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INTEGRO-DIFFERENTIIAL EQUATIONS WITH LINEAR CONSTRAINTS AND
DISCONTINUOUS SOLUTIONS )

Chaim Samuel HBnig

In this paper we give a survey of thelmain results we
obtained in the theory of linear differential and integral
equations and oﬁ_equations of a more genéral type, the Volterra
Stieltjes-integral equations, We prove the existence of a
resolvent for these equations (§5). We consider also the case
when the solutions satisfy a linear constraint, i.e., a
generalized boundary condition; in this case we find a Green
function for the solutions (§8). We relate our results to those
found in the literature and we present also some results and
extensions obtained by our students. At the end of this article
we suggest several directions of research (§10). Let us
mention that the results here presented may be applied to the

theory of Optimal Control, to the stud& of Feedback Systems etc,

Our theory is developed in such a way that discontinuous
solutions are allowed; these solutions appear in a natural way
it Mathematics, Physies, Technology ete. Let us only recall
that the components of an eletric field are discoptinuous across
the surface of an eletric conductor or across a surface that

separates two different dieletriecs,

In this survey we aveoid, as nuch as possible, technical

definitions and details. For the proofs we refer to our
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monograph [H] which contains a complete and detailed exposition
of the whole theory. An abatract of our main results can be

found in [H-BAMS,].

§1. Given an n-order linear differential equations on

an interval Ep,b],

iRl "x(n) + Bix(n_l}'+ﬁ... + bnx‘=‘fs -

we recall that if we define Yy = % ¥, = X v Yhsi® x(n-l)

~ . o

the n-order differential equation is transformed into a system

of n first order linear differential equations

I

‘. : d + + L I ) + e ' »
In blyn bnyl h?

If the function ,x is real or complex valued, the same
is true for the functions Yyo Fps eees ¥y and if we consider

the vector fqnction

W e

L
LN ] . . =Rk s ‘ Pt 5 ? M Ty . 1
the first order system may be written in the form

1

(L") SRR LR 20, T SRS e R

]

where
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[0 -1 G I O SOt
0 0 -1 voe D ] 9
B= 1. . : T G and g = |+ | 3
o 0 0 0 -1 0
_bn bn-l bn-Z .o hz bld ?
here y takes values in R® or ¢€" and for every ¢t € [a,b],

B(t) 1is a real or complex n—order square matrix, hence

B into itself,.

defines a linear mapping from R or ¢

More generally we will consider differential equations
of the form (L'), where the functions y and g are defined
in [a,b] and take wvalues in a Banach space X; wWe suppose

that B(t) € L(X) (the space of linear continuous mappings

from X inte itself) for every ¢t € [a,b].

1f A:‘[a,ﬁ] + L(X) is a primitive of B (i.e., if
we have A(t) = A(a) + JtB(S)ds) and f a primitive of g,
then (L') may be writtenain the form
t
(L) v(t) - y(s) + IadA(U).y(o) = f(t)~f(s) for all s,t e [a,b];
the integral is taken in the sense of Riemann-Stieltjes (see §3).

Equation (L) however may be considered even if A and f are

not primitives (see §5 and §6).

Analogously if we have a linear Volterra integral

equation of the form

[
(v) y(t) - y(e ) + { B(t,0).y(o)do = £(t) ~ £(t ), t e [a,b]
to
a
and if we define K(t,c) = I B(t,s)ds then (V) takes the form
t

(o]
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t

(K) y(e) - y(e ) + ft 4,K(2,0).5(0) ~ £(£) - £(t );

o

here too we suppose that y and f are defined in [a,b] with

values in the Banach space X. and that K(t,0) € L(X); hence

equation (L) is a particular ;ase of equation (K): linear

delay differential equations may also be reduced to the form (K)

(sce [ﬁ] P. 91, Example D) as well as other types of equations.
The main object of our theory is the study of (K); in §5

we specify the hypothesis made on ¥y, £ and K,

§2.° We will now define the typé of discontinuous
functions y - and f we consider in the equations (L) and (K).
Let X and Y denote Banach spaces. The discontin;ous functions
we will work with are the régslated omes, i.e;,ith;:functions
that have only digcontinuities  of the first kind. More precisely,
We say that a function f: [a,b] + X' is regulated, and we
write f e G([a,b],X), if for every t € [a,b[ there exists
f(t+) = lim f{(t + €) and for évery t € ]a,ﬁ] there exists

ev0
f(e_ ).

2.1. G([a,ﬁ],x) is a Banach space when endowed with the

norm [ £ = sup lece)] (see [H], 1.3.56).
agt<hb '

For the solutions of the differential and integral

equations or, more generally, of equations of type (L) and (K),

in most situations the value of a fumctions £ at a point ¢t

does not matter but only matter the limits f(t;) and £(t_ ).
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Therefore we also consider the quotient space @([a,b],X) of
G({a,b] ,X) where we take as equivalent two functions £ and
g such that at every point ¢t € [a,b[ we have f£(t ) = g(t+)
and at every. £ é ]a,B] we have f£(t_) = g(t_), or,

t
equivalently, for all s, t € [a,b] we have [ [f(c)-g(ﬂ)]doﬂo.
8 :

We define

6([a,b],X) = {€eC([a,b],X)}£€a)=0, £(t_)=£(t) for t € ]Ja,b]}.

2.2. The subspace G_([a,b],X) of 6([a,b],X) is

isometric to the Banach space &([a,b],X) (see [H], I.3.13).

in éeneral it is simpler to work with G_([a,b],x) then

with &([a,b],X).

§3. We will now give a precise meaning to the integrals
in the equations (L) and (X) and in the representation theorem
(Theorem 4.1) for linear comstraints (§7). We need the following

definitions:

A division of the interval [a,ﬁ] is a finite sequence

d: t =a < t, < ..,.<¢t_ =b; wewrite |d} = n,
o 1 n

Ad = sup ft. - £,
i<i<n © 1'1|

divisions of [a,b]. For dy, d, €D we write d; < d, or

if every point of d1 is in dz. Given a topological

and denote by D the set of all

d, > d;

space E and a function d € D+ x; € E we write x = lim x,,
deD

where x € E, if for every neighborhooed V of x there exists

d, € D such that d 2 4

v implies x, € V,

v d
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Por o: [a,b] + L(X,Y) and f£: [a;b] » X we define the
usual Riemann=Stieltjes integral . |
“¥bg - - A =
Jada(t).f(t) = ;330 izl[u(ti)_a(ti“l)]'f(gi)
where £ e [t l’t ] (eee [H] ., s [P]) and the interior

or Dushnik integral

b
I,da(;).f{t) = 1lim zl[a(t )-a(t 1)] f(E )
a deb i=1

e

where £: e ]ti-i’ti[ (see [Hl,.[gl, [g—ti] P. 96) whenever

P > o R
these limits exist, &

3.1. The existence of the first idtegral impliés the

4

existence of the second omne (and their equality - sce [H], Inle Is).

Reciprocally ‘ .;i"

3.2. The existence of the second integral implies the

existence of the first one and their equality, if o and f

are bounded and hnve no ceommon point of dlscontlnu1ty, for

1nstance, if one of them is continuous (see [H] I.1.2).

For the first integral we have the integration by parts

formula:
b
3.3. There exists I da{(t).£f(t) if and only if there
b a
exists f a(t).df(t}) and then we have
a
b b
I da(t).f(x) + I a(t).df(t) = a(b).£(b)-a{a).f(a)
a a

(see Dﬂ, I.1.3).
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For the interior integral the integration by parts
formula is not valid (see [H], I.4.21 and I.4.22) and this

fact turns its use more delicate.

Given a normed space E and 8: [a,b] » E we define

the variation of 8 (in [a,b]) by
v = V = v
[8 " Va,b] [e] sup ¥y [8]

||
where Vd[B] = i£1”B(ti) = B(ti_l)ﬂ.

if V[B] < @ we say that B 1is a function of bounded variation

and we write B € BV([a;b],E). For E = R the functions of
bounded variation are exactly the functions that are difference

of two monotonic ones.
Given o [a,b] + L{X,Y) we define the semivariation .
of a (in [a,b]) by

sv[a] = sv[a,bl [o] = ::g sv 4 [a]

d|
where svd[d] - sup{"iélfu(ti)~a(ti_1)].xiH |x; e X, =0 < 1}.

1f SV[o] < » we say that o is a function of bounded

semivariation and we write a e SV{([a,b],L(X,¥)). If we have

furthermore a(a) = 0 we write Q € SVD([a,b},L(X,Y)).

3.4. SVO([a,b],L(X,Y)) is a Banach space when endoved

with the norm SV[q] (see [H-IME], I.3.3 or [#], 1.5.1).

Tt is not difficult to see that



160.

3.5.. sV([a,b],L(X,¥)) = BY([a,b],R") (see [H], p. 23),

' 3.6. We have BV([a,b],L(X,Y)) C sv'([é,b] sL(X,Y)) and

these spaces are different if (and only if) dim Y = e,

3.7. If o e SV([a,bﬂ,L(XeY)), for every g e C([a,b],x)

. J
there exists‘ Fa[g] = Jadu(t)-g(t) and UFa[g]" < Sva]| g,

hence Fa £ L[C([a,b],x),Y] (see [H], I.4.8).

3.8. If a e SV([a,b],L(X,Y)), for every £ ¢ G([a,b],X)
b
. there exists Fa[f] = J da(t).£(t) 4dnd | P oLEIN <svalll €],

a
hence ¥ e L[6([a,b],X),Y] (see [H], I.4.12).

§4. We recall that the Riesz represeﬁtation theorem for
‘linear continuous functionals on C([a,b]) says that for every
F e C([a,b])' there exists o € BV([a,b]) such that ¥ = Fo»
i.e., such that for every fy € C([a,b]) wa have

b
FlY] = Jat.?(t)du(t).

The importance of the interior integral and of the
functlons of bounded semivariation lles in the fact that they
allow to extend the Rlesz representatlon theorem to the

elements of L[G_([a,b],x)st:

Theorem 4.1. The mapping

a € SVO([a,I?] ,L(X,Y)) e Esenilel ke bl X0k
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is an isometry {i.e.; “Fa“ = SV[aj) of the first Banach space
(see 3.4) onto the second one, where for f;e G([a,b],x) we

b ;
define Fa[f] = I. da(t).£(t); for every t ¢ [a,b] and xeX
—————— a = —

we have oa(t).x = Fa[x]a,t]x]’ where X, denotés the

characteristic function of the set Az XA(S} =1 if s € A

and x,(s) =0 if s ¢ A. (See [H], I.5.1)

See [H], p. 39 to 41 for examples.

More generally, it is not difficﬁlt to give a
rééresentation theorem for the elements of L[G([a,b],X),Y]
(see [H], 1.5.6). These theorems extend one of Kaltenborn, (K],

proved in the numerical case {(i.e., for X = Y = R).

Using the thecrem.above and other results (specially a
generalization of a theorem of Helly: [H], I.5.8) we obtain
integral represéﬁtations for linear continuous mappings between
many .function spaces, kor instance, for the elements of
L[6_([a,b)},X),2] where 2 = c([e,d],¥), C(K,Y) etc. (where K

is a compact topological space) .

Example. Given a fumction A K X [a,b] + L(X,Y) we
write A€ CGSVE(K X [a,b],L(X,Y)) if A has the following
properties:

(Ca): for every S E [a,b] and x € X the function

~Asii t € K—>A(t,s)x € ¥ is continuous.

(Svg): for every t £ K we have at e SVO([a,ﬁ],L(X,Y))
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4

and SVu[A] = sup SV[AtJ < o,
teK

Here, and later on, given a function A: T x 85> U we

write At(s) = As(t) = A(t,s) for t g T and s ¢ §.

We have then the following

Thecorem 4.2, The mapping

A e C98VE(K x [a,b],L(X,¥))—n Fp & L{6_([2,b],5),C(k,1)]

is an isometry (i.e., "FA" = SV"[A]) of the first Banach space

onto the second, where for avery £ ¢ G_([a,b],x) and t g K

we define
"%
FA[f](t) = I. d,A(t,0).£(0);
a
for (t,o) £ K x [a,b] and . x ¢ x we have

A{t,0)x = FA[XJaDU]x](t) {sece [H], I.5.11 and remark 9).

§5. Let us now g0 back to the study of the Volterra
Stieltjes—integral equation
t

dgK(t,G).y(c) = f(t) -~ f(to)'

® 3 -y -
L
[a]

We suppose that ¥, f ¢ G([a,h],x) ard that the function
K:[a,b] X [a,b] * L(X) satisfies the properties
(G)Y For every s g [a,i] we have Ks £ G([a,b],L(X)).
n t
(G e T T sup{SV[S_E’S+;][K.]|B,t e [a,b]} =0

e+0
and we write then K ¢ GY° - 6"%([a,b] x [2,8],L(X)). (G)
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expresses that K 1s regulated as a function of the first

variable.

a

5.1, (sv49) implies that K 1is continuous as a

function of the second variable ([H], III.1.2).

5.2, G"° is.a Banach space when endowed with the norm

RN - K] + SVo[K] where [K| = sup{[RCe,o)] | v t € [asb]

and SV'[K] = sup{sV[K"]|a < t < b}  (see [H], III.1.4 and

III.l.lQ).

5.3. If K¢ G“° then for every v € G([a,b],x) the

function

. t
t e [a,b]*—*-[t d K(t,0)y(0) € X
4]

is regulated (see [H], I11.1.3).

Hence the equation (K) is well defined.
In order to prove 5.3, as well as the formulas of
Dirichlet and the theorem of Bray (see §8) we made in
chapters I and II of [H] a carefull analysis of the properties
of the interior integral (dependence on parameters ([H], I.5.9)
and on the endpoints of the interval ([ﬁ}, I.4,14); inversion
of repeated integrals ([H], II.1.1, I1.1.10) etc.). This analysis
is particularly delicate since we can not use integration by
parts and because a function of bounded semivariation, in
general; is not even measurable (in the sense of Bochmner-Lebesgue).
For instance, by Theorem 4.1 the identicai automorphism of B

Gﬁ([a,b]) is represented by the function



164,

a: t g [a,b_'];....xjagt] £ G_([a,b])'

i.e., for every P e G_([a,b]) we have Y= I? do(t).p(e).
This function o is not measurable since fora € > 0 there
exists no compaet~:K€(: [a,b] such that f:KE -has”Lgb;Sggg‘
measure < ¢ and such that the rest}iction of a to K is

a8 continuous function; this is obvious since for a s <t <h

we have Wdft) --a(s)” = ”x]s,tjﬁ =3,

In equation (K) we nay replace K(t,c).’by
R(t,0) - K(t,t), i.e., we may suppose that K(t,t) = 0 (see
[H], P. 88, remark 4); in this case we write K g G:O.
AnaIOgonly we write U ¢ G;O if we have U g GU4° and
U(t,t) = IK (the identical automorphism of X),

The next theorem is fundamental for the resolution of

the equation (K).

Theorem 5.4, Given K £ Ggo we have

——ars

I. There is one and only one element R g G;o, the

resolvent of (K), such that
e IE g

; t
(R*) R(t,8) = Ix_v I‘dOK(t,c).R(U,s) for all ¢, s ¢ [a,b]
(ol ; 5

ITI. For every f ¢ G([d,b],x) and x € X the system

2 4 ) R t
® vyt s
X e

dUK(t,o).y(c)=f(t)—f(to); t e [a,b]
o ) ;

y(to) = x

has one and only one solution ¥y £ G([a,b],x); this solution is
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given by

t

(o) T(e) = R(e,e)x + [ R(E,0)AEG)
t
[}

and depends continuously on x, £ and K.

g

IIL. We have
t

(R*) R{t,s) = IX + ISR(t’U).dG K{(g,s) for all s,ts[a,b].
Iv. The mapping that to every K ¢ Ggo associates

. uo . . ] .
its resolvent R GI is a bicontinuocus (non linear)

bijection from G%° onto 6GY°. (see [H], ITI.1.5).
fa] — I

Theorem 5.4 generalizes results of Mac-Nerney proved
for the equation (L) (éee the comments made after Theorem 6,3).
An analogous theorem was proved for equation (K) by Hinton,
[Hi], under the hypothesis of bounded variation for K
(instead of bounded semivariati;n) but allo&ing certain types
of discontinuity in the second variable (see [Hi], the
definition of the class F on p. 318, and his Theorem 3.1).
The techniques used in the proofs in [M1] and [Hi] are
completely different from ours and do not extend to the case
of funetions of bounded semivariationm. .

In Theorem 5.4 it is not difficult to prove the existence
of R satisfying (R*); the really difficult part however —
is the proof that R g G"° and this is necessary for the
integrals in (p) and (R,) to be defined, for the proof that vy

given by (p) satisfies (K) and in the proof of IV.
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The analogous of Theorem 5.4 is true if we replace @G9°
by its subspace EUY° of continuous functions (see fd],
I1T.1.27), by its subspace E°%° of functions K that satisfy

c 3 t F1
(sv™) lim SV[R"-K ] =0 for every t, e [a,b],
t+t1 . .
A uo uo
(see [H], III.1,30), by the corresponding spaces @BV , CBV
CBVE? of functions of bounded variation (see [H], p. 114

remark 9) ete.

§6. Weiwill now particularize Theorem 5.4 to the
equation (L), i.e., we suppose that K(t,0) = A(G)-:kmére
precisely, K{t,0) = A(g) - A(t), since K(t,t) = 0); if we take
then equation (X) for ¢ and s, by subtraction_yg obtain

| t ; 3
(L) y(&) - y(s) + I dA(0).y(g) = £(r) - f£(s) for all s,te[a,b] .
8 ]
Property (SV'%) for x implies that A: [2,b] » L(X)

satisfies

(sv°) : gjg Sv[s-ﬁ,s+6][AJ = 0 for every s g [a,b].

6:1. If A: [a,b] + L(X,Y) satisfies (5V°), thea 4

——

is a continuocus function of bounded semivariation,

= - We ignore if reciprocally every continuous function
A € SV([a,E],L(X,Y)). satisfies (SVO); this is true if Y is
ref lexive or, more generally, weakly sequentially complete.
We fix now a point O e [2,b] and write a4 ¢ A% if
A: [a,b] +» L(X) satisfies (SV°) and if A€D) = 0.
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6,2, T is a Banach space when endowed with the norm
A > sv[a].

For functions R: [agb] X [a,b] + L(X) 1let (SVuo),
(SVO) and (SVC)‘ denote the analogous for the first variable,
of the properties (SV"O), (Sv°) and (SV®) in the second
variable. We say that R 1is harmonic, or an harmonic operator,

we write R e H = H([a,b] x [a,b},L(X)), if R satisfies

uo, C g 3
(8V79); (sV%), (sV ), (SV ) and
(o)  R(t,t) = Iy, R(t,0).R(0,s) = R(t,s) for all ts,0e[a,b].

We denote by H®® the set #H with the topology induced

by GUY° {see 5.2); analogously we define Hco'~

Theorem 6.3. A, Given A ¢ Aa we have

I. There is one and only one R g #, the resolvent of

(L) or A, such that

t
R(t,s) = R(g,s) - J dA(g) .R(o,s) for all s,r,t ¢ [a,b].
g

II. For every f ¢ G{([a,b],X) and x € X the equation

(L) has one and only one solution vy E’G(Ea,b],x) such that:

) =

y(8) = x; this solution is given by

t
y(t) = R(t,s)x + f R(t,0)df(o)
o

and depends continuously on x, f and A.

ITI. We have
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S
R(t,s) = R(t,a)+[ R{t,z).dA(L) for all s,o,t & [a,b].
o]

IV. We have

0

A(t) =:[ d@R(o,s).R(s,c) for any s ¢ [a,ﬁ].

t

B | R:'[a,b] % [a,b] + L{X) satisfies (o) and

(SVO) then K€ H ‘and R is the resolvent of A given in IV,

C. On #H the topologies of H®° and Hco coincide

and the mapping that to every 4 ¢ Aa associates its resolvent

R e H 1is a bicontinuous (nonlinear) bijection from Aa onto H,

(See [H], IIT.2.1, II1I1.2.2 and II1.2.3).

Parts A and B of Theorem 6.3 extend to the case of
bounded semivariation, the Theorems 3.1 and 3.3 of Mac~Nerney,
[Ml], formulated for the case where A is a continuous

function of bounded variation; see also fwl.

§7. We will now look for solutions y of (K) that

satisfy an equation
(F) Fly] = ¢

where F ¢ L[G([a,b],X),Y]; (F) is called a linear constraint.

Examples of linear constraints:

1. Initial conditionss we take Y = X and L e [a,b];

Fly] = y(z).

2. Boundary conditions: we take Y = X and
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F{y] = a.y(a) + B.y(b) where a, B8 & L(X).

3. Periodicity conditions: Theorem 5.4 extends to open
intervals Ja,b[ (see [H], p. 114 remark 10); we take
Ja,b[ =R, the locally convex space Y = G(R,X) and we give
p > 0 (the period); we define F[j](t) = y(t+p)-y(t), t ¢ R,

4, Left discontinuity: we take - Y = Xz, T € ]a,ﬁ] and

Fly]l = (y(8),y(z)).

5. Multiple point condition or the Nicoletti problem:
we give tys ccsp £ € [a,b] and A

m
F[y] = 2 A..y(t.).
j=1 J J

1, LI Y Ame L(le);

6. Integral conditions: we give a ¢ SV([a,b],L(X,Y))

b
and F[y] = I. do{t).y(t).
a

7. Interface conditions: we give ¢ € ]a,b[ and A_,

A, A, & L(X,Y); Flyl(e) = A_.y(T)) + A.y(Z) + A_.7(5,).

8. Integral equations: we give Y = C(K,Z) and
ae CsvU(k x [a,b],L(%,2)) (see Theorem 4.2);
b

Fly] (£) = I. ch(t,o).y(c), t e K.
a

§8. We consider the system (K), (F) and we suppose that
K e Ezo (see the. end of §5); hence the resolvent R of (K)
satisfies R e E?O znd ig therefore a continuous function. For
every s e [a,b] we define F[r] ¢ L(X,Y) by F[R_s] x=F[R_x],
where x € X (R_x demotes the function te[a,b] > R(t,8)x € X).

By Theorem 4.1, to F £ L[G([a,b],x),Y] corresponds a function
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o € SVO([a,b],L(X,Y)) such that for every g e C([a,b],X) or
o b :

g € C([a,b],L(X)) we have F[g] = J da(t).g(t) (see 3.2);

. a ;

hence

8.1. For every s ¢ [a,b] we have

b
F[Rs] = Iada(t).R(t,s) e L(X,Yo)

ﬁhére'LYo.= F[Kul(O)] = {Fly] e YIK[yj =0, ye C([a,b],X)}

and K[y] = £ is an abridged way of writing (K).

We define J(s) = F[Rs] HE = [a,b].
8.2. J: [a,b] +~ L(X,¥) satisfies (SV°) (see [H], III.3.3).

8.3. In the particular instanceof the equation (L), J

satisfies the adjoint equation

t
J(t) - J(s) - J J(0).dA(c) =0, s, te [a,b]
s

(see [H], III.3 5).

It is not difficult to prove the

Theorem 8.4. The following properties are equivalent:

(i) y = 0 is the only solution of the system

K[y:'] =0, F[y] = 0.

(ii) For every c e Y  the system K[y] = 0, F[y] = ¢

has one and only one solution.

(1ii) The mapping vy ¢ Kul(O)Fmi-F[y] £ Yo is

bijective.
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(iv) J(to): X - YO is bijective (continuous but not

bicontinuous in general) (see [H], IIL.3.6).

From now on we suppose that the equivalent properties of

. Theorem 8.4 are satisfied by the system (K), (F).

8.5. The following properties are equivalent:

(a) The solution Y of K[y] =0, F[y] = ¢ depends

continucusly on c € Yo.

(b) The operator J(to)_l: Yo + X is continuous.

(c) Y& is closed in Y.

(see [H], III.3.30).

We will now look for a Green function of the system (K),

(F), i.e., a function
¢: [a,b] x [a,b] + L(X,Y)

sﬁch.that the solution of K[y] = g, Fly] = 0, where
g € C([a,b],X), is given by o
b
y(e) = J G(t,s).dg(s) .
. ‘a ,

We will broceed in a heuristic way to find the Green i
function and see the propertics we need in order to justify our
pProcedure, o

Let y Ube the solution of the system K[y] = g,

F[y] = 03 b& kp) of Theorem 5.4_we have
t

7(e) = R(ee)ye )+ R(e,0)d800)

t
(s}



172,

and if we apply F to this equality we get

o t
0 = J(t )y(t-) + F[I R(t,o)dg(o)]
o o ¢

o
i.e., y(téx ?.J(tv)—lF[[ ,R(t,c)dg(o)]; if we replace this in

t , =
the equation for -y we obtain

o t
y(£)= R(t,to)-J(to)—}-F[I-‘R(C;U)dg(d)] + [ R(t,0)dg(o) .
L

t
o .

We write. J(t) = R(t,to).J(té)_l € L(Y_,X) and take the

t b b
¢ o]
decomposition J = I = I
A g t,

b b L

R(c,o)dg(c)]}+f R{t,0)dg(o) =

t
o o

b b b
da(c)[f R(c,o)dg(o)}n[ da(;)[[
[ a

y(c)=3(t){F[[ k(;,o>dgcc)]—F[[

z t

b b

R(C,G)dg(c)]}+J R(t,o)dg(a).

t
o]

= F(t){J

a t
]

At this point in order to Proceed, the formula of Dirichlet
and the Theorem of Bray proved in chapter IY of [H] (Ir.1.10,

II.1.1 and 1I.2.4) are essential; they assure, respectively, that

we have

b b
f da(c)[[ Rcc,o)dg<c>]
[

a

bera
I [[ da(c)-R(c,G)]dg(c)
a

a

]

b b b b
J da(c)[f R(c,o)dg(c)] f {I da(c)-R(c,o)]dg(c)
a to to a

and by the definition of J(0) the last integral is equal to

b
I J(0)dg(o); hence we have

t
o

- b(ro
.l
a

b t
da(c)-R(E,c)}dg(G)-f J(O)dg(c)}+I R(t,0)dg(c).
t

t
Q o

a

We cannot put J(t) wunder sign of integration since E(t) is



173.

only defined on Yo and under the sign of integration we have
elenents of Y; however if we make the additional hypothesis

that Y =Y , where
Ci- o '
b
Y = {Ia do(t)£(t)| £ & G6([a,b],X)}

then the Green functicn

8

G(t,s) = F(t).I da(g).R(;,s)—Y(s—to)T(t).J(s)+[Y(s-to)+Y(s—t)]R(t,s)

a

ig well defined and it is immediate that we have

b
y(t) = f G(t,s)dg(s).
a

8.6. For the equation (L) we have

1 1

R(t,s) = J(t) ".J(s) and J(r) = J(t)

(see [H], III.3.7).

Hence for the problem (L), () the Green function teduces

to
G(t,s) = J{t) f doa(g).R(L,s) + Y(s - t)R(t, s) .
a
The heuristic procedure above may be completely justified

and generalized and leads us to the following

Theorem 8.7. If K and F satisfy the equivalent hypothesis

of Theorem 8.4 and if Ya = Yo we have

¢ has a solution

It

A. The system K[y] = g, F[Y]

¥y € C([a,b],x) if and only if (g,c) € C([a,ﬂ,x) % YO; then
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this solution is given by

b

y(t) = J(t)ec + [ G(t,s)dg(s)
a

and (for c fixed) the mapping gr#y is continuous.

B. The system K[y] = £, F[y] = ¢ has a solution

vy € 6([a,b],X) if and only if ¢ - F[f] ¢ Y ; then this solutionm

is given by

b s

y(t) = f£(t) + T(t)[c-F(f)]—[ G(t,s)ds[I dUK(s,G).f(U)];

a t
o

the mapping f ¢ c([a,b],x)+—+-cK(f) e C([a,b],X) is

continuous, where

b 8
GK(f)(t) = [ G(t,s)ds[[ ch(s,c).f(c)]

a t
o

(see [H], III.3.28, II1.3.30 and III.3.31).

The existence of a Green function satisfying A of
Theorem 8.7 implies that o ¢ SVU([a,b],L(X,YO)); we do not
know if it implies that Y, = Yo'
The Green functiorn is characterized in the following

theoremn.

Theorem 8.8. The Green function

G: [a,b] X [a,b] + L(X)

has the following properties:

(Go) F[GSJ = 0 for every s € [a,b];

rt
(6;) Gsct;—cs(to)+J dGK(t,U).Gs(0)=[-Y(s-t)+Y(s~to)]IX;

t
o]
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S
(Gz) Gts) + I ﬁt(c).doK(U,s) = J(t).a(s)
a

where &(t,g) = G(t,c)+Y(U-t)R(t,c)+Y(c-to)[f(t).J(c)-R(t,d)];

(G3) For every s ¢ [a,bﬂ, Gs is continuous for t#s;

(6,) sup SV[6"] <= and G(t,b) = 0, G(t;a) = 0 for
ast<h
a<tg<hb, G(a,a) = ~Iz3 (see [H], IIX.3.29).

0 . d o
(6;) says that G_ satisfies EEK[Gs] = 6(5), in the
sense of the Theory of Distributions; by Theorem 8.7 (Go) and
(Gl) determine the Green function G.

In the case of the equation (L), (Gz) reduces to

s
(Gé) G(t,s)+Y(s-t)R(t,s)-I [G(t,d)+Y(c—t)R(t,o)].dA(c) =
a

1

= J(t) “.oa(s).

We mention again that all results of §2 to §8 may be
extended to open intervals ]a,b[ and Y a separated
sequentially complete locally convex topological vector space

(see [H]). For concrete examples see [H], p. 146 to 150.

§9. In the preceding §§ we presented our main results
from [H]. Our students generalized many of these results and

are studing other questions related to them.

For instance, in [S] Maria Ignez Souza extended
Theorem 6.3 to the case where A allows discontinuities; her
results generalize theorems of Hildebrandt, [H~ie], proved

under the restriction of bounded variation. M. I. de Souza is
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now trying to generalize Theorem 5.4 in the same way.

In [C], Carmen Silvia Cardassi proved that the existence

of the derivativé; %% ox %% for K in several different
senses,. implies the existence of %% or %_ with the
corresponding meaning. The existence of gﬂ and of £' implies
then that (p) in Theorem 5.4 may be written as
t
y(t) = R(t’to)x+Jt R(t,0).£'(0)do,
0

and that there exists

t
yi(e)y = %B(tgt Jx o+ £7(x) + [ aR(t o)f{o)do.
t o £
[s]
The existence of. g% inplies the differentiability of y with

respect to t :

9Y (¢) = OB (toe )x-R(t,t ). £ ().

In [Hé] Sara Zisel Herscowicz studies classes of
functions associated by the Riemann-Stieltjes integral (see §2 .
of [H—OP])‘gnd in particular gives a complete proof of the
Theorem 2.1 mentioned in [H-OP]. Galdino Cesar da Rocha Filho
in [RZ] proves that there are other "homogeneous" classes (i.e.,
spaces of funcflons stable under certain groups of transformatlons
of [a,b]) besxdes those given in Theorem 2.1 of [H- 0P] .

does also a carefull analysis of associated classes.

In [H-DS] we prove the formulas of Dirichlet and of
substitution under differant hypothes*s then thosze of chapter 11

of [ﬁj and for dlffereﬂt types of 11‘egrals. We also study the
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class of integrable functions that satisfy the Darboux
criterium of integraﬁility. ‘

In [Rl]lGaldino Cesar da Rocha Filho studies
axiomatically different generalizations (in the sense of [H-ti])
0f the Riemann~Stieltjes integral (see §12 of [H-0P]), in
particular he proves that for these generalizations it is
impossible to keep sinmultaneously all basic properties of the

usual Riemann~Stieltjes integral.

Samy Elias Arbex is working in problems related to VI
of §10. José Carlos Fernandez de Oliveira investigates certain
nonlinear functional differential equations (see III of §10) and

is relating them to questions in dynamical systems.

- §10., 1In [H—OP] we gave some 80 open problems related to
our work. The following problems have by now been partially or
completely solved: (2.1), (2.2), (2.3), (6.5), (6.6), (7.1),

(7.7), €7.8), (8.1) and (12.1).

We suggest now some directions of research we consider

particularly interesting and promising:

I. Non linear equatiens. We consider the equation

t

y(t) - y(t ) + I d;K(t,0).y(0) = £[e,y(e)]-£[e_,v(e )] .

t
O

By Theorem 5.4 every solution of this equation is a solution
of the Hammerstein equation

t
y(e) = RCeir) oy )+ R(e,01d2[0,y(0)] .

o
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1f y also has to satisfy a linear comnstraint {F) then
by Theorem 8.7 we have to solve the equation
¥ - b
Cy(e) = J(t)e + I

G(t,o)dgf[U,Y(U)].
Sk o :

B SO o

For some partial results in the study of these equations

see [H-IME], p. 121; see also [H-oP], problems (11.1) to (11.3).

II. Abstract differential equations and partigl

differential equations. See [HJOE},-problemsr(Ll.é) and (11.7).

SEIIN, Functional differential equations:; We consider

equations of the type

¥ b ‘ L S,

(X) y(t)-y(3)+f d [XK(t,0)-K(s,0)] .y(0) = fle,y(e)]-£[s,y(s)],
: -

eventually with a linear comstraint. (K) contains as
particular instances the equations (XK), (L), differential
equations with deviating argunent etc. See‘[H—OEJ, problems

(9.é) to (9.5).

IV, Periodic solutions, bounded éolu£ioﬁs, quasiperiodic
solutions, In the case where ]a,b[ =R it is obviously very
important to find solutioms with these:properties} specially in
thé nonflinear éaée. For some results in this directions sece
EH-IHE],ep. 123; see also [H—OP], problems (8.4) to (8.9) and
(SE)I. | | e

v. Non iinear constfai;ts. This is another important

direction of research: we look for'solutionsf"vf-df'(h), (K) or
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(K) such that ¢[y] = ¢ where ¢ 1is a continuous (non linear)
mapping from G([a,b],X) into Y, satisfying adequate

hypothesis.

VI. Extensions of existing results to a Banach space and
linear constraints context. There are several groups of
mathematicians working in questions related to those we exposed

®  and even if they work in

here. Mostly they work in X =R
Banach spaces the linear constraints they consider are of a
particular type, i.e., defined only by functions of bounded

variation. It would be very interesting to extend their results

to Banach spaces and to general linear constraints.
We mention specially the following groups:

1. The russian mathematicians that work at Tambov:
Rachmatulina, Maximov, Azbelev and others. They work mainly on

equations of type (K); see [Ma] and the references given there.

2. In Czechoslovakia there are Kurzweil, T.rdy, Vejvoda,

Schwabik and others; see [T] and the references given there.

3. In the United States there are Krall, Brown, Bryan,

Green and others:; see [B-Kﬂ and the references given there.
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