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Abstract. Global convergence of augmented Lagrangian methods to a first-order stationary
point is well known to hold under considerably weak constraint qualifications. In particular, several
constant rank-type conditions have been introduced for this purpose which turned out to be relevant
also beyond this scope. In this paper we show that in fact under these conditions subsequences of
approximate Lagrange multipliers associated with accumulation points generated by the algorithm
remains bounded. This important stability property is associated with both the practical effectiveness
of the algorithm and its computational complexity. In order to obtain this result we introduce
a relaxed version of the quasinormality constraint qualification which adequately treats equality
constraints by means of informative Lagrange multipliers, a topic that has been extensively studied.
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1. Introduction. In this paper we are interested in the general smooth nonlinear
programming problem with equality and inequality constraints. More specifically, we
are interested in the properties of implementable algorithms for solving the problem.
Most algorithms are primal-dual, in the sense that they build a sequence of primal
iterates that hopefully converges to a solution, but they also build approximations of
Lagrange multipliers (dual solutions) to help guide the algorithm towards a solution.
These sequences play different roles in the analysis as, for instance, boundedness of
the primal iterates may be guaranteed by adding large enough box constraints to the
problem, while the dual solutions may be unbounded.

The most well-known approach for bounding the dual sequence generated by an
algorithm is assuming the Mangasarian—Fromovitz constraint qualification (MFCQ) at
the point of interest. This is equivalent to saying that the set of Lagrange multipliers
at the point is bounded. However, this may be considered too stringent for practical
purposes as, for instance, it does not allow redundancies in the problem formulation;
MFCQ always fails when an equality constraint is replaced by two inequalities or when
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an equality constraint appears twice in the problem formulation. Of course, these
situations may sometimes be prevented by preprocessing the problem, but this may
not be possible or it may be very time consuming, especially when the optimization
process appears in the middle of a more complicated application.

Thus, we are interested in bounding the dual sequence generated by the algorithm
even when the primal sequence is converging to a point that fails to satisfy MFCQ.
For instance, it has been shown in [19] that the popular interior point method IPOPT
tends to find an unbounded dual sequence when MFCQ fails, hindering its practical
performance, in contrast with other interior point methods [21].

In the context of augmented Lagrangian methods, several constraint qualifica-
tions have been used to show that the primal iterate converges to a stationary point
[15]. Although in previous works it was not recognized whether dual sequences are
bounded or not, an approximate KKT point is achieved. Boundedness of the dual
sequence has been shown only recently in [3, 17] under the so-called quasinormal-
ity constraint qualification [20] (actually, only the subsequence associated with the
primal accumulation point is bounded), which is weaker than MFCQ, the constant
rank constraint qualification (CRCQ [22]), and the constant positive linear depen-
dence condition (CPLD [28]). These constraint qualifications were used in the original
global convergence analysis of the popular safeguarded augmented Lagrangian method
ALGENCAN [1]; see [9]. However, global convergence to a stationary point is known to
hold under considerably weaker conditions. In [26], it has been shown that equality
constraints should be treated differently in the formulation of CRCQ), giving rise to a
relaxed variant of CRCQ (RCRCQ) which has essentially the same properties as the
original formulation. This approach has been exploited in the definition of a relaxed
variant of CPLD (RCPLD [7]), which later gave rise to the so-called constant rank of
the subspace component constraint qualification (CRSC [8]), the weakest of the con-
stant rank-type constraint qualifications. Besides global convergence of algorithms,
several applications and extensions of these conditions have been discussed in the
literature, for instance, concerning second-order necessary optimality conditions and
a facial reduction procedure for removing redundancies in the problem formulation.
We refer the reader to [4] and the references therein for a thorough discussion on this
topic, specifically on the central role played by CRSC in this context.

Condition CRSC and the relaxed variants of CRCQ and CPLD are not related
to quasinormality constraint qualification, thus boundedness of dual sequences is not
known under these conditions. The purpose of this paper is to bridge the gap in
terms of the global convergence of the safeguarded augmented Lagrangian method
to a stationary point and the boundedness of the dual sequence associated with the
primal accumulation point. In particular, we will define a relaxed variant of the quasi-
normality constraint qualification that is implied by CRSC and that still guarantees
boundedness of the dual augmented Lagrangian sequences. The definition is inspired
by the well-known notion of an informative Lagrange multiplier [13] and the relaxed
variants of CRCQ and CPLD.

The quasinormality condition, introduced by Hestenes [20] and further studied
and adapted to different contexts [11, 12, 18, 23, 25, 30], has found several other
applications such as in exact penalty [13], computation of the value function [29], and
error bound properties [27, 29]. Although these applications are out of the scope of
this paper, we believe that our version of quasinormality adequately treats equality
constraints in a similar fashion to the relaxed variants of CRCQ and CPLD, preserving
its properties, so that we expect these applications to be extended under relaxed
quasinormality.
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This paper is organized as follows: Section 2 introduces the preliminary results
and definitions. In section 3 we present the two main proofs that relaxed quasinor-
mality implies boundedness of dual augmented Lagrangian subsequences, whereas it
is implied by CRSC. In section 4 we present some more refined results in terms of
feasibility of the primal sequence and a more general algorithm with a scaled criterion
for solving the augmented Lagrangian subproblems. Section 5 presents some more
refined comparisons with other constraint qualifications, and section 6 presents some
concluding remarks.

Notation. We use R, to denote the set of nonnegative real numbers. Given z € R",

z4 € RY, is the vector whose ith coordinate is max{0,z;},i=1,...,r. Given a function
q: R" — R", Vq(z) is the n x r matrix whose columns are the gradients Vg;(z),
i=1,...,r, at a point z € R (transposed Jacobian). We use ||-||2 and ||||cc to denote

the Euclidean norm and the sup-norm, respectively. When ¢g: R® — RP and = € R"
is such that g(z) <0, the set A(z) ={j € {1,...,p} | g;(x) = 0} is the set of indices
of active inequality constraints at x. Given real sequences {ay} and {b}, ar = o(by)
means that there is a sequence {m;} C R, my > 0, converging to zero such that
|ak| < my|bg| for all k. Given a tuple (an ordered finite set) J = (j1,...,J¢) € {1,...,7}
and z € R", we define z7 = (zj,,...,%;,) € Rf. The number of elements in a tuple J
is denoted by | J]|.

2. Preliminaries. We consider the nonlinear programming problem
(P) min f(z) s.t. h(z)=0, g(z)<0,
where f: R" — R, h: R® - R™, and g: R™ — RP are continuously differentiable
functions. We denote by

m

p
L(z, A\, p) = +Z>\h )+ > ng;()
j=1

the Lagrangian function associated with (P). A constraint qualification is any condi-
tion on the description of the feasible set of (P) such that whenever Z € R™ is a local
minimizer of (P), there exist so-called Lagrange multipliers (A, ) € R™ x RE such
that VL(z,\,u) = 0 with p; =0 for all i & A(Z), where the derivative is taken with
respect to z. In other words, it must be the case that —V f(z) € K(z;z), where

ZAVh Z 1;Vygi(z ‘NJ>O Vj € A(Z)
JEA(T)

When z = &, we may write K(Z;Z) = KC(Z), which is the polar of the linearized tangent
cone at T. It is easy to see that the set of Lagrange multipliers at z is bounded if
and only if the gradients of equalities and active inequalities are positively linearly
independent (that is, MFCQ holds):

Z/\ Vhi(®)+ Y p;Vgi(T) =0, p>0 implies A=0, 1; =0 Vj € A(@).
JEA(Z)

In this paper we consider the (safeguarded) augmented Lagrangian method de-
scribed in [2, 15], whose implementation is known as ALGENCAN.! Given the penalty

1Freely available at www.ime.usp.br/~egbirgin/tango.
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parameter p > 0 and the projected multipliers A € R™, [i € Rﬁ, let us consider the
Powell-Hestenes—Rockafellar (PHR) augmented Lagrangian function

(or+2).|

2

312

L,xu(@)=f(z)+ g Hh(x) + %

+
2

In ALGENCAN, the iterate ¥ is obtained by minimizing L, s« 4« (2) for fixed pj, A*
and fi*. The projected multipliers sequences {\*} and {ji*} are computed within a
predefined box (safegquards).

Algorithm 2.1. Safeguarded augmented Lagrangian method.

The parameters are T € [0,1), v>1, =00 < Amin < Amax < 00, 0 < fimax < 00, and
p1>0. Let A € [Amin, Amax]™, ! € [0, ftmax]?, and a sequence {e;} C R such that
limg_, o € = 0. Initialize k < 1.

Step 1 (Solving the subproblem): Compute an approximate stationary point * of
L,, sk ge(x), that is, ¥ satisfying [|[VL, 5k zr(2%)]o0 < &g
Step 2 (Updating the penalty parameter): Compute

—k

V¥ =min {—g(;vk), M} .

Pk
If k=1 or max{[|h(z*)[|oc, [[V*]loc} < Tmax{[[2(z"1)[loc, [VFHloo }, set prs1 = pr.
Otherwise, take pgy1 > vpk.

Step 3 (New projected multipliers): Choose N1 € [Apin, Amax]™ and
—k+1 O p
12 S [ a,umax] .

Step 4: Set k <+ k+ 1 and go to Step 1.

The dual (approximate Lagrange multipliers) sequences generated by Algorithm
2.1 are defined as

(2.1) N =X+ pph(z¥) and  pF = [g" erkg(:zrk)h k> 1.

The global convergence of Algorithm 2.1 was established and improved over sev-
eral works; see, for example, [2, 3, 5, 6]. Let us recall here one of the main conditions
used in this analysis.

DEFINITION 2.1 (CRSC [8]). A feasible point T for (P) satisfies the constant rank
of the subspace component condition (CRSC) if the rank of the gradients

Vhi(z), i=1,...,m, Vy,(x), jeA_(Z),
remains constant for all x in a neighborhood of T, where
(2.2) A_(z)={je A(z)| —Vyg,(x) e K(z)}.

This condition improves several others [7, 22, 26, 28] by considering a single set of
constraints to have the constant rank property. Notice that when MFCQ holds, CRSC
also holds with A_ (z) = (). Several applications of this condition have been found, and
we refer the interested reader to [4] and the references therein. In particular, under
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CRSC, the constraints indexed in the set A_ (Z) behave locally as equality constraints
in the description of the feasible set; this procedure is known as facial reduction [16]
in the context of conic programming. Now let Z be a limit point of a sequence {z*}
generated by Algorithm 2.1. If Z is feasible and satisfies CRSC, then it was shown in
[8] that T is a stationary point of (P); however, no information has been provided with
respect to the dual sequences (2.1). In order to provide such information, one relies
on the quasinormality constraint qualification, which is also weaker than MFCQ, but
it is independent of CRSC. The definition is as follows.

DEFINITION 2.2 (quasinormality [20]). A feasible point T of (P) satisfies the
quasinormality (QN) constraint qualification if there is no (A, u) € R™ x RE such that
L. Vh(zZ)A+ Vg(Z)p=0;
2. (A, ) #0;
3. defining the index sets

(2.3) Lo={i|\#0} and Jy={j|u >0,

there is a sequence {x*} converging to T such that, for all k, \;h;(z*) >0 for
all i € Iz, and g;j(x*) >0 for all j € J,.

We start by recalling the fact that CRSC and QN are independent conditions.

Ezample 2.3. Consider the constraint set defined by hy(x) =z and hy(x) =22 at
Z=0€R. QN does not hold since we can take A\; =0 and A2 =1 together with the
sequence 2* = 1/k, where we have that A\;Vh1(Z) + XA2aVha(Z) =0 with Apha(z%) >0
for all k. On the other hand, CRSC holds since the set {Vhi(z), Vhg(z)} has full
(constant) rank for all  nearby Z. The reverse situation occurs with the constraint set
defined by ¢1(z) = —z; and ga(z) =21 — 23 at = (0,0) € R?. The set K(Z) is equal
to R x {0}, where A_(Z) = {1,2} but the rank of {Vgi(z), Vga(x)} increases from 1
at T to 2 for x nearby Z with x4 # 0. Thus CRSC fails. To see that QN holds, notice
that p1Vg1(Z) + p2Vga(Z) = 0 with 0 % p > 0 implies that u; = pus > 0. However, if
g1(x) > 0 for some z, it must be the case that g2(z) < 0. Thus, no sequence satisfying
item 3 in Definition 2.2 exists and QN holds.

Under quasinormality, it was proved in [3, 19] that if Z is a feasible limit point of
a sequence {z*} generated by Algorithm 2.1, that is, limye fr % = Z for an infinite set
of indexes K, then the sequences of approximate Lagrange multipliers {\*};cx and
{*} ek as defined in (2.1) are bounded. In fact, by Step 1 of the algorithm, a simple
computation gives VL(z*, \¥, u¥) — 0. Thus, assuming that the dual sequences are
not both bounded, one arrives at a pair (A, ) € R™ x RE such that items 1 and 2
of Definition 2.2 are satisfied. Now, by (2.1) it is easy to see that when A\F — 400
then, since {\*} is bounded, it must be the case that py — 4+oc and h;(z*) > 0 for
sufficiently large k. A similar analysis holds when \¥ — —oc0 or ,u? — 400 so that the
sign condition given by item 3 is also satisfied. Therefore, under quasinormality, no
such sequence exists and the dual sequences must be bounded.

An alternative motivation for the definition of quasinormality [20] comes from an
enhanced Fritz John theorem, where it is shown that around a local minimizer there
exists a sequence that violates the constraints in a particular way. This inspired several
different definitions of a Lagrange multiplier with additional requirements concerning
constraint violation. The most general of these results is the following.

THEOREM 2.4 ([13, Proposition 2.1]). Let T be a local minimizer of (P). Then
there is (o, A\, ) € Ry x R™ x RE such that

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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1. oVf(Z)+ Vh(Z)A+ Vg(Z)u=0;
2. (o, 1) #0;
3. if I UJy #0, where Ix and J4 are defined in (2.3), then there is a sequence
{2*} converging to T such that, for all k,
(a) Aihi(x¥) >0 for alli € Iz, and g;(z*) >0 for all j € J;
() [hi(z*)] = o(w(z*)) for all i & I, and g;(z*)+ = o(w(z*)) for all j & J4,
where

(2.4) w(z¥) = min {min |hs(z*)|, min gj(xk)+} .
i€lx jeJ 4

Tt is easy to see that item 3(a) of the above theorem implies the usual comple-
mentary slackness p;g;(Z) =0 for all j =1,...,p. Notice that Theorem 2.4 implies
that QN is a constraint qualification, since Definition 2.2 prevents the existence of
a sequence satisfying items 1, 2, and 3(a) of Theorem 2.4 when o = 0. Thus, at a
local minimizer, QN implies that there exists a Lagrange multiplier (A, ) with the
additional constraint violation given by items 3(a—b) of Theorem 2.4. This has been
called an informative Lagrange multiplier in [13]. It was shown in [10] that this ad-
ditional dual information is not relevant for distinguishing a primal solution; that is,
a feasible point for (P) admits an informative Lagrange multiplier if and only if it
admits a standard Lagrange multiplier. However, this additional dual information
will be crucial in our analysis. We start by noticing that it is clear that Theorem 2.4
suggests a weaker definition of QN by incorporating also item 3(b) as follows.

DEFINITION 2.5. A feasible point T for (P) satisfies the relaxed quasinormality
(RQN) condition if there is no (X, ) € R™ x RE such that

1. Vh(zZ)A+ Vg(Z)pn=0;

2. (A p) #0;

3. there is a sequence {x*} converging to T such that, for all k,
(a) Aihi(z%) >0 for alli€ 1. and g;(z*) >0 for all j € J;
(b) [ha(¥)| = o(w(@¥)) for all i & L and g;(z), = o{w(z¥)) for all j & J..

where I; and J are defined as in (2.3) and w(z*) as in (2.4).

This definition has not been exploited yet in the literature, and it will be the main
focus in this paper. It is clearly a constraint qualification since it implies that it must
be the case that o > 0 in Theorem 2.4. Recalling Example 2.3 with the constraint set
defined by hi(z) = x and ho(x) = 2% at =0 € R, notice that the sequence z* =1/k
with A; =0 and Ay =1 fails to comply with item 3(b) in Definition 2.5. Indeed, it
is not the case that |hy(2*)| = o(|ha(2*)|) because % # 0. Actually, this is the
case for any sequence z* — Z, 2% # Z, and since items 1-2 of Definition 2.5 imply that
A1 =0 and A # 0, this shows that RQN holds.

It turns out that RQN will provide an adequate way of dealing with equality
constraints, similarly to how it is done in the relaxed variants of CRCQ and CPLD.
Namely, while QN is implied by CRCQ and CPLD, it is independent of the weaker
variants RCRCQ, RCPLD, and CRSC. We will show that CRSC (and all other con-
stant rank-type constraint qualifications) strictly implies RQN. This will give rise to
a new stability property under constant rank-type constraint qualifications, as we will
show that RQN will be enough for providing boundedness of the dual augmented
Lagrangian sequences associated with primal accumulation points.

3. Main results. Our first main result concerning RQN is the fact that it sub-
sumes all constant rank-type constraint qualifications. That is, we will show that

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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CRSC implies RQN. Clearly, the implication is strict due to the second constraint set
defined in Example 2.3, where CRSC fails and QN (thus RQN) holds. We will make
use of the following lemma, which is a consequence of the inverse function theorem.

LEMMA 3.1 (]9, Lemma 3.2]). Let Z € R", let V CR"™ be an open neighbourhood
of T, and let F': V — R. Suppose that

VF(i‘) = Z OéjVCj (i‘)

for some C* function ¢: ¥V — R" such that {Ve¢;(Z)}jeq,..ry is linearly independent.
Also, suppose that VF(z) is a linear combination of Vcj(z), j=1,...,r forallz € V.
Then there exists an open neighborhood U CR” of ¢(Z) and a C* function ¢: U — R
such that c(x) €U and F(x) = p(c(z)) for all z €V, and

a; = [Ve(c(z))]

THEOREM 3.2. CRSC implies RQN.

Proof. Suppose by contradiction that the feasible point Z for (P) satisfies CRSC
but not RQN. Then there exist (\, ) and {z*} satisfying items 1, 2, and 3 of Defini-
tion 2.5, that is,

1. Vh(Z)A + Vg(z)pu=0;
2. (A p) #0;
3. limy z* = Z and, for all k,
(a) Aihi(z%) >0 for all i € Iz, and g;(z*) >0 for all j € J;;
(b) |hi(z®)] = o(w(z*)) for all i & I, and g;(x"); = o(w(a*)) for all j & J,
where I; and J; are defined as in (2.3) and w(z¥) as in (2.4).

First, we affirm that p; =0 for all j ¢ A_(Z), or equivalently, J; C A_(z). In

fact, if p; >0 then VA(Z)A + Vg(Z)u =0 implies

e j=1..,r

1 m
V(@)= - D NiVhi(@) + Y V(@) | €K(z),
I L=t (£

which in turn implies j € A_(Z). Hence, item 1 takes the form
m

(3.1) D AiVhi(@)+ Y pVg(a)=0.
i=1 JEA_(7)

Let Z C {1,...,m} and J C A_(Z) be such that {Vh;(Z)}icz U{Vy;(@)}jer
is a basis for span{Vh(z),Vga_(z)(Z)}, the subspace generated by {Vh;(z)}i*; U
{Vg;(Z)}jea_(z)- The CRSC condition guarantees that the rank of the gradients
of the equality constraints and inequality constraints with indices A_(Z) remains
constant in a neighborhood of Z, so

(3.2) span{Vhz(z),Vgs(x)} =span{Vh(z),Vga_z)(z)} Va close to 7.

Now, let us define

(3.3) Flr)=— > Nh(@)— Y pg)

ie{1,..mN\T JEA_(@N\T
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and the C! function c: R™ — RIZl x RV given by ¢(x) = (hz(x),g7(z)). From (3.2),
VF(x)€span{Vhz(x),Vgs(x)} for all x near Z. In particular, from (3.1) and (3.3)
we have

=Y NVh(@) = Y Ve @) | + D AVhi(@) + D 1 V,(@)
=1

JEA_ (%) €T jeJ

=Y " NiVhi(@)+ > 1 Vgi(2)

1€ jeJ
So, we can apply Lemma 3.1 to obtain a C'! function ¢ : RZl x RIVI — R such that

(3.4)
F(x)=p(c(z)) = p(hz(z),97(x)) Vx near = and (Az,p7)=Ve(hz(?),97(Z)).

Note that (hz(Z),97(Z)) =0, ¢(0) = F(Z) =0, and then the Taylor expansion of
 around the origin gives

p(2) = Ve(hz(z),97 ()" 2 + o]z o0)-

Taking z = (hz(x*),g7(x*),), which converges to (hz(Z),g7(%)) as 7 is feasible and
J C A(Z), the above expression together with (3.4) implies

(3.5) F(a®) =Y Nihi(a®) + ) pigi (a*) 4 +wi

€T JjeT

for all k large enough, where

wr = o([[(hz(2"), 97 (") 4) | )

From (3.3), (3.5), and the fact that g;(z*) >0 when j € J, by item 3(a), we have

0= Nhi(e*)+ > pigi(@®) e+ DY pigi(®) +ws

(3.6) i=1 JjeTg JEA_(@N\T
= Z Aihi(z" Z 1595 (") 4 + wy,
i€lx JEJ 4

for all k£ large enough.
We have

w = o([|( h(z*) , 972"+, ga_@na(@)+ )l

since the term in parentheses is greater than or equal to ||(hz(z"), 97 (") )|lee- By
item 3(b), each sequence {|h;(z*)|} and {g;(z*);} such that i € I, and j € J4
asymptotically bounds above all such sequences with indices outside I+ or J,, which
allows us to write

w, =o([|( hr (2%) , g, (2") )]lx)

(remember that g;(z*) >0 when j € J;). So, dividing (3.6) by ||(hr,(z"), g7, (z%)) /o
and passing to the limit on a subsequence if necessary, we obtain

(hr,(=%) g, (@*)4)

) = g, ()

£0
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satisfying

Z Aihi + Z 1;g; =0.

i€l 4 JjEJ+

But this is impossible since by item 3(a), A;ih} >0, ¢ € I, pigf >0, j € J1, and thus
the left-hand side of the above expression is positive. We then conclude that RQN
holds at z. ]

We now show that, similar to what is known about QN, the dual sequences
generated by Algorithm 2.1 are bounded under RQN.

THEOREM 3.3. Let {x*} be a sequence generated by Algorithm 2.1 and T a feasible
limit point of it, let us say, limpcx ¥ = Z. If T satisfies RQN, then the associated
dual subsequences { N\ rex and {u*}rex given in (2.1) are bounded. In particular,
all limit points of these sequences are Lagrange multipliers associated with T.

Proof. Let {pr},{\*}, and {E*} be corresponding sequences produced by Al-
gorithm 2.1 and suppose that {M}, := ||(1,\*, 1¥)| )} is unbounded. By (2.1), we
have pr — oo and then puf = 0 for all i ¢ A(z). So, dividing the expression
VL(z*, M\, uF) — 0 as provided by Step 1 by Mj and taking the limit over K, we
arrive at

S NVhi(@) + Y pVg(a) =0,
=1 JEA(T)

with (A, p) # 0 and

At pphi(2®) [ A g
A= lim ——————=, ;= lim

keK M, keK M,
for all 4,7. If \; # 0, then we can extract a subsequence so that h;(z*) always has the
same sign of A; (the same is valid for 41;). Thus, passing to a subsequence if necessary,
we can suppose without loss of generality that

(3.7) VEe K, X\hi(z")>0 if \;#0 and g;(z")>0 if p;>0.

Therefore, if all entries of (A, ) are nonzero, then item 3(b) of Definition 2.5 holds
trivially with {z¥} e, contradicting the validity of RQN at Z.

Now, suppose that \; # 0 and A\, = 0. Clearly limyex |prhi(z¥)| = oo and, by
(3.7), hi(z*) #0 for all k € K. For each k € K, let us define

Ay IAF + prhe(z?)| _ Vi he(x*)

|pihi(z*)] prhi(x®) — hi(a®) |
We affirm that liminfiex A = 0. In fact, if Ay > >0 for all £ € K large enough,
we would have [A§ + pphe(2%)| > | pihi(z¥)| for all k € K large enough and therefore

< lim A} + prhe(a®)]
keK M;, T keEK M,

O<e|/\i\:gin11(e =|A¢|=0,
€

AF + pihi(a®) ’: i ¢ 26D (@)
M,

a contradiction. Hence, there is an infinite set of indices Ky C K such that

|he(a®)]
= Ar=0.
keKy [h;(xF)| Rk,
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A similar argument is valid changing A; # 0 to y; > 0, A, =0 to p, = 0, and /or |he(z*)]
to g¢(z¥),. Thus, applying it successively we obtain an infinite set K, C---C K; C K
such that

k
_0if A=0 and fim 2 g g 11y =0,

(")
(3.8) lim A

keK. w(zk)

where w(z*) is as in (2.4). Finally, from (3.7) and (3.8) we conclude that RQN at
is violated using the sequence {z*}.cx., and the proof is complete. ]

Theorem 3.3 was known only under QN [3, 19]. The following example shows that
when RQN fails, the dual subsequences generated by Algorithm 2.1 corresponding to
a convergent primal subsequence may in fact be unbounded.

Ezxample 3.4. Consider the problem
min f(z) =2} + 23 st. r€Q,
where
Q={2eR?| gi(z) =27 — 22 <0, ga(z) =27 + 22 <0, g3(2) = —21 <0},

and its feasible point Z = (0,0). We affirm that this point can be reached by Al-
gorithm 2.1 with unbounded associated multiplier sequences (2.1). In fact, let us
consider the sequence ¥ = (1/p%,0), p > 0, where a € (1/5,1/3) is a constant. For
each k, take any ji¥ = ji¥ > 0 and % = 0. The multiplier estimates (2.1) with these
sequences are

ps =k =k +pp %, ps=0
We have
VLPk,ﬁk<xk)
2 3 3 2 6 6
= "8‘3 + (A + o) Pii + (5 + o %) p%“ = pp P pet
- 0

and

1k 1 1
V2k_V1k_min{— “1}_ ng—min{ “3}_0.

P P P pL pi

If {p;} remained constant for all k& > ko, then we would have ||[V¥| = 1/p3¢ >
7/p3¢ | = 7||VF~Y | for any 7 €[0,1), k > ko, contradicting Step 2. On the contrary,
pr. — oo implies VL, .« (z*) — 0 since a > 1/5. Therefore the sequence (z¥, py,, ii*)
with pp — oo can be generated by Algorithm 2.1. In this case u5 = u¥ — oo since
a<1/3.

To see that RQN fails at Z, just note that p = (1,1,0) and z* = (1/k,0) fulfill
items 1, 2, and 3 of Definition 2.5.

Notice that £ = (0,0) in Example 3.4 is a KKT point that satisfies a weak
constraint qualification called constant positive generators (CPG), as we will see in
section 5. Actually, we will show that RQN and CPG are independent conditions.
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4. Extensions. The result we presented related to the boundedness of dual
augmented Lagrangian sequences (Theorem 3.3) assumes that the limit point Z is
feasible. This is not a serious drawback since the algorithm tends to find feasible
limit points, when they exist, as their limit points are stationary to the problem
of minimizing ||h(z)||3 + ||g(z)+|/3 [1]. These points are feasible when the gradients
of equality constraints and violated or active inequality constraints are positively
linearly independent, what is known as extended MFCQ [24]. However no feasibility
result is known under a condition weaker than extended MFCQ. Let us show that
the boundedness of the dual sequences is enough for ensuring feasibility, and that this
is obtained by an extension of RQN to infeasible points. The definition is exactly
the same as Definition 2.5, but it is simply not assumed that the point is feasible;
in particular, it reduces to RQN when the point is feasible. We opted to present a
simpler version of this result in Theorem 3.3 for clarity of exposition, but in fact this
theorem is a particular case of the result we prove next.

DEFINITION 4.1. A point T € R™, not necessarily feasible, satisfies the extended
RQN condition if there is no (A, ) € R™ x RE and sequence x* — T such that items
1, 2, 3(a) of Definition 2.5 hold and

(') |hi(2®)| = o(w(x®)) for all i & I with hi(Z) =0 and g;(z*) = o(w(z*)) for

all j € Jy with g;(x) <0, where Ix and J are defined as in (2.3) and w(z*)
as in (2.4).

THEOREM 4.2. Let {z*} be a sequence generated by Algorithm 2.1 and % a limit
point of it, let us say, limpex =¥ = Z. If T satisfies extended RQN, then T is fea-
sible and the associated dual subsequences {\*}rcr and {pF rex given in (2.1) are
bounded. In particular, all limit points of these sequences are Lagrange multipliers
associated with .

Proof. Let {px},{\*}, and {i*} be corresponding sequences produced by Algo-
rithm 2.1.

If {pr} is bounded, it remains constant after a certain iteration as it is non-
decreasing from Step 2. Thus, the test in Step 2 of Algorithm 2.1 ensures that
max{||h(2")]|oo, ||V¥||oc } — 0, which implies that 7 is feasible. As a consequence, the
multiplier sequences given by (2.1), namely

(4.1) A=t pph(a®) and = [7F + prg(ah)]

are bounded.

If pr, — oo and {My = ||(1,\*, 1%)|l }xex is bounded, then by (4.1) and the
boundedness of {(A¥, i¥)} we also conclude that 7 is feasible.

From now on, we suppose that py — oo and {Mj}rex is unbounded. By (4.1),
we have pF = 0 for all i with ¢;(z) < 0 and k € K large enough. So, dividing
VL(z* \F, uF) — 0 by M} and taking the limit over K, we obtain (), i) # 0 such that

AF + peha(a®) (115 + prg; ()] |
4.2 A= lim +————~ = 1li
(42) iex My, Hi= ek M,
for all 4, j, and satisfying Vh(Z)A + Vg(Z)u=0.
Now, we analyze feasibility of T with respect to each constraint in two cases:
whether the corresponding multiplier is zero or not. If A\; =0 and h;(z) # 0, then

(4.3) lim 2% =0
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by (4.2) and the boundedness of {\¥}. As (A, i) # 0, there is an index ¢ such that
Ae # 0 or pe > 0. However, due to (4.3), we would have

Af Pk
Ae=lim [ + = hy(2¥)| =0 and pp = lim

kek | My M, kek | My, M~

—k
LA pkgti(l"k)] =0,
+

a contradiction. Therefore, h;(Z) = 0 whenever \; =0. We can prove that ¢,;(Z) <0
if p; =0 analogously, since, in view of (4.2) and the boundedness of {/j?}, p; =0 and
g;(Z) >0 imply (4.3).

The case where A; # 0 or p; > 0 follows the same steps as in the proof of
Theorem 3.3, as we can conclude that this contradicts the validity of extended RQN
at T independently of the feasibility of z. This completes the proof. 0

Theorems 3.3 and 4.2 can also be extended in a different direction by considering
a more general variation of Algorithm 2.1. Namely, in Step 1, instead of computing
2 such that |[VL,, sr (2%)]loc < ek for a sequence e, — 0, we do so for a sequence
&1, such that 5, = o(Mj},), where My, = ||(1,\*, i¥) ||« as defined in (2.1). A sequence of
this type is computed when one aims at achieving a scaled stopping criterion, so that
the subproblems may be solved to a less stringent accuracy, improving the efficiency
without hindering its robustness. See the discussion and numerical experiments in
[6] and [14]. In other words, [14, Theorem 2.1] may be proved under extended RQN,
which we state below.

THEOREM 4.3. Let T be the limit of a subsequence {z*}re i as generated by Algo-
rithm 2.1 that satisfies extended RQN where the subproblem tolerance €y, is such that
er = o(My), where My, = ||(1,\¥, 1i*)|| o as defined in (2.1). Then T is feasible and
{ My }kex is bounded. In particular, all limit points of these sequences are Lagrange
multipliers associated with T.

Proof. The proof is essentially the same as the ones presented previously. In the
proof of Theorem 3.3, notice that the first step is to divide |[VL(z*, \¥, )|l < e
by M} and use that the right-hand side goes to zero. This remains the case under
our assumptions. 0

5. Relationship between RQN and other known constraint qualifica-
tions. In this section we analyze the relationship between RQN and other known
constraint qualifications from the literature besides CRSC and QN. Next, we recall
the AL-regular constraint qualification (or AL-regularity condition), which is associ-
ated with the sequences generated by Algorithm 2.1 [5]. To this end, we consider the
function A : R**1 - R” defined by

KM (2, p) = V() [ph(@)] + V() [pg ()]

Let Z be a feasible point for (P). The upper limit of KAt (z,p) as 2 — & and
p — 0o is the set

limsup KAY(z, p)
T—T,p—00

={7eR" | 3{(",y")} = (2.9), Hor} =00 st y* =K (2", pr) VE}.

We have K(z) Climsup, .z , o, K" (2, p) [5], but the contrary inclusion is not always
true. AL-regularity is exactly that.
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DEFINITION 5.1. A feasible T for (P) satisfies the AL-regularity condition (or it
is an AlL-regular point) if

limsup KAE(z,p) C K(Z).

T—T,p—00

The AL-regularity condition is in some sense the weakest possible property that
guarantees that any feasible limit point of Algorithm 2.1 satisfies the KKT conditions.

THEOREM 5.2. Let T be a feasible limit point of a sequence generated by Algo-
rithm 2.1. If T satisfies the AL-regularity condition, then T satisfies the KKT con-
ditions. Conversely, if, for every objective function that attains a constrained local
minimum at T, the KKT conditions are satisfied, then T is an AL-regular point.

Proof. The statement follows from [5, Theorems 1 and 6]. d

The above theorem implies that, indeed, AL-regularity is a constraint qualification
since every local minimizer is the limit point of a sequence generated by Algorithm 2.1
[5, Theorem 2] (actually, it implies Abadie’s constraint qualification [5, Theorem 9]).
This fact also gives an alternative proof that RQN is a constraint qualification.

THEOREM 5.3. RQN implies AL-regularity.

Proof. The statement follows directly from Theorems 3.3 and 5.2, as the bound-
edness of the multiplier sequence associated with a primal accumulation point of
Algorithm 2.1 implies the validity of the KKT conditions. ]

Another constraint qualification of interest is the constant positive generators
(CPG), which we recall next. Let us consider the set

K(z;2,Z,7)

= ZAthi($)+ZﬂjV9j($)+ Z 1iVgi(x) ;>0 VjieAL(T) o,

i€ jeET JEAL(T)

where ZC {1,...,m}, J CA_(Z), A+(z) = A(z)\A_(z), and A_(z) is given in (2.2).
In this set, inequality constraints with indices in J are treated as equalities in the
sense that their associated multipliers are free of sign.

DEFINITION 5.4 (CPG [8]). A feasible point T for (P) satisfies CPG if there are
index sets TC {1,...,m} and J C A_(Z) such that the gradients within K(Z;Z,Z,J)
are positively linearly independent (that is, the unique way to 0 € K(z;Z,Z,J) is
taking (A, 1) =0) and

K(z;7) € K(2;2,Z,7)

for all x in a neighborhood of .

It is known that CRSC implies CPG [8], which in turn implies AL-regularity [5].
However, CPG and RQN are independent of each other, as the next examples show.

Ezample 5.5 (CPG does not imply RQN). Let Q= {x € R? | g(x) <0}, where [8]
() =2l + x5, go(z)=2f —wa, g3(x)=23, gu(z)=m1

and Z = (0,0) € Q, for which A(Z) ={1,2,3,4}. It is easy to see that A_(Z) ={1,2,3},
S0 A+(j) = {4} We have Vgl(i‘) = (Oal)y VQQ(J?) = (07_1)7 and v.g?)(j) = (070)7
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[Linear/affine constraints]

@ Mangasarian-Fromovitz CQ
seuaonormality MFCQ
4 *

[ Quasinormality ] Constant positive linear dependence Constant rank CQ
CPLD CRCQ
Relaxed-CPLD
RCPLD

Constant rank of the subspace component
CRSC
Y
Relaxed-quasinormality . Constant positive generators
AL-regularit
[ RQN g gularity ]« CPG

A 4

Abadie's CQ Guignard’'s CQ

Fic. 1. Diagram of constraint qualifications for nonlinear programming problems.

Relaxed-CRCQ
RCRCQ

which lead us to take J = {1} in Definition 5.4. Also, K(z;Z) =Ry xR=K(z;Z,0,J)
for all z, and therefore CPG holds at Z.

To show that RQN does not hold at Z, it is enough to consider p = (0,0,1,0)
and ¥ = (—1/k'Y/3,1/k) for all k > 1. In fact, we have limyz* = Z, Vg1 (Z) +
1oV ga (%) + pusVgs(z) + paVga(z) = 0 and, for all k > 1, uzgs(z¥) = 1/k* > 0 and
(91(2"))+ = (92(2"))4 = (9a(2"))+ = 0= o(w(z")).

Ezample 5.6 (RQN does not imply CPG). As in Example 2.3, consider the con-
straints g;(x) = —x1 <0, g2(2) =1 — 23 <0, and the point Z = (0,0). It was shown
previously that QN holds at z, so RQN also holds. On the other hand, CPG is not
valid at z. In fact, we have A_(z) ={1,2}. It cannot be J = {1,2} since Vg1 (Z) and
Vg2(Z) are not positively linearly independent. Furthermore, for any 6 # 0 we have
(1,-30%) € K((0,8);2)\K((0,);2,0, {1}) and (~1,0) € K((0,8);2)\K((0,6); 2,0, {2}),
so CPG does not hold at z.

We summarize all the relations discussed in this section in Figure 1, which brings
several known constraint qualifications from the literature not considered in this work.
The reader is referred to [5] and references therein for details.

6. Conclusions. Weak constraint qualifications (in particular, those weaker
than MFCQ and LICQ) have been largely used for several different purposes in nonlin-
ear programming and more general optimization problems, namely for studying sta-
bility properties, error bound estimates, differentiability of the value function, global
convergence of algorithms, among other applications. In particular, several studies
have appeared related with constant rank-type constraint qualifications, which are
the most well known of these conditions. On the other hand, the quasinormality
constraint qualification has appeared in the context of enhanced Fritz John con-
ditions connected with the notion of a more precise (enhanced) class of Lagrange
multipliers.
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In some sense, constant rank constraint qualifications introduced in recent years
dictate that equality constraints should be treated differently than inequality con-
straints, with the exception of some inequalities that behave like equalities. In this
paper we proposed a similar relaxation of the quasinormality condition, which turned
out to be connected with the notion of informative Lagrange multipliers, where a
Lagrange multiplier that vanishes must also somehow conform to a sign constraint
with respect to how the constraints may be violated near the point of interest.

Concerning the global convergence properties of a safeguarded augmented La-
grangian method, several constraint qualifications have been used for this purpose, but
only the strongest ones were known to provide boundedness of dual sequences. This
property is particularly relevant for complexity analysis and for applications where a
dual solution is actually sought (such as in energy pricing applications, among oth-
ers). In this paper we showed that our relaxed quasinormality condition is enough to
ensure this result, which implies that all constant rank-type constraint qualifications
also inherit this property. This is particularly relevant due to the pivotal role played
by the so-called constant rank of the subspace component condition (CRSC).

Other applications and extensions have been discussed, in particular connected
with attaining a feasible limit point and the use of a scaled stopping criterion. We
expect future research to expand the applicability of relaxed quasinormality to other
areas where quasinormality was previously used.
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