. This operational description
is valid for KS noncontextual, quantum, and postquantum
behaviors. The free operations in a resource theory of KS
contextuality under wirings will be those that are adaptive
combinations of pre- and postprocessing where the behaviors
used to construct the pre- and postprocessings are KS noncon-
textual.

2. Noncontextual wirings

We can now define the free operations we consider in this
work: the KS noncontextual wirings [37]. We compose an
arbitrary behavior B with noncontextual preprocessing behav-
iors BPRE = {{pβ (r)}r∈Oβ }β∈C ∈ ϒPRE and a set of adaptively
chosen postprocessing behaviors {{B(r,β )

POS }r∈Oβ }β∈C . Impor-
tantly, we assume that the behaviors BPRE and B(r,β )

POS are
noncontextual, for all r and β, otherwise, one could trivially
create contextuality, and the operations would not be free. We

also restrict the structure of the adaptively chosen behaviors
B(r,β )

POS ; they shall have a memory of the classical variables r
or β but remain factorizable. Moreover, we also not allow the
classical source of randomness p(λ) [also known as proba-
bility distribution sampling from some hidden-variable space,
see Eq. (4)] from the KS noncontextual behavior BPRE during
the preprocessing to influence the choices of contexts during
the postprocessing. This is a choice made in Refs. [36,37] that
we revisit later in our results section in light of a discussion
present in Ref. [28, Appendix A].

We show a diagrammatic representation of such a free
operation in Fig. 4. From left to right we increase the com-
plexity of the wirings so that the rightmost operation is the
most general noncontextual wiring operation. The colored
boxes (in blue, color online) represent general behaviors (KS
noncontextual, quantum, and postquantum). The boxes that
are not colored represent only KS noncontextual boxes, or
classical inputs and outputs. Generic noncontextual wirings
are divided into preprocessing and postprocessing stages.

Let us describe the adaptivity, sometimes called a clas-
sical feed-forward operation, allowed by the classical side
channels. Each classical input β and classical output r de-
scribing the behavior BPRE can be copied (white circles from
Fig. 4). Once copied, a side channel can transfer this infor-
mation toward the postprocessing stage, and depending on
each such value, decide which postprocessing operation to
perform. This corresponds to a certain choice of behavior
B(r,β )

POS —conditioned on the classical feedforward of the values
r and β—within a scenario

ϒ
(r,β )
POS = (

M(r,β )
POS , C (r,β )

POS ,O(r,β )
POS

)
.

To ease notation and description of the free operations (see
Fig. 4) we can construct a large scenario ϒPOS by joining all
possible ϒ

(r,β )
POS ,

ϒPOS :=
⊔

β∈CPRE

⊔
r∈Oβ

ϒ
(r,β )
POS .

Each element of ϒPOS = (MPOS, CPOS,OPOS ) is the disjoint
union of those pertaining to ϒ

(r,β )
POS = (M(r,β )

POS , C (r,β )
POS ,O(r,β )

POS ).
This operation implies that each behavior B from the scenario
ϒPOS is the gluing of all behaviors in ϒ (r,β ) but in a way
that, for each choice (r, β ) only one behavior is considered,
which has been termed the controlled choice [32] composition
between scenarios (and behaviors). In terms of the associated
convex polytope formed by ND(ϒPOS ), the behaviors become
BPOS = ((B(r,β ) )r∈Oβ )β∈CPRE

, that can be viewed as composing
the convex polytopes ND(ϒ (r,β )

POS ) [74].
As for when we have introduced postprocessing opera-

tions, the wiring will need to adequate the outcomes s ∈ Oγ

(related to B) to some maximal context C (r,β )
POS within the

scenario ϒPOS (see Fig. 4). To that end, we now assume
that there exists a family of functions g(·|r, β ) : Oγ → C (r,β )

POS ,
and denote δ = g(s|r, β ). In words, the functions g(·|r, β )
guarantee that the postprocessing of s selects only compatible
measurements to be jointly performed in the scenario ϒPOS ,
depending on the pair (r, β ). See Fig. 4 for a description of
how this can be operationally performed. Later we discuss
how general the function g can be without being capable of
creating contextuality out of noncontextual boxes.
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s

M
Oγ

C

t

MPOS

Oδ
POS

CPOS

r

MPRE

β

Oβ
PRE

CPRE

γ

φ

λ
∑

λ p(λ)

∑
φ p(φ)

P

s

M
Oγ

C

t

MPOS

Oδ
POS

CPOS

r

MPRE

β

Oβ
PRE

CPRE

r

f

φ

λ
∑

λ p(λ)

∑
φ p(φ)

P

s

M
Oγ

C

t

MPOS

Oδ
POS

CPOS

s

g

r

MPRE

β

Oβ
PRE

CPRE

r

f

φ

λ
∑

λ p(λ)

∑
φ p(φ)

P

δδ

FIG. 4. Forming a noncontextual wiring. From left to right we increase wiring “complexity,” towards a completely general noncontextual
wiring. (left) We start with three independent statistics, in three independent scenarios. Two are noncontextual behaviors and one is a general
behavior. (middle) For each result r, occurring with probability pβ (r) ∈ BPRE a noncontextual behavior, we use a function f to output a valid
context γ = f (r) in C. (right) Similarly to the preprocessing, for each outcome s a function g outputs a valid context δ = g(s) in CPOS ≡ C (r,β )

POS

that can now be adaptively chosen. Depending on the joint outcomes r of the preselected behavior and maximal contexts β of the preselected
scenario we may choose any noncontextual behavior B(r,β )

POS within a scenario ϒ
(r,β )
POS with the condition that knowledge of r and β preserves the

factorizability of the noncontextual behavior, as described by Eq. (9). For clarity of the presentation, we have omitted summations
∑

r,s. As
before, the causal order of the operations goes from bottom (input context β) to top (joint output t).

Once the wirings happen, the outcomes of the final pro-
cedure will be some joint outcome t ∈ Oδ

POS . Each output
t of the postprocessing box BPOS can therefore be causally
influenced by the inputs β of BPRE , and the outputs r of
BPRE [37]. However, this influence is not fully general, as
commented in Ref. [36], we must demand that

pδ (t|s, r, β ) =
∑

φ

p(φ)
∏

δi∈δ=g(s|r,β )

pδi (ti|φ). (9)

The above restriction translates, in words, to the fact that BPOS

remains a KS noncontextual behavior, even with the adaptivity
from the classical inputs β and r. The behavior BPOS must
be described by a factorizable hidden-variable model, and the
function g cannot use the information of r and β to change
that. Recall that a noncontextual factorizable model is of the
form given by Eq. (4), where the factorizability corresponds
to the fact that the total probability distribution of a context
γ is described by a source of classical randomness p(λ) and
the product of independent distributions pγi (si|λ) for each
element γi of the context γ , and si the associated outcome of
measurement γi. Equation (9) requires that the same structure
remains valid, for every δi ∈ δ = g(s|r, β ) and outcomes ti of

this measurement δi. Even though we can now use the feedfor-
ward classical information to choose different scenarios, and
consequently behaviors therein, this structure remains valid.

With this construction, we get the final scenario once
wirings take place

ϒW := (MPRE , CPRE ,OPOS ),

where behaviors W (B) ∈ ϒW , are the set of all probabilities
of the form

pβ (t) =
∑

r∈Oβ ,s∈Oγ

pβ (r)pγ= f (r)(s)pδ=g(s|r,β )(t), (10)

where β ∈ CPRE and t ∈ O(r,β )
POS for some choice of prepro-

cessing input β and the successful preprocessing output
r. Importantly, pβ (r) has the form given by Eq. (4) and
pδ=g(s|r,β )(t) has the form given by Eq. (9). The behavior
B = {pγ (s)} can be any nondisturbing behavior. For future
reference, we collect what we have discussed so far in the
following definition:

Definition 9, Noncontextual wirings. Let ϒ = (M, C,

OM) be a compatibility scenario. Let also ϒPRE =
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b

Ψ

a
ba

yx

λx′ y′

b′a′

φ

x y

gA gB

FIG. 5. Example of a local operation with shared randomness
from the set LOSR◦. For simplicity we have omitted the terms∑

λ p(λ),
∑

φ p(φ). Note that each pre- and postprocessing stages
of operations have independent sources of classical randomness.
Furthermore, side channels only forward information from pre- to
postprocessing locally.

(MPRE , CPRE ,OPRE ) be any (preprocessing) compat-
ibility scenario, and for all (r, β ) ∈ Oβ

PRE × CPRE , let
ϒ

(r,β )
POS = (M(r,β )

POS , C (r,β )
POS ,O(r,β )

POS ) be also generic (collections
of postprocessing) compatibility scenarios. A noncontextual
wiring is a mapping W : ϒ → ϒW defined via Eq. (10),
satisfying the following:

(1) {pβ (r)} is a noncontextual behavior in ϒPRE .
(2) {pδ=g(s|r,β )(t)} is a noncontextual behavior in ϒ

(r,β )
POS ,

for all r, β.
(3) The function g(·|r, β ) : Oγ → C (r,β )

POS , for each γ ∈ C,
must satisfy g(s|r, β ) = ∪igi(si|r, β ), i.e., each outcome si ∈
s of a measurement γi ∈ γ is associated independently to a
given measurement in M(r,β )

POS by some function gi(·|r, β ) :
Oγi → M(r,β )

POS such that g(s|r, β ) ∈ C (r,β )
POS .

Where ϒW = (MPRE , CPRE ,OPOS ), with OPOS given by
the disjoint union of all O(r,β )

POS .
This particular class of operations will be denoted as NCW.

Definition 9 is involved, yet we hope Fig. 4 can provide an
intuitive diagrammatic representation. The restriction on the
possible choices of g is important so that choices of contexts
during the postprocessing stage cannot be determined by non-
local influences (as will be discussed in Sec. III A, this implies
that in a bipartite Bell scenario g “breaks” into two boxes
gA and gB for each party, see Figs. 5 and 6). As was shown
in Ref. [37], if B ∈ ND(ϒ) then W (B) ∈ ND(ϒW ). More
importantly, operations in NCW preserve KS noncontextual-
ity, i.e., if B ∈ NC(ϒ) then W (B) ∈ NC(ϒW ). The resource
theory RNCW = (UND,FNC, NCW) is the resource theory of
KS noncontextuality where free operations are taken to be
noncontextual wirings.

b

Ψ

a
ba

yx

λ

x′ y′

b′a′

x y

gA gB

FIG. 6. Example of a local operation with shared randomness
from the set LOSR•. For simplicity, we have omitted the terms∑

λ p(λ). Note that classical feedforward and adaptivity are only
allowed locally and that a single common source of randomness is
associated with both the pre- and postprocessing boxes. As argued
in Ref. [28], this is the decisive operational requirement that allows
LOSR• to be a convex set.

We call the type of a box B to be the scenario ϒ =
(M, C,OM) with respect to which the box B is defined.
This terminology is introduced because the same scenario has
many different behaviors (possible nondisturbing boxes) all
having the same type (i.e., all having the same compatibility
structure for maximal contexts, number of measurements, and
number of joint outcomes per context). Now, as our NCW
operations take boxes in ϒ = (M, C,OM) to boxes in ϒW =
(MPRE , CPRE ,OPOS ), we define the type of an operation W as
the pair of input or output types of scenarios ϒ → ϒW . The
set of all noncontextual wiring operations of type ϒin → ϒout

is denoted by NCW(ϒin → ϒout ). As mentioned above, some
of our results will be type-specific, meaning results concern-
ing type-dependent operations.2

2It is useful, for clarity and consistency, to distinguish our us-
age of type from others encountered in the literature. For example,
Refs. [75] use the word “type” to denote the systems considered
(classical, quantum or GPT) within a given process theory. Hence,
a type labels a different system. Reference [34] considers a type
to be the same as considered here, i.e., the compatibility scenario
(that they term measurement scenario), and equivalently the type of
a simulation to be the pair of scenarios in the domain and codomain
of a free operation. Reference [76] considered type to denote input-
output structure of choices of systems of a given process, e.g., a
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One elementary local comparability result is the following
one:

Lemma 2. For every B ∈ ND(ϒ) \ NC(ϒ) and every
BNC ∈ NC(ϒ) there exists some noncontextual wiring W such
that BNC = W (B), i.e., B → BNC .

Proof. We can choose a noncontextual wiring that is
merely a postprocessing where we discard the outcomes
from B and for which the postprocessing behavior is given
by BNC . �

3. Deterministic noncontextual wirings

Now we look for a special class of operations, the set of
deterministic noncontextual wirings. Consider a preprocessing
behavior

pβ (r) =
∑

φ

p(φ)
∏

i

pβi (ri|φ). (11)

It is well known that, without loss of generality, we can as-
sume pβi to take values in {0, 1} for all i [67]. This is possible
because we can allow any source of randomness to be due
to the source p(φ). In case such values are deterministically
assigned, no randomness p(φ) is considered, and the behavior
is said to be deterministic and takes the form

dβ (r) =
∏

i

dβi (ri ). (12)

Above, dβi (ri ) ∈ {0, 1}, for all i. Hence, in a deterministic
behavior, each context selects a unique output string r. This
allows us to formulate a definition for a deterministic noncon-
textual wiring operation.

Definition 10. Deterministic noncontextual wirings. We
say that a noncontextual wiring operation is deterministic
when both pre- and postprocessings are constructed using
noncontextual deterministic behaviors.

III. RESULTS

A. Restriction over Bell scenarios

We start our results section by analyzing which set of
free transformations noncontextual wirings become when we
restrict noncontextual scenarios to be those where the com-
patibility structure is isomorphic to some Bell scenario [77].
Recall that, albeit different (both conceptually and opera-
tionally) notions of nonclassicality, every Bell scenario can
be viewed as a compatibility scenario and every behavior in a
Bell scenario can be viewed as a behavior in that compatibility
scenario [66,78,79]. Formally, the no-disturbance condition
is mathematically equivalent to the no-signaling condition in
Bell scenarios. Moreover, when we view a Bell scenario as

generic bipartite channel has the type QQ → QQ because it has
inputs and outputs two quantum systems, while a bipartite shared
randomness has the type II → CC that inputs the trivial system and
outputs two classical systems. Finally, Ref. [28] used type to denote
the prescription of the number of inputs-outputs in a bipartite Bell

scenario; for example, they write (
2 2
2 2

) corresponding to two labels

as inputs/outputs per “wing” in a Bell causal structure. The whole
matrix is called the type of the specific common cause scenario.

a compatibility scenario the noncontextual polytope in that
scenario coincides with the local polytope [73,80]. The behav-
iors described by some factorizable hidden-variable model as
described by Eq. (4) become equivalent to what is known as a
local hidden variable model.

1. Nonconvex set of local operations and shared randomness

Various notions of free operations have been introduced to
investigate nonclassicality within Bell scenarios, captured by
violations of Bell inequalities. In particular, for the case of
local operations and shared randomness, the situation is rather
confusing (as pointed out by Ref. [28]) as different proposals
have this same name. Let us start by defining LOSR◦ as de-
scribed in Ref. [38]. For our purposes, it will suffice to discuss
bipartite Bell scenarios only. Consider a scenario where Alice
can perform X measurements with outcomes A and Bob can
perform Y measurements with outcomes B. The compatibility
scenario associated with this Bell scenario is described by one
where the set of measurements is X ∪ Y , the set of maximal
contexts are the pairs {x, y} and finally, the set of all outcomes
OM is such that all joint outcomes satisfy O{x,y} = A × B.
The behaviors in this scenario are given by {p(ab|xy)}a,b,x,y.

Figure 5 depicts a transformation within the set LOSR◦

acting on a bipartite Bell scenario. An initial common source
of randomness, denoted by the preparation of some state λ

with probability p(λ), is shared between Alice and Bob, each
of which perform some set of experiments having classical
inputs x′, y′ (choices of measurements) and classical outputs
x, y (outcomes of their measurements).

Each party has an associated side channel (e.g., a classical
memory) that copies the classical inputs and outputs and store
this information to be used later during a postprocessing stage.
Based upon the measurements a at this intermediate stage,
Alice then uses this information, and the information of x′
and x previously stored, to choose some other postprocessing
measurements using some function gA(a|x′, x), and obtain
a final outcome a′, similarly for Bob. In this case, we de-
scribe these operations by some mapping B = {p(ab|xy)} �→
{p(a′b′|x′y′)} = B′ where B′ = L(B) for some L ∈ LOSR◦.
Writing in full detail, these operations must have the form

p(a′b′|x′y′) =
∑

a,b,x,y

p(xy|x′y′)p(ab|x, y)

× p(a′b′|gA(a|x, x′), gB(b|y, y′)), (13)

where above both the preprocessing distribu-
tion p(xy|x′y′) and the postprocessing distribution
p(a′b′|gA(a|x, x′), gB(b|y, y′)) are described by some local
hidden-variable model. Also, each distribution has its own
common source of classical randomness (see Fig. 5).

It is straightforward to generalize this operational descrip-
tion to multipartite Bell scenarios. Ref. [38] showed that these
operations are free, in the sense that if a behavior has a lo-
cally causal explanation given by some local hidden-variable
model, once a transformation L ∈ LOSR◦ takes place, the
new behavior also has some locally causal explanation. What
we are interested here is in making the following simple
remark:

LOSR◦ � NCW|Bell, (14)
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where NCW|Bell is the subset of all noncontextual wiring
transformations of type NCW(ϒBell

1 → ϒBell
2 ), where both

ϒBell
1 , ϒBell

2 are compatibility scenarios mathematically iso-
morphic to some Bell scenario. In words, when restricted
to Bell scenarios, the noncontextual wirings contain, but are
not equivalent to the local operations and shared randomness
described by transformations in LOSR◦ and characterized op-
erationally as in Fig. 5.

To see why this is the case one compares the operation
presented in Fig. 5 with the noncontextual wiring presented
in Fig. 4. During the postprocessing stage, noncontextual
wirings allow for choosing a specific input context provided
we have information of a past context considered. In par-
ticular, every transformation in LOSR◦ can be described in
terms of noncontextual wirings in such scenarios. However, a
generic NCW|Bell operation also allows both parties to have
information about both classical inputs and outputs of the
preprocessing box to choose a postprocessing. Operationally,
this implies that general NCW operations allow for a classical
side channel sending the information of inputs x′ and x made
by Alice during a preprocessing stage on her side to Bob’s
choices of postprocessing, and vice versa. This corresponds
to a choice of a generic function g(·|r, β ) that has inputs of
the contexts used in the preprocessing stage (in this case,
β = {x′, y′}) and their joint outcomes [in this case, r = (x, y)].

This is a subtle difference. To be concrete, if we con-
sider Eq. (13), an operation in NCW|Bell also allow that
each function gA takes into consideration y and y′, and vice
versa. In this case, we might have that Alice chooses her
measurements using gA(a|x, y, x′, y′) and the same for Bob
gB(b|x, y, x′, y′). References [36,37] have overlooked this sub-
tle difference, which became clear due to the discussion
provided by Ref. [28]. Notably, this remark was made by
Karvonen in Ref. [33], who wrote

“At the level of transformations, nonlocality is no longer a
special case of contextuality. ( ...) This is because our wirings
are slightly too general as they allow the ith party to wire some
of their measurements to measurements belonging to other
parties.”

Note that while the wirings considered by Karvonen and
coauthors [32–35] are “slightly too general” they remain free
wirings, in the sense of not being able to create KS contex-
tuality out of KS noncontextual behaviors. The only remark
to be made here in comparison to NCW is that, in our no-
tation, g cannot be completely general (as opposed to f ), as
this would allow some nonlocal (or contextual) correlations
to be created. When applied to Bell scenarios, g must also
factorize its influence, i.e., g = gA ∪ gB, as in Fig. 5. In more
general cases, we simply require that g(s|r, β ) = ∪igi(si|r, β )
as described in Def. 9. The main result of this section (and the
following one) is then making Karvonen’s remark concrete in
the context of noncontextual wirings a strict subset of the free
operations Karvonen considered in Ref. [33].

Naturally, the two notions differ. Noncontextuality scenar-
ios do not base their operational constraints on some notion
of spatial separability between different parties. Operations
characterized by some notion of local operation and shared
randomness intentionally use the operational structure of Bell
scenarios to characterize the possible transformations. LOSR◦

(and later what we denote LOSR•) restrict parties to only
process classical information that is locally available, while
allowing initial sources of shared randomness. A KS noncon-
textuality scenario that is mathematically isomorphic to some
Bell scenario has no operational motivation to restrict classical
feedforward between measurements that can be jointly per-
formed, since those are not necessarily measured by spacelike
separated parties, and can be, for example, measured sequen-
tially, as was done, e.g., in Ref. [81].

2. Convex set of local operations and shared randomness

For completeness, we include a discussion from Ref.
[28, Appendix A]. There, the authors show that the set of
local operations with shared randomness of a fixed type
LOSR◦(ϒBell

in → ϒBell
out ) is a set of free operations that is not

convex. This is shown by creating a convex combination of
free operations such that the final one has a perfect correlation
between x and b′ that cannot be mediated by y, because y
in such an example ends up being deterministic (always the
same).

Reference [28] considers a different set of operations,
which is mathematically described as the convex hull of
LOSR◦, which we denote LOSR•. This set was introduced and
investigated in Refs. [39,40]. This convex hull is not only ab-
stractly imposed at a mathematical level, but it is the result of
a novel link allowed by an operational description of the free
transformations. They allow the initial source of randomness
to be both the source of randomness for the preprocessing and
for the postprocessing operations, as shown in Fig. 6. Because
of that, it follows immediately that

LOSR• �= NCW|Bell. (15)

These two sets of free operations are different. The above
follows simply from the same remark made before that in
a generic noncontextual wiring both parties can have infor-
mation about contexts {x′, y′} considered and joint outcomes
{x, y} of the preprocessing behaviors.

Reference [28] credits, in our view correctly, the closure
of LOSR• under convex combinations to this novel per-
spective on the common source of randomness of pre- and
postprocessings. This suggests that NCW|Bell, or even any set
NCW(ϒin → ϒout ), could be nonconvex sets of free opera-
tions. In the next section, we investigate this aspect of the
geometry of the set of free operations.

B. Convexity of the set of noncontextual wirings

As mentioned previously, an important technical aspect of
a resource theory is the convexity of the chosen set of free op-
erations. Let us begin by considering a general free operation
in NCW(ϒin → ϒout ), as given by Eq. (10). We are fixing the
input-output compatibility scenarios, which define the type of
transformation. We are interested in investigating if this set is
convex. Since we are fixing the type of a free operation, we fix
the initial behaviors to be represented as Bin = {pγ (s)} from
ϒin and the final behaviors to be represented as Bout = {pβ (t)}
from ϒout.

Formally, we want to show that, for all α ∈ [0, 1], and
all W1,W2 ∈ NCW(ϒin → ϒout ), there exists some wiring
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W ∈ NCW(ϒin → ϒout ) such that

W (B) = αW1(B) + (1 − α)W2(B).

We now describe the new noncontextual wiring W . Con-
sider that {p(1)

β (r)} and {p(2)
β (r)} are the two preprocessing

behaviors for W1 and W2, respectively. Since they are both
noncontextual, they will be given by

p(�)
β (r) :=

∑
λ

p(�)(λ)
∏
βi∈β

p(�)
βi

(r|λ),

where � ∈ {1, 2} labels the respective wirings. We can de-
scribe this � as a classical variable, and let p(�) be a
distribution over � such that p(1) = α and p(2) = 1 − α.
Let us now construct a new behavior {{pβ (r′)}r}β such that
r′ ∈ Oβ × �. This behavior is given by

pβ (r′) =
∑
�

p(�)
∑

λ

p(λ|�)
∏
βi∈β

p(�)
βi

(r|λ),

where p(λ|1) ≡ p(1)(λ) the source of randomness associated
with the noncontextual behavior {p(1)

β (r)}, and similarly for
p(λ|2) ≡ p(2)(λ). The behavior pβ (r′) can be viewed as a
new “larger” behavior {p(�)

β (r)}�∈{1,2}. The specific choice
of state � is passed forward to the outcomes of the new
behavior (as a flag), via r′ = (r,�). This flag is used to make
the controlled choice between behavior p(1)

β (r) or p(2)
β (r). A

similar thing will happen to the postprocessing behavior. As
shown in Ref. [32], the controlled choice of two noncontextual
behaviors is again a noncontextual behavior.

The function f takes r′ as input and is then defined as
f (r′) = f (r,�) := f (�)(r). Note that, because information
about � is passed as a flag to the outcomes, this choice is
possible. Moreover, we make a similar choice for the function
g where we define g(s|r′, β ) = g(s|r,�, β ) := g(�)(s|r, β ).
This is an important aspect: the function f allows us to pre-
serve the type of the scenario ϒin. This is also why we can
transfer information of � to the postprocessing stage until g,
because r′ carries information of �.

Because of that, we can define the postprocessing behavior
of W to be associated with either that of W1 or that of W2,
depending on the flag value � of the copied outcome r′,

pδ (t|s, r′, β ) =
∑

φ

p(φ|�)
∏

δi∈δ=g(s|r′,β )

p(�)
δi

(ti|φ),

i.e., pδ=g(s|r′,β )(t) := p(�)
δ=g(s|r,β )(t). Above, p(φ|�) = p(�)(φ)

where p(1)(φ) describes the randomness associated with the

postprocessing from W1, and similarly for p(2)(φ). Moreover,
this is possible because we are viewing the entire postpro-
cessing behavior as a new behavior in which we concatenate
the postprocessing behaviors from W1 and W2 into a single
one, and use the flag � to decide which one to use (similarly
as we have done with the preprocessing). This is why we
are allowed to write p(φ|�). This calculation is somewhat
surprising because, effectively, it is possible to signal informa-
tion from preprocessing randomness towards postprocessing
randomness with NCW operations, despite claims that this
was not the case [28,36,37].

In this manner, we can write down W as

pβ (t) =
∑
r′,s

pβ (r′)pγ= f (r′ )(s)pδ=g(s|r′,β )(t).

By construction, W = αW1 + (1 − α)W2. From this calcula-
tion, we conclude the following:

Theorem 1. Let ϒin, ϒout be two compatibility scenar-
ios. The set of all noncontextual wirings with a fixed type
NCW(ϒin → ϒout ) is a convex set.

The immediate corollary is the following one:
Corollary 1. Let ϒBell

in , ϒBell
out be two compatibility scenar-

ios mathematically isomorphic to some Bell scenario. The set
NCW(ϒBell

in → ϒBell
out ) is a convex set.

In particular, this corollary implies that every convex com-
bination of elements in LOSR◦ can be represented both as
some noncontextual wiring and as some LOSR• operation.
Effectively, as we have seen, what is allowed by a noncontex-
tual wiring operation is that the classical randomness in the
preprocessing can be fed forward freely toward the classical
randomness of the postprocessing boxes. This is operationally
equivalent to allowing, in general, to have a single common
source of shared randomness between pre- and postprocessing
boxes [in the case described above, that common source of
randomness had the form

∑
�,φ,λ p(�)p(φ|�)p(λ|�)].

In other words, the ability to prepare a source of random-
ness, and forward this information via some side channel
and a function f that postprocess this information as we did
above in the proof of Theorem 1 is operationally equivalent
to the ability to simply have a third side-channel that forward
information of the classical source of randomness from the
preprocessing behavior towards the postprocessing box. We
can therefore write any noncontextual wiring in the following
form:

pβ (t) =
∑

λ

p(λ)
∑

r∈Oβ ,s∈Oγ

∏
βi∈β

pβi (ri|λ)pγ= f (r)(s)
∏

δi∈δ=g(s|r,β )

pδi (ti|λ), (16)

where now p(λ) is a common source of randomness for both
the pre- and postprocessing behaviors. A similar remark was
made in Ref. [34, Remark 28]. There, the authors point out
the dual relationship between choosing to allow for a common
source of shared randomness, or adaptivity in the free opera-
tions, that they interpret as simulations of different scenarios.

Therefore, we have also the following corollary:

Corollary 2. The following inclusions hold

LOSR◦ � LOSR• � NCW|Bell.

One result that will be instrumental for us, and that can be
viewed as a corollary from the convexity of free operations, is
the following:
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Corollary 3. Let B′ ∈ NC(ϒ), and α ∈ [0, 1]. For any re-
sourceful behavior B there exists a noncontextual wiring W
such that

W (B) = αB + (1 − α)B′.

Proof. Consider the noncontextual wiring WB′ (B) = B′ re-
turning the noncontextual behavior B′ for any B (as in Lemma
2), and the noncontextual wiring that does nothing to the
behaviors, i.e., Wid (B) = B. Now, consider the convex combi-
nation of these wirings via α, that from Theorem 1 describes
a new noncontextual wiring. This wiring will be W that we
wanted. �

Now, recalling the discussion on deterministic behaviors
from Sec. II C 3, the convexity of our set of operations can
be immediately shown to have more structure. If we recall
that noncontextual behaviors can always be described, without
loss of generality, as

∑
λ p(λ)

∏
βi∈β dβi (ri|λ) and that we can

write any noncontextual wiring acting on a behavior {pγ (r)}
using Eq. (16), we conclude that the action of any noncon-
textual wiring can be described as the convex combination of
the action of some finite set of deterministic noncontextual
wirings. The finite set of deterministic noncontextual wirings
is determined from the size of λ. The set of all convex com-
binations of finitely many points precisely defines convex
polytopes.

Theorem 2. The free operations NCW(ϒin → ϒout ) form
a convex polytope.

The vertices of the convex polytope NCW(ϒin → ϒout ) are
given by deterministic noncontextual wirings. When restricted
to Bell scenarios, because LOSR• is also a convex poly-
tope, we have that the inclusion LOSR• � NCW|Bell when
restricted to specific types of operations is a convex polytope
inclusion.

C. Global comparability properties

In this section, we investigate the properties from Def. 3.
We prove the following theorems:

Theorem 3. The pre-order on objects induced by NCW is
not a total pre-order, i.e., there exist pairs of behaviors that are
incomparable under noncontextual wirings.

Theorem 4. The pre-order on objects induced by NCW is
not weak, i.e., there exists triplets of distinct objects B1, B2, B3

such that B1 � B2, B2 � B3 while B1 and B3 are comparable.
Theorem 5. The height and the width of the pre-order on

objects induced by NCW are both (uncountably) infinite.
Theorem 6. The pre-order described by NCW is locally

infinite, i.e., there exists an interval B1 → B → B2 for which
the cardinality of the set of all equivalence classes [B] := {B′ :
B → B′ and B′ → B} is (uncountably) infinite.

The way we show these results is by focusing on spe-
cific constructions on the n-cycle scenarios and by using
noncontextuality monotones. As already mentioned in the
introduction, Theorems 3–6 were known to hold in the case
of the bipartite Bell scenario introduced by Clauser, Horne,
Shimony, and Holt (CHSH) [41] and when the free operations
are taken to be LOSR• [28]. In what follows we generalize
these findings to hold for any n-cycle compatibility scenario
ϒn and with respect to free operations taken to be NCW.

The techniques we employ are straightforward translations
from the tools discussed in Ref. [28] for (bipartite) Bell sce-
narios to the case of n-cycle compatibility scenarios. For a
description of the monotones we consider for any abstract
resource theory, we refer the reader to Ref. [44]. See also Ref.
[82, Appendix C] for some results on global comparability
properties (specifically width and weakness) in general re-
source theories. We start by introducing the relevant cost and
yield resource monotones. Then, we use these constructions
to prove each of the theorems listed above.

1. Yield and cost monotones for n-cycle compatibility scenarios

To prove our results for this section we use two resource
monotones known as yield yk and cost ck . These monotones
are defined relative to specific (fixed) functionals, which we
take here to be given by the functionals I (n)

k defining facet-
defining inequalities of the noncontextual polytope for n-cycle
scenarios, given by Eq. (5). Moreover, these monotones are
also defined relative to the specific free operations in our
resource theory.

We define yk : ND(ϒn) → R to be the yield monotone
defined over any n-cycle scenario ϒn, with n � 3, as

yk (B) := max
B′∈ND(ϒn )

{
I (n)
k (B′) : B → B′}, (17)

where {I (n)
k }k are all facet-defining noncontextuality

inequality-functionals of NC(ϒn), given by Eq. (5).
Above, the arrow B → B′ represents that there exists
some W ∈ NCW(ϒn → ϒn), for any fixed n � 3, such
that B′ = W (B). The yield yk gives the value of I (n)

k for the
most resourceful behavior that can be freely obtained from
the behavior B. Note also that for every B there exists some
B′ such that B → B′, hence the value of this monotone is
always bounded from below by n − 2. For any k, and any
noncontextual wiring W ∈ NCW(ϒn → ϒn),

yk (W (B)) = max
B′

{
I (n)
k (B′) : W (B) → B′}

= max
B′

{
I (n)
k (B′)|B′ = W ′ ◦ W (B) for some W ′}

� max
B′

{
I (n)
k (B′)|B′ = W ′(B) for some W ′}

= max
B′

{
I (n)
k (B′)|B → B′}

= yk (B),

where the inequality comes from the fact that, for the first
optimization, the possible free operations must have the de-
composition W ′ ◦ W , with W fixed, while the second is left
to be any free operation. These calculations show that yk are
indeed resource monotones.

Lemma 3, Yield monotone for n-cycle scenarios. For all
functionals I (n)

k and all B ∈ NC(ϒn), we have that

yk (B) = n − 2.

Moreover, for any B ∈ ND(ϒn) \ NC(ϒn) there exists some
unique label k� such that

yk� (B) = I (n)
k� (B).

Proof. The second part is trivial, following from the defi-
nition and from the fact that any contextual behavior in ϒn,
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for any n � 3, violates one and only one noncontextuality
inequality. The first part follows from the fact that all free
resources are equivalent (see Lemma 1), implying that one
can simply take B′ to be a noncontextual behavior for which
I (n)
k (B′) = n − 2. �

We also need another monotone, termed the cost mono-
tone and denoted as ck . However, to define this monotone
precisely we need to introduce new sets of behaviors. For
that, we must recall some basic aspects of the polytopes
ND(ϒn) and NC(ϒn) defined for n-cycle compatibility sce-
narios. We have already mentioned that every contextual
behavior in such scenarios violates one, and only one, facet-
defining noncontextuality inequality. Recall that, if we denote
all the vertices of a convex polytope P as ext(P), we have
that ext(NC(ϒn)) ⊆ ext(ND(ϒn)). In particular, it is there-
fore also true that each Ineq. (5) is violated by one, and
only one vertex in ext(ND(ϒn)) \ ext(NC(ϒn)). Vertices in
ext(ND(ϒn)) \ ext(NC(ϒn)) are always strongly contextual
[5] and are never quantum realizable (see Ref. [83] for an
introduction to quantum realizability problems), i.e., these
behaviors cannot be quantum behaviors.

Let us denote by

NDC(ϒn) := ext(ND(ϒn)) \ ext(NC(ϒn))

the set of all 2n−1 nondisturbing contextual vertices [42]. Let
us also denote the specific behavior B∅ where all outcomes
are equally likely, implying that all two-point correlation func-
tions equal zero, and therefore I (n)

k (B∅) = 0. We now define a
discrete set, given by all behaviors of the form

Dn :=
{

n − 2

n
B + 2

n
B∅ : B ∈ NDC(ϒn)

}
,

where, of course, B∅ ∈ NC(ϒn). By construction, Dn ⊆
NC(ϒn) as will soon be clear.

For every B ∈ Dn we have that there exists a specific
functional I (n)

k that has value I (n)
k (B) = n − 2. This is simply

because I (n)
k (B∅) = 0 and the remaining behavior in the com-

bination returns n since it saturates the algebraic maximum of
the functional I (n)

k . Because of that, these points are exactly
those that lie in the intersection between the line from B∅

to some extremal contextual behavior, and the facet of all
behaviors returning a tight value to the specific inequality
I (n)
k . We can therefore introduce a continuum of behaviors

that lie within these specific points in Dn and the elements
of NDC(ϒn)

Pn :=
⊔

k

P(n)
k ,

where Pn is the disjoint union of sets

P(n)
k = {εBk + (1 − ε)B′

k|ε ∈ [0, 1]},
where Bk is the unique element from NDC(ϒn) reaching the
algebraic maximum of I (n)

k , and B′
k := (n − 2)/nBk + 2/nB∅.

The last set of behaviors we need to introduce is the set of
behaviors that both saturate the noncontextuality inequalities,
and hence lie in the boundary of NC(ϒn), and also lie in the
boundary of ND(ϒn). For each k labeling the facet-defining
inequalities, if we consider the set {B ∈ ext(NC(ϒn)) :
I (n)
k = n − 2} these sets are (obviously) nonempty and have

FIG. 7. Convex polytopes ND(ϒn) and NC(ϒn), together with
relevant sets of behaviors for this section, for a fixed n. The sets
of behaviors NDC(ϒn), Dn, P(n)

k , ∂Bn described in the text are
shown. Each inequality functional I (n)

k or I (n)
k′ defines a hyperplane

via I (n)
k (B) = n − 2. The points in Dn lie in the intersection of these

hyperplanes with the line between B∅ and elements in NDC(ϒn)
that are strongly contextual behaviors. For each k labeling a facet-
defining noncontextuality inequality the sets P(n)

k are defined by the
convex combinations of the specific points in Dn and in NDC(ϒn)
defined via the label k.

cardinality greater than one. Let B�
k be one such el-

ement, for each k. We define the set ∂Bn := ∪k{Bk ∈
ext(NC(ϒn))|I (n)

k (Bk ) = n − 2}, to be the set of all such
choices. In words, each element of ∂Bn is an extremal element
of the noncontextual polytope that saturates at least one of
the facet-defining noncontextuality inequalities (5). All the
relevant sets of behaviors just described are shown in Fig. 7.

With the technical ingredients just discussed, we can
now define our cost monotone. Let ck : ND(ϒn) → R ∪
{+∞,−∞} be the cost monotone defined over any n-cycle
scenario ϒn, with n � 3, as

ck (B) := min
B′∈P(n)

k

{
I (n)
k (B′) : B′ → B

}
, (18)

where {I (n)
k }k are all facet-defining noncontextuality

inequality-functionals of NC(ϒn) from Eq. (5). Following a
similar reasoning to the yield yk it can be shown that ck is also
a resource monotone. Note, however, that it is not always the
case that for a given behavior B there will be some B′ ∈ Pn

such that B′ → B. This is the case whenever B ∈ NC(ϒn) or B
violates the same noncontextuality inequality as B′. However,
if B violates some other inequality, then there will be no
free operation such that P(n)

k � B′ → B, and in such cases
we set the value ck (B) = +∞. This situation corresponds in
Fig. 7 for behaviors B, B′ in different regions of contextual
behaviors, represented by the two triangles.

As before with the yield monotone, we can show the fol-
lowing:

Lemma 4, Cost monotone for n-cycle scenarios. For any
I (n)
k and any B ∈ NC(ϒn) we have that

ck (B) = n − 2.

Moreover, for any B ∈ Pn \ NC(ϒn) there exists k� such that

ck� (B) = I (n)
k� (B).
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More generally, for any B ∈ ND(ϒn) we have that there exists
k� and ε ∈ [0, 1] such that

ck� (B) = n + 2(ε − 1),

where ε is given by

B = B(α, ε) := αB̃ + (1 − α)Bε. (19)

Above, α ∈ [0, 1] is some value returned by the optimization
and guaranteed to exist, while Bε ∈ Pn and B̃ = Bk� ∈ ∂Bn

with Ik� (Bk� ) = n − 2.
We prove this result in the Appendix. Above, for each B

there exists at least one Bk� ∈ ∂Bn describing the decompo-
sition. Using these two lemmas, it is simple to show that the
following lemma holds:

Lemma 5, Cost and yield for the family B(α, ε). Let
B(α, ε) be a behavior from a scenario ϒn given as in Eq. (19),
violating a noncontextuality inequality I (n)

k (B) � n − 2, with
a fixed k. Then,

ck (B(α, ε)) = n + 2(ε − 1), (20)

and

yk (B(α, ε)) = n − 2 + 2ε(1 − α) (21)

for any ε, α ∈ [0, 1].
Proof. The form of the cost follows trivially from Lemma

4, by construction. The form of the yield follows from the fact
that any such behavior is given as a combination of the form

αB̃ + (1 − α)εB + (1 − α)(1 − ε)B′,

where, if contextual, the yield returns the value of the in-
equality functional that is linear and then we simply need to
calculate it for B̃, B, and B′. But by construction, I (n)

k (B̃) =
I (n)
k (B′) = n − 2 and I (n)

k (B) = n since B̃ ∈ ∂Bn, B′ ∈ Dn

[both chosen such that I (n)
k (B̃) = n − 2] and B ∈ NDC(ϒn)

is a nondisturbing contextual vertex of ND(ϒn). These imply
that

yk (B(α, ε)) = α(n − 2) + (1 − α){(1 − ε)(n − 2) + εn}
= n − 2 + 2ε(1 − α).

�
Note that the lemma above holds once we fixed some set of

contextual behaviors violating a specific inequality I (n)
k (B) �

n − 2, represented the triangles in Fig. 7. With these two
resource monotones and the specific form they have when ap-
plied to n-cycle scenarios, we now proceed to prove Theorems
3–6.

2. Incomparable behaviors under wirings

We start showing that there are incomparable objects un-
der noncontextual wirings, proving Theorem 3. To prove this
we can use resource monotones. If we have two inequiva-
lent monotones m1, m2 and two objects B1, B2 such that
m1(B1) < m1(B2) and m2(B2) < m2(B1) we get that both
objects must be incomparable. This is because, as we have
seen in Sec. II A 2, the first inequality implies that B1 cannot
be freely transformed into B2, while the second inequality
implies that B2 cannot be freely transformed into B1.

For this, consider the following two objects: B1 =
B(1/4, 1/4) and B2 = B(3/4, 1/2), where we are consider-
ing a parametrized family B(α, ε) given by Eq. (19). From
Lemma 5 we have that

ck (B1) = n − 3

2
< n − 1 = ck (B2)

and

yk (B1) = n − 13

8
> n − 7

4
= yk (B2).

We conclude that the pre-order is not totally pre-ordered,
proving Theorem 3. Note that this incomparability result re-
mains true for all n-cycle scenarios.

3. Weakness of incomparability

Given that we have incomparable behaviors, we can study
the properties of the incomparability relation. Now, consider
B1 and B2 as in the last section, and define a new behavior
given by B3 = B(1/8, 1/4). Since we have that B3 and B1

have the same value of ε these are both convex combinations
of a free behavior B̃ ∈ ∂Bn ⊆ NC(ϒn) and a (resourceful)
behavior Bε=1/4 ∈ Pn. In the last section, we have seen that
B1 and B2 are incomparable. Following the same reasoning,
we can also see that B2 and B3 are incomparable because

ck (B3) = ck (B1) = n − 3

2
< n − 1 = ck (B2)

and

yk (B3) = n − 25

16
> n − 7

4
= yk (B2).

Therefore B1 � B2 and B2 � B3. Since B̃ is a free behavior,
and B1 can be written as a convex combination of B3 and B̃,
there exists a noncontextual wiring B3 → B1 (see Corollary
3). As a sanity check, we can calculate both the cost and yield,
and see that for both, the values for B3 are higher. In fact,
ck (B1) = ck (B3) and yk (B1) < yk (B3), as expected.

These calculations show that incomparability between
objects in our resource theory, denoted as �, is not a
transitive relation. This implies that the pre-order of non-
contextual wirings is not weak, and concludes the proof of
Theorem 4.

4. Height and width

Recall that the height of the pre-order is the cardinality of
the largest chain contained therein (see Def. 3). A finite chain
would be for instance a chain of the form B1 → B2 → B3 and
a countable but infinite chain would be a chain of the form
B1 → B2 → B3 → · · · that has the same cardinality as the
one of the natural numbers. An uncountable chain is one that,
for any given interval of real numbers I = [a, b] we have that,
∀ x1, x2 ∈ I , x1 � x2 implies that Bx1 → Bx2 .

Note that we know that any element of Pn is a convex
combination (defined by a parameter ε ∈ [0, 1]) of some re-
sourceful behavior B and a free behavior B′. Given any such
free and resourceful behaviors, noncontextual wirings gener-
ate any possible convex combination between B and B′, from
Corollary 3. This implies that for any pair ε1, ε2 ∈ [0, 1] such
that ε1 � ε2 we have that B1−ε1 → B1−ε2 , and this forms an
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uncountable infinite chain. Therefore we conclude that the
height of the pre-order is (uncountably) infinite and has the
same cardinality as the set of real numbers.

To investigate the width of the pre-order, consider the
set of points {B(x, x) | 1

2 � x � 1}, the line segment between
points B(1/2, 1/2) and B(1, 1). By inspection, we notice that
within this region, the function ck (B(x, x)) = n + 2(x − 1) is
strictly increasing, while yk (B(x, x)) = n − 2 + 2x(1 − x) is
strictly decreasing. Therefore, this pair of monotones wit-
ness the incomparability of every pair of objects in this line
segment. Hence this line segment constitutes an antichain,
and since here there is also an (uncountably) infinite number
of incomparable points, by the same logic applied to the
height of the pre-order, we conclude that the width of the pre-
order is also (uncountably) infinite. This concludes the proof
of Theorem 5.

5. Local finiteness

To conclude, we show the claim from Theorem 6. We
want to show that there exists an infinite set of inequiv-
alent behaviors within some interval chain. To show that,
the infinite chain Pn is also instrumental. Note that for each
interval B1−ε1 → B1−ε → B1−ε2 there exists an infinite set
of inequivalent behaviors. This is captured, for instance, by
the cost monotone ck acting on B(0, ε). For any ε1 < ε < ε2

we have that ck (B1−ε1 ) < ck (B1−ε ) < ck (B1−ε2 ) and there can
exist no free operation from B1−ε2 → B1−ε and neither from
B1−ε → B1−ε1 . This implies that all these are inequivalent
resources, and since this is true for the interval, there are
infinitely many classes of inequivalent resources within P(n)

k ,
for any k and n. This shows that the pre-order induced by
noncontextual wirings over behaviors in any n-cycle scenario
is locally infinite (see Def. 3). This concludes the proof of
Theorem 6.

As a final remark, we notice that due to Vorobyev’s Theo-
rem [84], any measurement scenario ϒ for which NC(ϒ) �=
ND(ϒ), sometimes called contextuality-witnessing scenar-
ios, must contain an n-cycle subscenario. Via lifting [73]
any contextuality-witnessing scenario must therefore con-
tain lifted n-cycle inequalities, for which one can apply our
findings by generalizing straightforwardly the cost and yield
monotones we have described, and conclude that all Theorems
3–6 hold in any scenario, not only dichotomic cycle scenarios.

IV. DISCUSSION

In this work we have studied the resource theory one ob-
tains when considering behaviors in compatibility scenarios
as resource objects, Kochen–Specker noncontextual behaviors
as free objects, and noncontextual wirings as free operations.
While these free operations have been introduced in previous
literature, we believe our presentation of the topic is signifi-
cantly different than those present therein, and it clarifies some
aspects that were either known as folklore or overlooked.
One such aspect is the relationship between the set of non-
contextual wirings, when applied to compatibility scenarios
isomorphic to Bell scenarios, and the set of local operations
and shared randomness in such scenarios. We show that non-
contextual wirings are not equivalent to local operations with

shared randomness, but contain these operations as a subset of
possible operations.

One operational aspect we show is the convexity of the
set of noncontextual wirings. We prove that this set is closed
under convex combinations. In proving so, we end up showing
that the ability to feedforward input and outputs to future
behaviors (side channels in a wiring) implies that both pre- and
postprocessing noncontextual behaviors can share the same
source of randomness. This aspect led to a novel description
of how one may define noncontextual wirings, allowing for
a common source of shared randomness between input and
output behaviors. Clearly, this discussion, in particular, is
motivated by the recent findings of Wolfe et al. [28] that
recognized the important role of having a common source
of shared randomness between pre- and postprocessing be-
haviors when discussing LOSR•. Our results showed that, as
with the set of type-dependent local operations with shared
randomness, the set of type-dependent noncontextual wirings
form a polytope.

Moreover, motivated by the study of global comparability
properties of the resource theory of nonclassical common-
cause boxes (Def. 3) by Wolfe et al. [28], we have also
investigated which ordering properties noncontextual wirings
induce over the set of all behaviors. To do so, we use cost and
yield monotones, specifically targeting facets of n-cycle com-
patibility scenarios, to show (i) the existence of incomparable
objects under wirings, (ii) that the pre-order is not weak, (iii)
that both the height and width of the pre-order are infinite and,
finally, (iv) that there exists an interval having infinitely many
inequivalent objects. Along the way to showing these results,
we also show elementary facts, such as that every noncontex-
tual behavior is equivalent under noncontextual wirings, that
convex mixtures are a subset of all possible wirings, and that
any resourceful object can be freely operated towards any free
object.

A. Relation with previous work

Our work is significantly motivated by the findings of
Wolfe et al. [28]. Specifically, we were interested in gen-
eralizing the generic features of the global comparability
properties they find in the context of the CHSH Bell scenario
to any contextuality-witnessing n-cycle scenario. Because, as
we have shown, noncontextual wirings are a larger set of free
operations (within compatibility scenarios) than local opera-
tions and shared randomness, it could be that incomparable
objects under LOSR become comparable under NCW, inflict-
ing in different global properties of the pre-order. Perhaps
unsurprisingly, using fairly similar tools as the one employed
by Ref. [28], we have obtained the same global properties.

One major aspect of our work is, however, understanding
the convexity of free operations NCW. Much of the discussion
from Ref. [28] suggests (in our view, correctly) that unless
there exists a mechanism to forward randomness from the pre-
processing behaviors towards the postprocessing ones, there
will be an inevitable nonconvexity of the set of operations.
Intriguingly, previous literature has explicitly demanded that
noncontextual wirings could not forward information of the
states λ. This choice was made specifically because the ability
to do so could lead to the creation of contextuality using
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mechanisms akin to those found in Refs. [85–88]. Our work,
despite what is suggested by the discussion of Ref. [28, Ap-
pendix A], shows that the set of type-dependent noncontextual
wirings is a convex polytope, and therefore a convex set. For
this conclusion to hold we use the fact that it is possible to
feedforward information of the states λ in the preprocessing
towards the postprocessing, and that this aspect is equivalent
to allowing a common source of randomness for both the pre-
and postprocessing behaviors, as it happens with LOSR•. In
particular, this also shows that, because noncontextual wirings
are free, they cannot create contextuality via the memory
mechanisms of Refs. [85–88] as initially thought.

Two connections with existing literature are worth men-
tioning. First, while Refs. [36,37] claimed that local opera-
tions and shared randomness were equivalent to noncontextual
wirings restricted to Bell scenarios, Ref. [33] briefly pointed
out that the set of all possible free operations for the resource
theory of contextuality needed to be larger than that of the
LOSR when restricted to Bell scenarios. Moreover, Ref. [34]
remarked (see Remark 28 therein) that one can exchange
adaptivity and a common source of randomness. Our work
brings clarity to the discussions present in the references men-
tioned above regarding the convexity of NCW and its relation
with LOSR.

B. Further directions

Various aspects are left for future work. For example, as
mentioned above, Refs. [5,32–34] considered a larger set of
possible free operations than that of noncontextual wirings.
This can be seen because their wirings allows for each party
to adaptively measure their own boxes [33,34], and not only
the postprocessing boxes as in the definition of NCW. It re-
mains to see what global comparability properties these free
operations have. To the best of our knowledge, it is unknown
if there are incomparable behaviors for their notion of free
operations. We expect, nevertheless, that all the global com-
parability properties we have found to continue to hold for
different choices of free operations, as those considered in
Refs. [29–31,33,34].

Another interesting aspect is to understand how generic
wirings (not just noncontextual ones) behave. For instance,
there are likely classes of contextual wirings that combined
can either send a resourceful behavior towards a free behavior,
or that act trivially on the resources. The mapping of such pos-
sibilities would guarantee that one does not waste resources by
acting with resourceful wirings without gaining anything from
these operations. In other words, denoting as Wc a nonfree
wiring that has contextual pre- or postprocessing behaviors,
is it possible that Wc(B) = W (B�), for some free wiring W
and some other behavior B�? And if so, can this effect be
completely characterized, with necessary and sufficient con-
ditions deciding when this is possible? One other possibility
is also to investigate ‘doped’ resources [89,90], when we have
a sequence of free transformations

W1 ◦ W2 ◦ · · · ◦ Wc ◦ · · · ◦ Wn(B)

“doped” with few nonfree wirings Wc. Understanding the
quantum information power of these restricted classes of op-
erations may be useful for resource quantification.

ACKNOWLEDGMENTS

We would like to thank Ana Belén Sainz, Rui Soares Bar-
bosa, Laurens Walleghem, Martti Karvonen, and Costantino
Budroni for helpful comments and discussions. T.S. and
B.A. would like to acknowledge financial support from Con-
selho Nacional de Desenvolvimento Científico e Tecnológico
(CNPQ) - Regular program, Grant No. 131630/2019-9, CNPq,
Chamada Universal 2018, Grant No. 431443/2018-1, and
from Fundação de Amparo à Pesquisa do Estado de São
Paulo, Auxílio à Pesquisa - Jovem Pesquisador, Grant No.
2020/06454-7, and Instituto Serrapilheira, Chamada 2020.
R.W. would like to acknowledge financial support from
FCT—Fundação para a Ciência e a Tecnologia (Portugal)
through Ph.D. Grant No. SFRH/BD/151199/2021. This work
was also supported by the Digital Horizon Europe project
FoQaCiA, GA no.101070558, funded by the European Union,
NSERC (Canada), and UKRI (U.K.).

APPENDIX: PROOF OF LEMMA 4

Let us suppose that B ∈ NC(ϒn). Then, by definition of the
monotone we have that

ck (B) = min
B′∈Pn

{
I (n)
k (B′) : B′ → B

} = n − 2,

since, because B is a noncontextual behavior there exists some
wiring sending every B′ ∈ Pn towards the only noncontextual
element B ∈ Pn that saturates some noncontextuality inequal-
ity I (n)

k = n − 2. From the definition, if B ∈ Pn \ NC(ϒn) we
have that there exists some k� such that ck� (B) = I (n)

k� (B).
Let us consider more generally any B ∈ ND(ϒn). If B ∈

ND(ϒn) \ NC(ϒn), let k� be the label for the inequality func-
tional I (n)

k� that is violated. B can always be written as

B = B(α, ε) := αB̃ + (1 − α)Bε

for B̃ some extremal noncontextual behavior satisfying that
I (n)
k� = n − 2, and Bε ∈ P(n)

k� .
Since B is a convex combination of B̃ (which is a free

behavior) and Bε, there exists a noncontextual wiring such
that Bε �→ B. Clearly, for any ε′ > ε we increase the value
of I (n)

k� (B′
ε′ ), and hence make the minimization defining ck�

worse. For values ε′ < ε the value I (n)
k� (B′

ε′ ) decreases, but
there can be no free operation towards B. One can see this
by supposing that there exists a free operation from Bε′ →
B = αB̃ + (1 − α)Bε ≡ B(α, ε) with ε′ < ε. Clearly, there is
a free operation from B → B(0, ε) = B̃, due to the convexity
of NCW. Therefore, we would have that Bε′ → B(α, ε) →
B(0, ε). From transitivity, we would have that there exists a
free operation from Bε′ to Bε, which is absurd.

Therefore, we can simply use

ck� (B) = Ik� (Bε ) = εn + (1 − ε)(n − 2)

= εn + n − 2 − εn + 2ε

= n + 2(ε − 1),

as we wanted to show.
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