
UNIVERSIDADE 

DE 

BRASiLIA 

SEPARATA DO TRABALHO DE MATEMITICA NV 8S 

INTEGRO-DIFFERENTIAL EQUATIONS WITH LINEAR 

CONSTRAINTS AND DISCONTINUOUS SOLUTIONS 

Uma Introdu~ao 

l'OR 

Cl{AIM SAHUEL H~NIG 

DEPARTAMENTD 

DE 

MATEMATICA 



• 

SEPARATA DO TRABALHO DE MATEMITICA N9 85 

INTEGRO-D IFFERENTIAL EQUATIONS WITH LINEAR 

CONSTRAINTS AND DISCONTINUOUS SOLUTIONS 

Uma lntrodu ~ao 

POR 

CRAIM SAMUEL HON IG 



INTEGRO-DIFFERENTIAL EQUATIONS WITH LINEAR CONSTRAINTS AND 

DISCONTiNUOUS SOLUTIONS 

Chaim Samuel H8nig 

153. 

In this paper we give a survey of the main results we 

obtained in the t~eori of line~r differential and integral 

equations and of equations of a more general type , the Volterra 

Stieltjes-integral equations. We prove the existence of a 

resolvent for these equation_s (§5). We consider also the case 

when the solutions satisfy a linear constraint, i.e., a 

generalized boundary condition; in this case we find a Green 

function for the solutions (§8). We relate our results to those 

found in the literature and we present also some results and 

extensions obtained by our students. At the end of this article 

we suggest several directions of research (§10). Let us 

mention that the results here presented may be applied to the 

theory of Optimal Control, to the study of Feedback Systems etc, 

Our theory is developed in such a way that discontinuous 

solutions are allowed; these solutions appear in a natural way 

in Mathematics, Physics, Technology etc. Let us only recall 

that the components of an eletric field are discontinuous across 

the surface of an eletric conductor or across a surface that 

separates two different dieletrics. 

In this survey we avoid, as much as possible~ technical 

definitions and details. For the proofs we refer to our 
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.. 
monograph. _ (HJ .which contains a complete p.nd deta i led e x position 

of the whole theory. An abatract of our main results can be · 

§1. Given an 

an interval [a,b], 

n-order linear differential equations on 

·· x(n) +.,.. (1+-l).+. , u'i X • • • • 

we recall that if we define =x', ... ,y = 
t " .· • ,r· · n . .. ; . 

then-order differential equation is transformed into a system 

of n first order linear diff e rential equations 

. J Y ' - y == 0 -n-1 n • 

+ b y ;;. .ill 
n 1 J 

If the function , x . . . . ; 
is ~ea l or _comp;~x·valued~ the ~ame 

is tru~ f?~ ;~e , functions y 1 , y 2 , . ••• , -Yn a~d if we ~~~sider 

the vector function 

! • 

y = , 
y . ' 

n 

l l. . .. ' ' .. 
the first order system may b e written in th e form 

••·••: , : :I ' ' 
.. 

, . .. .. 

(L') 

where 

.. 

.. 



B "" 

0 -1 
0 0 

0 
b 

n 

0 
-1 

0 
• • • 0 

• 

takes values in mn or 

0 
0 0 

and g = 
0 

f 

and for every 

B(t) is a real or complex n-order square matrix, hence 

def~nes a linear mapping from ~n or en into itself. 
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More generally we will consider differential equations 

of the form (L') , where the functions y and g are defined 

in [a,b] and take values in a Banach space X; we suppose 

that B(t) e: L(X) (the space of linear c ontinuous mappings 

from X into itself) for every t e: [a,b]. 

If A: .[a,bJ -+ L(X) is a primitive of B (i.e., if 

we have A(t) = A(a) + r:B(s)ds) and f a primitive of g, 

then(~') may be written in the form 

(L) y(t) - y(s} + r:dA(cr) .y(O') = f(t)-f(s) for all s,t £ [a,b]; 

the integral is taken in the sense of Riemann-Stieltjes (see §3). 

Equation (L) however may be considered even if A and f are 

not _p-rimitives (see §5 and §6). 

Analogously if we have a linear Volterra integral 

equation of ~he form 

(V) y(t) - y(t
0

) + J: B(t,cr).y(cr)dcr =- f(t) - f(t 0 ), t e: [a,b] 

0 

and if: we define K(t,<J) = J0 
B(t,s)ds then (V) take s the form 

to 



(K) y(t) - y(t) + Jt d K(t,cr) .y(cr ) o t cr . 
• 0 

= f(t) - f (t ) ; 
0 
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here t oo we suppose tha·t- · y and f a re d;et ined: in (a, b J with 
values in the Banach space X and that K(t,a) E L(X) ; hence 
equation (L) is a particular case of equation (K) ; linear 

del~y • . ~iifer.ent·ial equati<>rl:s may also b.a reduced to 'the form (K) • 

(see (HJ p. -91·, Examp·le D') as wel l as othe r types of equations. · · 

The main .object o f · bur the ory is the study of (K); irt §5 

we specify Jhe hypothesis made on y , f and K. 

§i . : W~ ~{11 now define t he type o f discontinuous 

functiohs y· and f we c onsider in th e equations (L) and (K). 
Let X and Y den o t e Banach space s . The discontinuous functions 

.. we will ·work with ~re the r•~ulated ones, i.e ~, ' the l functions 

that have only di~continuities• of the ·first kind. M~re preci~ely; 
we say that a functi on 

write f E G([a,b] ,X), 

f(t+) • lim f(t + E) 
E+O 

f(t_). 

f: 

if 

a n d 

[a, b] -J- x : 

for every 
i ~ : 

for every 

is r e6ti.lated , arid we 

t e: [a, b [ there exists 

t E ] a, b] there exists 

2.1. G([a , ~ ,X ) i s a Banac h sEace when endowed wit~ the 

norm II £11 = sup II f (t ) II 
a-S t~lb 

(see [ H] , I.3.6). 

For the solu ti ons o f the differential and integral· 

equations or, mor e gene r a lly , of e quat i ons of type (L ) and (K) , 
in most s ituations t he value of a functions f a t a point t 

does not matter .. but. o.n~Y .. matte r the. limit.s . f(t,+) a,nd f(t _). 

.. 



.. ..... 
• 
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The'refo.re we also consider th e quotient space G([a,b] ,X) of 

G([a,b] ,X) where we take as e quivalent two funct ions f and 

g such that at every point t € [a,b[ we have f(t+) = g(t+) 

and at every t e: Ja,b] we have f(t_) = g (t_), or, 

equi-v,~J_en·~.~y, for . all s, t e: [a,b] we have r:[f(cr)-~(cr)]dcr•O .• 

We define 

2.2. The subspace G_([a,b] ,X) of G([a,b] ,X) is 

isometric to the Banach space G ([a, b] , X) (see [n], I. 3.13). 

In gene-ral it is simpler to work with G_([a,b] ,X) then 

with G([a,b] ,x). 

§3. We will now give a precise meaning to the integrals 

in the equations (L) and (K) and in the representation th~orem 

(Theorem 4.1) for linear constraints (§7). We need the followin g 

definitions: 

A division of the interval [a,b) is a finite sequenc e 

d: t
0 

= a < t
1 

< ••. < tn = b ; we write I di = n, 

6d -.. sup It. - t
1
. _

1
1 a,nd denote by D th e set of all 

l<i<n 1 

divisi~ns of [a,b]. For <l 1 , d 2 e: D we write dl < d 2 or 

d2 > dl if every point of dl is in d 2. Given a topo logic-,!! -
space E and • a: furtction d E D ~ xd e: E we ,write X .. lim xd, 

de:D 
where X E E, if for every neighborhood V of X there exists 

dV E: D such that d > dV implies xd € v. 
-
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,· ,· -

For a: [ a , b] + L (X,Y) and f: [a 9 b] + X we defin e t he 

usual RJema nn ~Sti~l tjes i nt e gra l 

where 

J
b I ' ' Id I • ' 

• a da (t) ~f ( t ) = l i m .I [cx(ti) -cx( t i-l)] .£ ( , 1 ) 
fld+ O 1= 1 .. 

( . e: [ t. 1
,t. ] ( s ee [H]' [c], [n]) and the 1 1 - 1-

or Dushnik integr a l 

r: da (.t) . £.( t ) 
I ~1l •. = lim I' I a ( t . ) - a ( t . _ 

1
) J . f ( t . ) . 1 1 1 ' 1 de:D 1 "" ' • ' . • 

wher e t : 
1 

E:] t. 1 ,. t. [ 
- 1- L 

(see [HJ., ~ [tc). ,. [ ~ - t; iJ P• 9 6 ) 

these limits e xist. 

interior 

. 
" 

whenever 

,,1 \ HI • 

3. 1. Th• ex i s t ence of the f irst i n tegr a l implies the ,,,_ 

I '• 

existence o f th e second one (a~d t h e ir e qu a lity - see (aj , ! •1.1). 

Reciproca l l y , · . . 

3.2 , Th e existence o f t he sec ond i n t egral ' i nipli e s the 

existence of the fi rst on e and t he ir e quality, if a a n d f 

are bounded a Dd hnve no common point of dis c ontinuity, £or 

ins tance> if on e o f theru is continu ou s (se e [HJ, I .1 . 2 ) . 

Fo r the first in t e gra l we ha~e t he i
1
~ tegration by parts 

f o rmula : 

3. 3. There exi s ts Jbda(t ) , f(t ) i f and only if t h e r e 

exists J:a (t) .d f { t) 

r:da( t ) .f(t) 

(see [HJ, I.l. 3) . 

a 

and then we have 

+ r:a( t ) . df ( t) = a (b ) . f(b ) - a (a);f(a) 

.. 
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For the interior integral the integration by parts 

formula is not valid (see [HJ , I.4.21 and I.4.22) and this 

fact turns its use more delicate . 

Given a normed space E and f3 : [a,b] + E we ·define 

the variation of f3 (in [a,b]) by 

where 

v[a]_ .. vta,b] [6] :s ~~ii vd[B] 

I di 
l II B (t .) - S( ti-1>il • • 

i=l 1 

If V[6] < ~ we say that 6 is a function of bounded variation 

and we write BE BV ([a~b] ,E). For E - ~ the functions of 

bounded variation ar e exactly the functi ons that are difference 

of two monotonic ones . 

Give n a : [a,b] + L(X~Y) we define the semivariation • 

of a ( in [ a , b] ) by 

sv[a] = sv[ b1 [a] -= sup svd[a] 
a , Al de:D . 

If sv[a] < 00 we say tho.t a is a function of bounded 

' semivariation and we writ e a e: SV ( [a , b] , L (X; Y)) ~ If we have 

furthermore a.(a) Cl 0 we write a e: S V
O 

( [a, b J , L (X, Y)) • 

3.4. SV
0

( [ a, b] , L(X ,Y)) is a Banach s p ace when end owed 

with the norm sv[a.J (see [H-IME] , I.3.3 or (HJ, I.5.1). 

It is no t di ff icult t o see that 
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3~ ·6. We have BV([a.,b] ,L(X., Y)) C SV.([a,b] , L(X,Y)) and 
these spaces ar e dif fe r ent i f (and o~ly i f ) di~ Ya~. 

3. 7 . II ~ e: S V ( [ a , b] , L (X ~ Y) ) , f or everx g e: C([a,b] ,X) 

there exists Fa(g] c r: da ( t) . g _< t .) and II Fa (g] II ~ sv[a]II sll, 
hence E L [ C ( [a, b] , X) , Y] (see [H]. , I. 4. 6). F 

a 

3.8. If a. e: SV([a,b] , L(X,Y)), f or every f e: G([a,b] ,X) 
b 

t.Qe.te ¢tists Fa[f] "'J . da (t).f(t) and IIFa[f]n~sv(a]llf[I, 
a 

henc~ · Fae: L[G([a, b] ,X),YJ (see [HJ, I. 4.1 2). ' 

§4. We r ecall that th e Riesz r epresentation the orem for 

- linear continuous functi onals on C([a,b]) says that f or every 
Fe: C([a,b])' the re exists a e: BV( [ a ,b]) such that F • F , a 
i.e., such that for e very tJ € C( [ a, b]) we have 

·b • 

F [ 1] = fa tf ( t) da ( t) • 

The imp orta n ce of the interior i ntegral and o f the 

functions of bounded semivariation lies in the fact that they 

allow to extend the Riesz repr e s en tati on t heor em to the 

elements of L[G_ ( [a,b] , X) ,Y] : 

Theorem 4.1 . The mapp ing 

.. 

.. 

.. 



161. 

is an isometry (i.e. , !!Fa ll = SV[aJ) of the _first Banach space 

( se·e 3. 4) onto the second one, where for f € G( [ a,b] ,X) we 

defi·ne Fa[£] -( da ( t} . f ( t) ; for every t E [a, b] and xe;X 

we have a(t).x = Fa[X]a,t)x], where XA denotes the 

characteristic function of the set A: xh(s) = 1 if s € A 

and XA(s) = 0 if st A. (See [H], I.5.1) 

S·e'e [HJ , p. 3_9 to 41 for examples. 

More gene rally ? it is n o t difficult to give a 

representation the orem for the elements of L[G([a,b] ,X),Y] 

(se·e [HJ, I.5.6). Thes e th e orems extend one o f Kaltenborn, [K], 

proved in the nume ri c al case (i.e. 9 for X = Y = ~). 

Using the the orem above and other results (specially a 

generalization of a theorem of Helly : [HJ , I.5.8) we obtain 

integral representations f or line ar continuous mappings between 

m&llY .function spaces, for instance , for the elements of 

_L[G_((a,b] , X},Z] where Z c: G([c,d],Y), C(K ,Y} etc. (where K 

is a compact t o po l ogical spac e). 

Example . Given a function A: K x [a,b] -+ L(X,Y} we 

write A . E c0 s v u(K x [a .,b] ,L(X , Y)) if A has the following 

0 

properties : 

(CO') : for e ve ry s € [a, b] and x e X the function 

·Ax : t € K,__._A(t,s)x € Y is c ontinuous. 
s 

(SVu): for every t € K we have At£ SV ([a,b7 ,L(X,Y)) 

0 • 
0 ~ 
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and SVu [A] = sup SV [At] < C) . 

tEK 

Her e, and later on , given a function A: T x s -+ u we 
write At ( s) "" A (t ) = A(t, s) for s t e: T and s e: s. 

We have then the following 

Theorem 4 . 2 . The mapping 

is an isometry (i.e., IIFAI!-= SVu[A]) o f the first Banach space 
onto the second , where fo r e,c ry £ e: G_([a,b] , X) and t e: K 
we define 

f o r (t,cr) e: K x [a,b] and , x e; X we have 

§5. Let us n o w go back t o the s tudy o f the Volterra 
Stieltjes-integral equation 

(K) y(t) - y(t) + j t d K(t,cr) . y(cr) ~ f( t ) - f(t ). o t cr o 0 

We suppose that y, f e: G([a ,bJ ,X) ard that th e function 
K: [a,b] x [a,b] -+ L(X) satisfies the p roperties 

(G) For every s e: [ a,b] we have K
8 

e: G([a,b] ,L(X)). 

(Sv
00

) lim sup{SV [ s-e:,s+e:J [Kt] l s,t f.: [a ,bJ} ""0 d-0 
and we write then Ke: Guo = G00 ([a,b] x [a,b] ,L(X)). (G) 

.. 

, 



163. 

expresses that K is regulated as a function of the first 

variable. 

5. 1. (SVu 0
) implies that K is continuous as a · 

function of the second variable ([H], III.1.2). 

Guo 5. 2. . .. is -a Banach space when endowed with the norm 

IIKIII = IIKII + 

and SVu [K] 

III.1.14). 

SVu [K] where 

= sup{ svJKt] I a 

ll·KII == sup{IIK(t .,s)I/ 

< t- ·~ b} (see [HJ, 

s, t e: [a,b]} 

III. 1.4 and 

5.3. • If K e: Guo then for every y e: G([a~b] ,X) lli 

function 

. ( t 
t e: [a,b] i----.. Jt d 0 K(t,cr).y(cr) e: x 

0 

is regulated (see [H], III.1.3). 

Hence the equation (K) is well defined. 

In order to prove 5.3, as well as the formulas of 

Dirichlet and ~he theorem of Bray (see §8) we made in 

chapters I and II of [H] a carefull analysis of the properties 

of the interior integral (dependence on parameters C[H], I.5.9) 

and on the endp o ints of the interval ([I~, I.4.14) ; inversion 

of repeated integrals ([HJ, II.1.1, II.1.10) etc .. ). This analysis 

is particularly delicate since we ca~ not use integration by 

parts and because a function of bounded semivariation; in . 

general; is not even measurable (in the sense of Bochner-Lebesgue)~ 

For instance, by Theo rem 4 . 1 the identical Butomorphism .of 

G_([a,b]) is represent e d by the function 
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a : t e: _[a , b] ~XJ a ,t] e: _G_ ([a,bJ), 

i.e., for every Lf e G_( [ a,b] ) we have 'f • C da(t).tp(t). 
This functi on a is not me a surable sinc e for e: > 0 there 

such that has Lebesgue 
measure ana· such· that the rest ~ic tion of a to K e: is 
a continuous . function; this is . obvious ._ s i nce for a~ s < t < b 
we have Ila(~) - a(s)II ""I.IX]s,t] II = l. 

In equati on (K) we may rep lace K(t ,o ) ·by 
K(t,cr) - K(t,t), i.e. , we may s u ppose t hat K(t,t) • 0 (see 

[HJ, p. 88, remark 4) ; in this c ase we writ e 
A l l • U Guo 1· f we have U "' Guo and 

na ogous y we write e: 
1 ~ 

U(t,t) = I X (the i den tical automorphis m of X ) • 
The next theo rem is fundamental f or the resolution of 

the equation (K). 

Theorem 5.4. Give n Ke: Guo we have 
0 

I Th • d 1 l R c:- Gu
1
o, t _he 

• · e r e 1s one an on y one e ement ~ 

resolvent of (K) , such thai 

(R*) R(t,s) ... I -X - r:d
0 K;t,a).R(a,s) for all t, s e: [a, b] 

IL For every £ e: G([a,b] ,X ) and X e: X the system 

(K) 
' . .• t 

y(t)-y(t )+J d,..K(t,.o). y {o)=f(t)-f(t )~ t e: [a ~b] ,' 0 , t V 
0 

y(t) • X 
0 

0 

has one and Qnly one solution y e: . G([a. ,b] • .x) ; this so lution is 

.. 

• 

• 
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given by 

(p) Y(t) = R(t,t
0

)x + r: R(t,o)df(cr) 
0 

and depends continuously on x, f and K. 

III. We have 

(R*) R(t,s) = IX+ J:R(t,cr).d
0 

.K(cr,s) for all s,te:[a,b]. 

IV. The mapping that to every KE G~
0 

associates 

its resolvent R Guo E I is a bicontinuous (non linear) 

bijection from onto Guo 
I • (see [HJ , III. 1. S). 

Theorem 5 . 4 generalizes results o f Mac-Nerney proved 

for the e ·quation (L) (see the comments made after Theorem 6.3). 

An analogous theorem was proved for equation (K) by Hinton, 

[Hi], under the hypothesis o f bounded variation for K 

(instead of bounded semivariation) but allowing certain types 

of discontinuity in the second variable (see (Hi], the 

definition of the class F on p. 318, and his Theorem 3.1). 

The techniques used . in the proofs in [M 1] and [Hi] are 
.. 

completely different fr om ours and do n o t e xtend to the c~se 

of functions of bounded semivariation . 

In Theorem 5.4 it i~ not diffi~ult to prove the existence 

of R satisfying * (R ); the r eally diffic~lt part however 

is the proof· that RE Guo and this is necessary for the 

integrals in (p) and (R*) to be defined, f or the proof that y 

given by (p) satisfies (K) and in the p roof o f IV. 
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The anal ogous of Theorem 5.4 is tr ue i f we replace Guo 
by its subspa ce Euo of continuous functions ( see [HJ, 
III.1.27), by it~ subspace Eco of funct i on s K that satisfy 

lim 
t-+t 1 

for every [a , b] , 

(see [H], III . 1 ,30 ) , by the cor respondin g spaces GBVuo, CBVuo, 
CBVco of functi ons o f bounded var iatfon (see ( HJ, p. 114 
remark 9) etc . 

. . 
§6 . We ·wil l no w particularize -the orem 5.4 to the 

equation ( L) , l.e., we suppos e t hat K(t,a) m A(o) (more 
precisely, K(t,o) = A(cr) - A(t), since K(t,t) • O) ; if we take 
then equa t i on ( K) for t and s, by subtrac ti on we obtain ' • 

(L) y(t) · - y(s) + r:dA(cr).y(cr ) = f (t) - f(s) for ·' ail s,te[a,~ 

Property (SVuo) fo r K imp l ies that A: [a, b] -+ L(X) 
satisfies 

(SV 0
) limSV [ s -o,s+o][A] ,;Q for eve ry sE[a,b]. 04-0 

6,1. If A: [a,b] -+ L(X ,Y) satisfies (SV0
) _, then A 

is a continuous functi on o f b ounded semivariation. 

: We ign ore if r ec i p~pcally eyery con tinuous func tion 
A e: SV(fa,b] ,L(X,Y)). sat i sf i es (SV0

) ; thi s is true if Y is 
reflexiv e or, more generally, weakly sequentially c omplete. 

We fix n otJ _a po int O € [ a ,b] and wri~e A E AO if 
A: [a,b] -+ L(X) . satis fi e s (SV0 ) and if A( O) • Q; 

• 
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6.2. A0 is a Banach s pace when endowed with the norm 

For· functions R: . [a,bJ x [a,b] -+- L(X) le.t (SV ) , 
uo 

(SV) and (SV) denote the analogous for the firs~ variable, 
0 . • .. C ' 

of the properties (SVu0
), (SV 0

) and (SVc) in the second 

variable. We say that R is harmonic, or an harmonic operator, 

w~ wr-ite R E H = H( [a,b] x [a,bJ ,L(X)), if R s-atisfies 

UO C: • · 
(SV ) -, (SV ) , . (SV } , (SV J and 

UO C 

(o) R(t,t) = IX, R(t,cr) .R(cr,s) = R(t,s) for all t,s,oe:[a,b]. 

We denote by Hc o the set H with the topology induced 

by Guo (see 5.2) ; analogous ; y we define H • co . 

Theorem 6.3. A. Given A e: A0 we have 

I. There is one and only one Re: H, the resolvent of 

(L) or A, such that 

R(t,s) = R(z;,s) - JtdA(a).R(cr ,s) for all s _,l;,t e: [a,b]. 
z; 

II. For every f E G([a , b],X) and x e: X the equat.fon 

(L) has one and only one solution y E .,G ([a,_b] , .X) such that: 

y(s) = x; this solution is given by 

~ ' I • 

y(t ) = R(t,s)x + J:R(f,~)df(cr) 

and depends continuously on x, f and A. 

I I I • W,e. ha Ve 
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R ( t , s ) = R ( t , a ) + J: R ( t , I; ) . dA ( I; ) f or a 11 s , a , t E [ a , b] • 

IV . We h ave 

· rO A(t ) • d R(cr, s ). R(s,cr) 
(J· 

fo r a ny s E [a, b]. 
' t · • .' 

B·. • If R: -(a,b] X [a , b] -+. L(X) satisfies 

(SV) 
0 

then -R 'E H ·and R is the resolvent of A 

C • On H the topologies of · 11c o and H ~ -- co 

(o) and -
given in 

coincide 

IV. 

and the mapping that t o every A E A-0 . a s s o.c i at es its resolvent 

R e: H is a bicontinuo us ( nonlinear) bijection from 

(See [H) , Il:I.2.1, I II. 2 .2 and III.2.3) .• 

A­o onto H. 

Parts A a nd B o f Theorem 6. 3 ext end t o the c a se o f 

bounded semivariation, the Theorems 3.1 and 3.3 of Mac-Nerney , 

[M
1
], formulat ed f or the cas e where A i s a continuous 

function of bound e d v a riation ; see als o [w]. 

§7. We will now look fo r solutions y of (K) that 

satisfy an equation 

(F) F [y] ::a c 

where F E L[G ([a, b] ,X) , Y] ; ( F) is called a linear constraint. 

Example s o f lin ear constraints: 

1. Initial conditi ons : we take Y "'X and i;; E: [a ,b]; 

2. Boundary cond itions: we t ake Y = X and 

.. 

• 
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F[y] = a.y(a) + 13.y(b) where a , S £ L(X). 

3. Periodicity conditions ~ Theorem 5.4 extends to open 

intervals ] a, b [ (see [H]' P• 114 remark 10); we take 

] a,b [ = IR' the locally convex space y -= G(Ul,X) and we give 

p > 0 (the period) ; we define F[y] (t) "' y(t+p)-y(t), t e: IR. 

4 •. Left discontinuity: we take · Y = x2 , r; e: ]a,b] and· 

F[y] = {y(T;;),y(I;_)). 

5. Multiple point cpndition or the Nicoletti problem: 

we give and 

6. Integ r a l c ond.i t ions : W£ give Ct. £ SV([a,b] ,L(X,Y)) 

J~ •. : 

and F (y] = det. ( t) . y ( t) . 
a 

7. Interface conditions : we give I'; e: ] a, b[ and 

8. Integr a l equations : we give Y = C(K,Z) and 

A E C
0

svu(K x [a pb] ,L(Y. , Z)) (see Theorem 4.2) ; 
o b 

F[y] (t) = J; da A ( t,,a) .y(a), t € K .. 

A _, 

§8. We cons i de r t he syste m (K), (F) and we sup~ose that 

K e: Euo ( s e e the . end o f §5 ). ; h e nc e the res o lvent R of (K) 
0 

• • Eu o sat1sf1es Re: 
1 :?.nd is ther efore a cont i_nuous fiin-c .. tion. For . 

every s £ [a,b] we def ine F [R
8

] £ L(X , Y) by _ F[R_Jx=FfR
8
x], 

where x £ X (R
8

x dertot !: s t h e fun ct ion t e: [a,b] ,-....- R(t,s)x_ i;: X) ~ ·.· 

By Theorem 4. 1, to F E L[G ( [ a pb] , X) ,Y] corresponds a function 
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a e: SV ([a,b] ,L(X , Y)) such that 0 f or every g e: C([a,b] ,X) 
b 

g £ C([a,b] ,L(X)) we have F[gJ • j ad~(t).g(t) (see 3.2) ; 

'hence 

8 . 1 . For every s £ [a,b] we have 

F[R
8
J = r:da(t).R(t,s) £ L(X,Y

0
) 

where Y
0 

.. F[K-1 (0)] = {F[yJ e: Y IK[y] .,. O, y E C([a,b],x)} 

and K[y] • f is an abridged way of writing (K). 

We define J(s) =- F[R J , s e: [a, b]. s 

or 

8.2. J : [ a , b] -+ L(X,Y) satisfies (SV 0
) (see [H], III.3 . 3) . 

. ~. In t he particular instance of the equation ' (L), J 

satisfies the adjoint equation 

J(t) - J(s) - J: J(a) . dA(cr) = 0, s, t £ [a , bJ 

(see [HJ, III. ·3 5). 

It is no t difficult t o prove the 

Theorem 8.4. The following properties are e quivalent: 

(i) y • 0 is the only solution of the system 

K[y] • O,' F(y] .. O. 

,· .. 
(ii) For eve ry c E Y

0 
the s y stem K[y] • 0, F[y] e1 c 

has one and only one solution. 

(i i i) 

bij~ctive. 

The mapping is 

• 



171. 

(iv) J(t ) : x · -+ Y is bi j ective (continuous but not 0 0 

bicontinuous in general) (see [HJ, III.3.6). 

From now on we suppose that the equivalellt p-roperties of 

Theore~ 8.4 are satisfied by the system (K), (F ) . 

8. 5. The following properties are equivalent : 

(a) The solution ye of K[ y] "' 0, F[y] • c depends 

continuously· on C E: y • 
0 

(b) 

(c) 

The operator 

Y is closed in Y. 
0 

(see [H], III.3.30). 

is continuous. 

We wil l now l ook for a Gr e en functi on o f the system (K) , 

(F), i.e., a functi on 

G: [a , b] x [a , b}-+ L(X,Y) 

such that the solution of K[y] ,. g, F[y] "' O, where 

g e; C([a,b] ,X) , is given by 

y(t) • fbG(t ~s).dg(s) 
a 

We will proceed in a heuristic way to find the Green 

function and see the properties we need in order to justify our 

procedure. 

Let y be the solution o f the· system K[y] = g, 

F[y] = O; by (p) of Theorem 5.4 we have 

y(t) - R(t,t ) .y(t )+Jt R(t ,cr)dg(cr ) 
0 0 t 

0 



and if we app ly F to this equality we get ! • . 

o == J ( t 
O

) y ( t ~ ) • + F (J: R ( t , o) d g ( o-)} 
t 0 
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i.e. ,· y( t . ): .. - 0 .. ~, J(~.,)-
1
F[L~Jl;{t ,o) dg (.o)) : i'f we replace this in 

the equation for - ,y we obtatn 

t 
j(t)• R(t,t0).J(t0 )-~.F[f~

0
R(t~a)~g(a)) + f tt R( t,cr) dg(o) 

0 

We wr.i-t'e.'- -J{t). • R(t,t ).J(t · )-l e: L(Y ,X) and take the 0 0 0 

J: o - r: -Jbt 
decomposition .,, - ., 

0 

y(t) •J ( t) {F ((~c~· .. ~) dg(O} ) -Fu: R (t,o) d g (O)) }+ f: R( t , o ) dg(u) • 
0 0 

• J(t){r:da(s ) [ J;R(t ,o)dg (o)J-f:da(t)[f: R( t ,o)dg(c))}+f:R(t,o)dg(o) , 
0 0 

At this p o int in orde r to proceed , the f ormula of D.iricnlet 
and the Theorem of Bray proved in chapter II o f [HJ (II.1.10, 

II.1,1 and II,2.4) are essent i al; they assure , respectively, that 
we have 

r:da(s)[J:R(t ,o) dg(o )] 

J:da(~ )(J:R ( ~ ,a) dg (a)) 
0 

= f :(r:da (~). R( ~ , a ))dg(a ) 

=·J: [ J : d~ ( ~) . R( ~,a) ) ds (o) 
0 

and by the definition o f J (o) th e last i ntegral is equal t o I: J(a)dg(a) ; hence we have 

y(:). Y(t){f:lr: da(S} ,R(t ,o) ) dg (o)-r : J ( o) d g(o)}+J: R(t , o)dg(o). 
0 0 

We cannot put J(t) under si gn o f int egrati on s i nce J (t) is 
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only define d on y 
0 

and under the sign of integration we have 

elements of Y; howe~er if we make the additional hypothesis 

that Y = Y w~ere 
a- . o ' 

b 
Y = {J. da·(t) .f(t)j f £ G([a»b] ,X)} 

a a 

then th~ -Green function 

i s well define d and it is immediate that we have 

b 
y ( t) = faG(t,s)dg(s). 

8.6. For the e quation (L) we have 

R(t,s) = J(t ) - 1 .J(s) and J(t) = J(t)-l 

(see [HJ , IIl.3.7). 

Hence f or the problem (L), ( F ) the Gr e en funct i on teduces 

to 

The heuristic procedure above may be complete ly justified 

and generalized and leads u s t o the foll owing 

Theorem 8.7 . If K and F sa t i s fy the e quivalent hypo thesis 

o f Theorem 8 . 4 and if Y = Y we have 
a o ---

A. Th e s y stem K[y] = g 1 F[y] = c has a solut i on 

y e: C( [a,b] ,X) i f and only if (g ,c) € C([a ,~, X) x Y ; then 
0 --
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this s olut ion i s g i ven by 

y(t) C J (t) c + r:G (t , s)dg ( s ) 

and {.!2.!_ - C fi x ed) the map ping g~y is c ontinu ous . 

B. The system K[y] = f, F [ y] • C has a solution 

y e: G([a,b],x) if and only if C - F[f] e:: y 
o p 

then this solution 

is given hX 

y(t) • f(t) + J(t) [ c-F( f) J - f :G(t, s )d
8
(J: d 0K(s, o ).f (o)) ; 

- 0 

the mapp i n g f e:: G ( [ a , b] , X) t-+ GK ( f) e:: C ( [ a , b] , X) is 

continuous p wher e 

GK( f)(t ) = J:G(t , s)d 8 [J: d aK(s , o ).f(o ) ) 
0 

( s e e [H] , III . 3 . 28 j I I I. 3 .30 a nd I I I ~J .31). 

Th e e x i s tence o f a Gr e en functi o n s a ti s f ying A of 

Theorem 8 . 7 i mp l i e s t h a t 

know if it i mpli es t ha t 

a. e: SV ( [a , b] , L ( X, Y )) ; we d o not 
(J 0 

y = y . 
a. 0 

Th e Green funct i on i s cha r ac ter i z ed in the f o llowing 

theorem. 

Theo rem 8.8 . The Green func ti on 

G: [a,b] x [a,b] + L ( X) 

has the f o l l owing p r ope rti e s : 

r t 
G (t ) -G (t )+j d,,.K(t ~cr ) . G ( o )=-[- Y(s-t)+Y(s - t ))Ix ; $ , 5 0 t V 5 0 

0 

• 
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-t J6
~t -G (s) + aG (a).dcrK(cr , s) • J(t).o(s) 

where G(t ,a) _a G(t ,cr)+Y(cr-t)R(t,cr)+Y(cr-t
0

) [J(t) .J(cr)-R{t,cr)]; 

(G3) For every s e: [a,b], G is continuous for 
s 

(G4) sup 
a<t<b 

SV [Gt] < co and G(t,b) = 0, 

a < t ~ b, G(i.i) = -IX; (see [H] • III.3.29). 

says that G 
s satisfies !!_K[G ] = 

dt s 

sense of the Theory of Distributions; by Theorem 

(G1 ) determine the Green function G. 

G{ t; a) = 0 

c5 ( s) , in 

8.7 (G) 
0 

In the case of the equation (L), (G2) reduces to 

(G 2 ) G(t,s)+Y(s-t)R(t,s)-f:[G(t,cr)+Y(cr-t)R(t,cr)] .dA(cr) • 

-1 = J(t) . cx(s). 

t~s; 

for 

the 

and 

We mention again that all results of §2 to §8 may be 

extended to open intervals ]a,b[ and Y a separated 

sequentially complete locally convex topological vector space 

(see [HJ). For concrete examples see [PJ, p. 146 to 150. 

§9. In the preceding§§ we presented our main results 

from [HJ~ Our students generalized many of these results and 

are studing other questions related to them. 

For instanc e , in [s] Maria lgnez Souza extended 

Theorem 6,3 to the case where A allows discontinuit~es; her 

results generalize theorems of Hildebrandt, [H-ie] , proved 

under the restriction of bounded variation. M. I . de Souza is 
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now trying to gen e ral i z e Theo r e m 5 .4 in the same way. 

In [c] , Carmen Silv ia Car dassi prov ed that the existence 
3K • cl K of the der i vativ es at or as f o r K i n severa l different 

senses,, impl~~~ t h e:_·existe'nce o f' or with the 

corresponding mea~ing. The existence of and of £' implies 

then that (p) in The o~e~ ,.4 may be written as 

y(t) = R(t,t )x+.Jt R(t,O') .f' (O')dcr, 
0 t 

0 

and that there exists 

y' (t) == ~!<t~t
0

):, + f ' (:t) + J: ! ~(t, cr )f(cr)dcr. 

0 

aK • The existence of. as i npl ies t he differentiability o f y with 

respect t o t 
0 

~Rt (t, t ) x - R (t,t ) .£ 1 ( t ). a o o O 0 

In [He] Sar a Zisel Hers c owicz studies classes of 

functions asso c iate d by the Ri e maun - Stieltjes integral (see §2 , 

of [H-OP]) .~nd in particu l ar gives a complete proof of the 

Theorem 2.1 mention e d i n [H-OP] . Ga ldino Ces a r da Rocha Filho 

in [R2] proves ::hat ther e a r c o the r 11 homoeeneous" classes (i . e., 

spaces of functions s table und e r c e rt a in g r oups of transfo~-mations 

of [a, b] ) bes ides thos e g iven i n The or em 2 - 1 o f [H- OP] . He 

does also a careful! anal ysis of ass ocia t ed classes. 

In [H-DS] we pr ov e th e f ormuL\ s of Dir ichlet and of 

substitution und e r di ffe r ent hypo thes i s t hen those of chapter II 

of [~ and for different types o f i ~ tegra l s. We .also study th~ 

• 

• 
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. . 
• class· of integrab le funct i ons that satisfy the Darboux 

criterium of inte g~ab ility. 

In [R
1J _ Galdino Ces_ar da Rocha Filho studies 

axiomatically different generalizations (in the sense of (H-ti]) 

df the Riemanri-Stieltjes ihte gr~i (see §12 of [H-0~) , in 

particuiar he proves that for these genera liza tions it is 

impossible to keep simultaneously all basic properties of the 

us~al Riemann-Stieltjes integral. 

Samy Elias Arbex is working in problems related to VI 

of §10. Josi Carlos Fernande z de Olive ira investigates ~certain 

nonlinear functional differential equations (see III of §10) and 

is relating them t o questions in dynamical systems. 

• §10. In [H-OP] we gave some 80 open problems related to 

our work. The follo~ing problems have by now been partially or 

completely solved : (2.1), (2.2), (2 . 3) , (6.5) , (6.6), (7 . 1), 

(7.7), (7.8), (8.1) and (12.1). 

We sug gest now some directions of research we consider · 

particut~rly interesting a nd eromising: 

I. •Non linear equat ians·. We consider the equation 

. J t y(t) - y(t ) + daK(t,o) .y(o ) "' f[t,y(t)]-f[t , y(t >] .. 0 t O 0 
0 

By Theorem 5.4 every solution of this equation is a solution . . . 

of the Ha~merstein equat ~on 

y(t) ""R(t,t ).y(t )+Jt R(t,a)d0 f(o 9 y(a)]. 
0 0 t 

0 
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~ If y a~so ha~ t o satis fy a line ar constraint ( F ) then 

by The o rem 8.7 we have to s o lve the _equati on 

; ' 
y ( t) = J(t)c + JbG(t, cr )d f[cr ,y(cr)] . 

a . cr 

, ... . ·: .• For some partial results in the study of these equations 
see [lr-IME], p. 121; see .also (H-OP] ~ problems_ (11.1) to (11.3). 

II. Abstract differential equations a~tl partial 

differential equations . See [H..:.·oPJ , · problems •(ll.6) and (11.7). 
. ' 

III. Functional differential equations~ We consider 

e quations of the type 

( K) y ( t) -y ( s ) + J b d O [K( t , cr ) - K ( s , er)] • y ( a ) = t [ t p y _( t)] - f [ s , y ( s ) ] , 
a 

eventually with a linear c onstraint. (K) c ontains as 

particular instances the e quati ons {K),· (L), diff~rential 

equations with deviating argument etc . See - [H- OP] , ~roblems 
(9.2) to (9.5) . 

IV. Peri odic so lutions, bounded solutions, quasiperiodic 
solutions. In the cas e where Ja ,b[,.; JR it ' 'is obviously very 
important to find solutions with the se -p r operties·, speC'ia l ·ly in 

the non linear ~aie . For Some ··r~sults in this directions see 

[H•lME], ip. f2~ ; see also [H-OP], probl e ms (8.4) to (8.9) and 
(9.1). 

V. Non linear constraints. This is - ~nother · important 
direci:ion of research ; we l ook f o r s o luti ons'. ··y-" · d f• (L), (K) or 

• 
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(K) such. that ~ [Y] = c where ~ is a continuous (non linear) 

mapping from G((a,b] ,X) 

hypothesis. 

into Y, satisfying adequate 

VI. Extensions of existing results to a Banach space and 

linear constraints context. There are several groups of 

mitb~maticians working in questions related to those we exposed 

here. Mostly they work in X ~ Rn and even if they work in 

Banach spaces the linear constraints they consider are of a 

particular types i.e., defined only by f~nctions of bounded 

variation. It would be very interesting t o extend their results 

to Banach spaces and to general linear constraints. 

We mention specially the following groups: 

L The· russian mathematicians that work at Tambov : 

Rachmatulina~ Maximov~ Azhelev and others. They work mainly on 

equations of type (K) ; see [Ma] and the references given there. 

2. In Czechoslovakia there are Kurzw~il, T.rd;, Vejvodaf 

Schwabik and others ; see [T] and the references given there. 

3. In the United States there are Krall, Brown; Bryan, 

Green and othets ; se~ [B-rj and the . references giv~n there. 
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