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Abstract

®

CrossMark

We analyze in detail the creation of fermions and bosons from a vacuum by an electric field that
exponentialy decreases in time. In our calculations, we use quantum electrodynamics (QED) and
mainly consider the particle creation effect in a homogeneous electric field. To this end, we find
complete sets of exact solutions of the d-dimensional Dirac equation in the exponentially
decreasing electric field, and we use them to calculate all the characteristics of the effect, and
specifically the total number of created particles and the probability that a vacuum will remain a
vacuum. Note that the latter quantities were derived in the case under consideration for the first
time. All possible asymptotic regimes are discussed in detail. In addition, switching on and

switching off effects are studied.

Keywords: vacuum instability, quantum electrodynamics, external fields

1. Introduction

Particle creation from a vacuum by strong external electro-
magnetic fields is an important nonperturbative effect, the
theoretical study of which has a long history, as seen in [1-7].
To be observable, the effect needs very strong electric fields
in magnitudes compared with the Schwinger critical field,
E. = m2c3/e}% ~ 1.3 X 10'°V - cm™!. However, recent pro-
gress in laser physics allows one to hope that the non-
perturbative regime of pair production may be reached in the
near future (see [8] for a review). Electron—hole pair creation
from the vacuum also becomes observable in the laboratory
effect in graphene physics, an area that is currently under
intense development [9, 10]. In particular, this effect is crucial
for understanding the conductivity of graphene, especially in
the so-called nonlinear regime, as seen in [11]. Particle
creation from the vacuum by external electric and gravita-
tional backgrounds also plays an important role in cosmology
and astrophysics [6].

Note that particle creation from the vacuum by external
fields is a nonperturbative effect, and its calculation
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essentially depends on the structure of the external fields.
Sometimes calculations can be done in the framework of
relativistic quantum mechanics, and sometimes using semi-
classical and numerical methods (see [0, 8, 12] for a review).
The vast majority of analytic works in quantum electro-
dynamics (QED) are based on the worldline and instanton
formalisms, rather than on solving the Dirac equation (for
example, see [13, 14] and references therein). In fact, in all
these cases, the authors calculate the one-loop effective
action, whose imaginary part is related to the probability that
a vacuum will remain a vacuum. However, in those cases,
when the semiclassical approximation does not work, the
most convincing consideration is formulated in the frame-
work of quantum field theory (QFT), in particular, in the
framework of QED (see [3, 4, 7]). In the latter approach,
nonperturbative calculations are based on the existence of
exact solutions of the Dirac equation with the corresponding
external electromagnetic field. In fact, until now, there have
only been a few known exactly solvable cases for either time-
dependent homogeneous or constant inhomogeneous electric
fields. One of them is related to the constant uniform electric
field [1]. There are more realistic examples that are related to
the so-called adiabatic electric field E (t) = E cosh™2(t/a)
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[15] (see also [16]) and the T-constant electric field [17-19],
which corresponds to a constant electric field that turns on
and off at definite time instants, ¢, and f,, (f, — #, = T being
constant inside of the time interval, T. There is also the case
related to a periodic alternating electric field [20], and the
number of a constant inhomogeneous electric fields of the
similar forms where time, ¢, is replaced by the spatial coor-
dinate, x. To complete the picture, we note that exact solu-
tions of the Dirac equation exist, with some electric fields
satisfying more complicated symmetries, as with potentials
given in the light-cone variables (see [21] and [22]). The
existence of exactly solvable cases of particle creation is
extremely important both for deep understanding of QFT in
general and for studying quantum vacuum effects in the
corresponding external fields.

In this article, we present a new, exactly solvable case of
particle creation that corresponds to the so-called T-expo-
nentially decreasing in time electric field, which switches on
at the time instant f;, switches off at the time instant #,
(t — 1 =T), and within the time interval, T has the form
E,(t) = Ee U= where k, and E are some positive con-
stants. In particular, this field presents the example of an
exponentially decaying electric field when 7, — oo. Techni-
cally, this exactly solvable case differs from all the previously
mentioned cases because of an asymmetrical asymptotic
behavior of the external electric field. Consideration of such a
case has an interesting physical motivation. The correspond-
ing external electric field can be treated as one that is created
by an external current, which switches on fast enough, and
then slowly switches off (decreases) because of dissipation
processes. One can demonstrate that under certain conditions,
the main contribution to particle creation is due to the
decreasing part of the electric field, whereas the contribution
from the increasing part of the field is relatively small. The
qualitative difference in the asymptotic behavior of the
external electric field under consideration allows one to study
the role of switching on and switching off for an electric field.
From the beginning, we only consider general (d = D + 1)
-dimensional Minkowski space-time, so we can use the case
D = 3 for describing high-energy effects, while the case
D =1, 2,3could be adequate for condensed-matter pro-
blems. For completeness, the case of scalar particles is con-
sidered too.

Note that the differential mean number of particles cre-
ated by a kind of exponentially decaying electric field was
calculated previously in [23] in the framework of some
semiclassical considerations, and in [24] using the Dirac-
Heisenberg-Wigner function. However, the authors of the
latter work did not present any analysis of how their results
depend on the problem parameters in the case of a strong
field; in fact, they studied the weak field limit only.

As was already said, in our calculations, we use the
general theory of [3, 4] and consider the particle creation
effect in a homogeneous electric field [18] (see the appendix
for some basic elements). To this end, we find complete sets
of exact solutions of the Dirac and Klein-Gordon equations in
the T-exponentially decreasing electric field, and we use them

to calculate all the characteristics of the effect, and specifi-
cally the differential mean number of particles created, total
number of created particles, and the probability that a vacuum
will remain a vacuum. Note that the latter quantities were
derived in the case under consideration for the first time.
Using these solutions, we analyze particle creation in the case
of the exponentially decaying electric field. All possible
asymptotic regimes are discussed in detail. In addition,
switching-on and switching-off effects are studied.

2. Exponentially decreasing electric field

We consider the Dirac equation6 in (d = D + 1)-dimensional
Minkowski space, with an external electromagnetic field
given by potentials A, (x),

(7B m)y ) =0, B=p —qA,(). p, =i0,. 2.1)

Here, y (x) is a 2/9/?l-.component spinor ([d/2] stands for the
integer part of d/2), m is the particle mass, ¢ is the particle
charge (for the electron g = —e, with e > 0 being the abso-

lute value of the electron charge),
x=u"=u%x), x=(), x°=1; the Greek and Latin
indexes assume values g =0, 1..,D and i=1, ..., D,

respectively, and y-matrices satisfy the standard antic-
ommutation relations:

[}/”, y”]+ =2y, Ny = diag(1, -1, ..., =1).

Using the Ansatz y (x) = (y”ﬁH + m)d)(x), one finds that
the spinor, ¢ (x), satisfies the following equation:

(132 —m - gaﬂ”FMD)d)(x) =0,

ot = é[y”, 7], Fu=0,A, — 0,A,. 2.2)

In what follows, we consider the so-called T-exponen-
tially decreasing electric field with a constant direction along
the x axis (see figure 1). This field switches on at #; and
switches off at f,, being nonzero within the time interval,
T =1t —t; >0, and zero outside of it,

0, tel= (-0, 1)

Ec(t)y=Eqeft=n_ eIl =1, t,],
0, t € Il = (#, +o0)

ko> 0. (2.3)

We choose the corresponding potentials as A*(¢) = 6/'A, (¢)
with only one nonzero component,

E 1, tel
A () = —q e fol=m ¢ 1. 2.4)
lew?, rem

We admit that the switching off can occur in the remote future
such that #, can be infinite, £, = +o0, under the condition
that ¢, remains finite.

% From this section and in what follows, we consider the system of units,

fi = ¢ = 1, and the fine structure constant is a = €2.
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Figure 1. The exponentially decreasing electric field and its potential.

Solving equation (2.2), we will use a set of constant
orthonormalized spinors, v 4,

il — —
VsoVs.o' = 5&,5,50,6,9 VVT = [I’

with s = +1, and ¢ = (o, 02 505 0(d/2]-1)s oj = +1, such that

%o = sv;. For d > 4, the indices, o;, describe the spin
polarization, which is not coupled to the electric field, and
together with the additional index, s, they provide a suitable
parametrization of the solutions. Note that for d =2, 3 there is
only one spin degree of freedom, and the spinors are labeled
either by s +lorbys —1. Solutions of equation (2.2)
with the potential given by equation (2.4) can be found in the
form

BosoX) = @ (DEPXvy,, (2.5)

where scalar functions, ¢, ((7), satisfy the following second-
order differential equation

d2 2 2 )
[@ + [p)r - qAx(t)] +p,+m
+ isqE (1) |pp (1) = O, (2.6)
where p, is the transversal particle momentum,

p_L = (O’ st-~-’PD)~

Thus, in what follows, we are going to deal with two
complete sets of solutions of the Dirac equation (2.1) of the
following structure

Y4 () = (VB + m) spy 0 (0),

() = (B + m) %, (), @7

where spinors ., (x) and *¢,  (x) are given by

equation (2.5) with solutions g(pp,x(t) and g(pp’s (1), respec-
tively, satisfying equation (2.6), with initial or final conditions
that are specified in what follows. Here, we use n = (p, o) to
denote a complete set of quantum numbers of the Dirac spinor
for cases s = +lors —1. Note that for d > 4, the Dirac
spinors given by the choice of s +1 in (2.7) are linearly
dependent, with the spinors given by the choice of s —1.
Thus, one can form physically equivalent complete sets of the
Dirac spinors for both choices of parametrization. The algebra

of the y-matrices has two inequivalent representations in d =3

dimensions;the representations given by s = +1 and
—1 are associated with different fermion species.

Note that a formal reduction to the spinless case that

corresponds to the use of the Klein-Gordon equation instead

of the Dirac equation can be done by setting s = 0 in (2.6) and

Vs (r} = 1in (2.5). In this case, n = (p).

In the first region I and in the third region III, the
electric field is absent and equation (2.6) has plane wave
solutions g(pp’s(t) and g(pp’s(t), respectively, with an addi-
tional quantum number { = +, which satisfies simple dis-
persion relations

S =

1: @’ps(t) ~ e ipo (1)1

2
E
Po(t) = \/(p; - —|qk Ie"‘“"")) +pl +
0

L g, (1) ~ e ),

2.8)

where p! = xp andx = sgn(gE). Here, the quantum num-
bers, {, label particle/antiparticle states such that positive
(¢ = +)/megative ({ = —) values define particle/antiparticle
states, respectively.
In the second region II, it is convenient to introduce a
new variable, 5, and represent the functions ¢, ; as
— 2i |‘1E|e—ko(1—n)
2 9

y P (1) = 20 p, (),

wy = \[[)2 + m?.

Then the functions y, () satisfy the confluent hypergeo-

(2.9)

v=i—,

metric equation [25],
d? d
—+(c—n——a =0,
[77 i (c=m i ]}(p,s ()

with parameters

&+1/.
k

c:1+2y,a:l(l—xs)—
2 0

(2.10)

The complete set of solutions for this equation is formed by
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two linearly independent confluent hypergeometric functions:
@ (a, c;n) and 171_005(51 —c+1,2-c;n),
where

a(a + 1)77

b (a, c; —1+ R
(@, ¢ n) 1v cct1)2l

Thus, one can find the general solution of equation (2.6) in
time region II as the following linear superposition

@) =arp, (1) + aip, (1),
@, (1) = e n* D (a, c; ),

p,()=e "D —c+ 1,2 - c; ), 2.11)

where constants a; and a, are fixed by initial conditions.

Taking into account expressions (2.8) and (2.11), one can
construct orthonormalized solutions for the complete time
interval in the following form

Pp.s (1)

g(_‘i) _CePot)(t=n) + g<+|C) +Ce—iﬂo(11)(f—t1),
- el (2.12)
ag @\ () + af @, (1), t€T,

CCC_IZPQ ([2)(1_&)’ te 111

where constants ¢C and (C are defined by normalization
conditions for the Dirac spinors (A.4),

-1
(C= [2Vpo(f1)Pg(T1)] .

‘C= [2Vpo(t2)Pg (fz)]_m,

pe ()= po®) = &s[p - aA. D], (2.13)

and p,(t) is given by equation (2.8). Note that notation
(g‘lg) corresponds to definition (A.6) from the appendix.

Coefficients af, af, g ( |¢) and g(+|C) are specified by the
following gluing conditions:

+(pP»Y(tk - 0) = +(pp,x(tk + 0)’
+ — 9. T
0: (pp,s(t) ‘t:t/‘—o = at %,X(I) t=1k+0,
k=1,2. (2.14)

One can see from the consideration given in the appendix
that the probability of a vacuum to remain a vacuum, the
probability of a particle scattering, a pair creation, and a pair
annihilation can be expressed via the differential mean
number of particles created from vacuum N,, given by
equation (A.9). It follows that one can describe a vacuum
instability for the case under consideration using the quantity

Now = |81 (2.15)

only. Then it is enough to consider only the case { = + in

equation (2.12). Using conditions (2.14), we obtain

itCp, (1
a1+ _ Po( 2)

Po(tz)

———f (1), ———hH (),

where W is the corresponding Wronskian of the solutions
[25],

W= (Pl(t) §02(t) 402(1) 401(t)—21wo,
and
k()i’] d
=11 2.1
Jia [ + O(t)dﬂ]fﬂlz(t) (2.16)

We finally find that the coefficient g(_|+) takes the form

[/ ()f (12)

46()0 Py (tZ)

—Hf (1) ].

g(_|+) _ 1 \/Po(tz)P_(tl)Po(tl)

(2.17)

One can demonstrate that in the case of a sufficiently long
duration of the exponential electric field, when r, — +oco0 and
Do () (2 — 1) > 1, the differential mean numbers, given by
expression (2.17), coincide in the leading-order term
approximation with the result obtained in [24].

Taking into account that the normalization constants, <c
and C, for the scalar case are

172 12

CC=[2Vp () |7, C=[2Vpp() ]

we find that in this case, the coefficient g(_|+) has the fol-
lowing form

§(-1) = = Jra@pa [ £ (s (1)
0

- h(fi)], (2.18)

where f; , (¢) are given by equation (2.16) at s=0. The dif-
ferential mean number of created scalar particles is expressed
via g(_I*) (2.18) as N, = |g M)

Expression (2.17) does not depend on spin polarization
parameters, ¢;. That is why all the probabilities and the mean
number do not depend on ¢}, so that the total (summed over
all ¢;) probabilities and the mean number are Jg ) times
greater than the corresponding differential quantities. Here,
Juay = 22171 is the number of spin degrees of freedom. For
example, the total number of particles created with a given
momentum, p, is

ZNp,a =Ja |g(-I+)\2- (2.19)

To get the total number, N, of created particles, one has to
sum over the spin projections, using equation (2.19), and then
over the momenta. The latter sum can be easily transformed
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into an integral,
N=EENo= o fapfscf.
P o

where V is (d — 1)-dimensional spatial volume.

The expression above depends essentially on the time
interval of the field duration, T = t, — t;. Then the effect of
pair creation depends on two dimensionless parameters, ko7

Via
(Zﬂ)d_l

(2.20)

and |gE| / koz. For k, fixed, the first allows one to analyze the
characteristics with respect to the time duration, T, of the
electric field, while the second also provides information on
the maximum magnitude of the field, |E|, for &k, fixed.

3. Exponentially decaying strong field

3.1. Differential quantities

Let us consider the exponentially decaying electric field given
by equation (2.4), with

E
@e‘kﬂ < 1; (3.1)
0
when its initial magnitude is sufficiently large,
E
@ > Ky, Ky max| 22 1|, (3.2)
ko kO

where Ky is a given number. We stress that condition (3.2)
corresponds to the most interesting case of a strong electric
field where a perturbative consideration is not applicable.

In this case, using the asymptotics of the confluent
hypergeometric functions [25], we first find from expression
(2.17) that the differential mean numbers of created fermions
are:

)sinh[ﬂ<w0 +p, )/ko] .

Npo = efilonr}
’ Sinh(ZJTa)()/ko)

(3.3)

We note that this case is not analyzed in [24], the only case
when |gE| — 0 is considered there. Under the same condition,
the differential mean numbers of created scalar bosons follow
from equation (2.18). They are

Ny = e_kl()(wo—p;)COShI;n.(wO +p )/ko].
sinh (27w ko)

(3.4)

Note that if the kinetic energy of final particles is big enough,

qu—El < 1, the problem can be considered perturbatively. In
0@

this case, the weak time-dependent external field violates the
vacuum very little, and the corresponding pair creation can be
neglected in comparison with the main contribution given by
equations (3.3) and (3.4), which is formed in the momentum
range (3.2).

The difference in distributions (3.3) and (3.4) that is
stipulated by the statistics is maximal for the fast varying field

when wo/ko < 1. Then

1 . k
Noo v [ 14 2| N o 20
2 (ON) 2777&)0

(3.5)

In the spinless case, the mean numbers, N,given by
equation (3.5) grow without limits. This is an indication of a
big back-reaction effect. Thus, we can suppose that for scalar
QED, the concept of the external field is limited by the
condition 2zm/ko 2 1. At the same time, in the case of spinor
QED, the mean number, N, ,, given by equation (3.5), is
limited by N, » < 1. This allows us to study fermion creation
for all possible parameters given by equation (3.2) by using
the external field concept.

It follows from equations (3.3) and (3.4) that for a large
negative longitudinal momentum,

p, <0,

p|/ko > K, (3.6)
where K, > 1 is a given number, the mean number of created
boson and fermion pairs is exponentially small.

In what follows, we show that the main contribution to
the total number of created fermions is due to the sufficiently
large positive longitudinal momenta, p/, from the range

Pl Jko> Ko, (3.7)

where it is assumed that Ky > K,. In this range, it follows
from equations (3.3) and (3.4) that

Npo = NB, N3 = e~is(00-2l) (3.8)

both for fermions and bosons, taking into account that for
bosons, N, = N;‘S. We see that les < 1. Note that
equation (3.8) holds true for any transversal energy,

Jm* + p?. In particular, if (p}; )2 > m? + p], distribution
(3.8) can be approximated as

3.9

. m* + p;
Ny =~ exp[—ﬂ:—l )

kop,

such that Ny* — 1 as p//kg = oco. If (p);)z S m?+ pi, then
distribution (3.8) can be approximated as

Nli)is < exp[—i—ﬂ(ﬁ — I)sz + pi]

0

(3.10)

We see that this expression is exponentially small in the

momentum range \/m> + p> /ko > p);/ko > K,.

The above analysis shows that maximum contribution to
the differential number of created fermions is provided by
large, positive longitudinal momenta, p/, given by expression
(3.9), with a relatively small transversal momentum, |p L‘.
Thus, taking the inequality (3.2) into account, we can con-
clude that the essential contribution to the total number of
created fermions is due to the longitudinal momenta, P;’ from
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the wide uniform range

K. <p /k0<|6]1(—|—Kf,

0

3.11)

where

lgE|/k§ > K., p. > m. (3.12)

Note that the contribution to the total number of created
particles from the relatively narrow momentum range of the
width K, is finite and of the order K, if N, < 1. For example,
we can use this estimation for the total number of created
fermions in the finite range of p. that is restricted by the
inequality

—K. < p.Jko < K. (3.13)

This contribution is much less than the contribution from a
very wide range (3.11). The same is true for bosons when
2zm/ko 2 1. That is why the contribution to the total number
of created fermions in the range (3.11) is the main contribu-
tion. The main contribution to the total number of created
bosons is due to the range (3.11) for the slowly decaying
electric field when 2zm/ky 2 1.

Note that if (a)o -, ) / ko > 1, Wentzel-Kramers—Bril-
louin approximation holds true for MN,,, given by
equation (3.8). In this domain, expression (3.8) coincides
exactly with an estimation obtained previously in [23] using
the semiclassical consideration, while our approximation (3.8)
is valid for any value of (a)o - p); ) / ko and our exact results,
given by equations (3.3) and (3.4), are quite different from the
semiclassical ones.

3.2. Total quantities

The obtained distribution, N, ’g( | plays the role of a
cut-off factor in the 1ntegra1 over momenta (2.20) for the total
number of created particles (for bosons J,) = 1). However,
for bosons, this result is valid only if the electric field decays
slowly enough, 2zm/ko 2 1. Then the total number of created
particles can be represented by its main contribution in the
range (3.11), as follows:

VI P
N~ AU / ~dp
(2”)(1— 1 pXmm

where N,® is given by equation (3.9) and

N, N = f dp,NZ, (3.14)

E
pmax — |q | _ ka(), min — kaO-

3.15
X k[) X ( )

Integrating over p, and taking into account that p| > m, we
find that the total number of created particles with a given
longitudinal momentum reads

am?

kop,

Ny~ (kop); )d/z_l exp( -

(3.16)

Using equation (3.16), we represent the integral (3.14) in
the form

Vi
v — (ko) YO, (3.17)
Q)1
where Y is the particular case of the integral
pxmax _
O T
p
)
X exp k—, , k=1,2, ... (3.18)
kop,

Taking into account that |gE| / ki > K s 2 K,, we obtain that
the integral (3.18) is independent of the given numbers, K,
and K,, in the leading-order term approximation. If m # 0,
then the integral (3.18) in this approximation can be expres-
sed via the incomplete gamma function as

dr2 2
Y<k>z(%) F(—g,k%), k=1,2,.... (3.19)
Tm q

Note that the representation (3.19) is suitable when the
electric field is weak enough, kzm?/|gE| > 1. In this case,
one can use the following asymptotics of the incomplete
gamma function,

) ) ) —d/2—1
r| =L k7| & exp| k2 || k2 . (3.20)
2 |qE]| lgE| )\  19E|

For the case of a strong field, when knm?/ lgE| < 1,
where the case of massless fermions is also included, we find
in the leading-order term approximation that

dr2
v o 2| [EI
d\ ko

Then the total number of particles created from the vacuum is

(3.21)

Vla) 2(lgEN™>
QoY= kod

Nstong

(3.22)

Finally, taking into account the above results, we can
represent the probability of a vacuum to remain a vacuum,
defined by equation (A.11), as

P = exp{—

where Y%+ is given by the integral (3.18) and can be
represented in the leading term approximation with the help
of equations (3.19) and (3.21), respectively. For the strong
field case, we find that the probability, P,, is determined by
the total number of created particles

i (_1)(1—K)k/2
(Zﬂ)d_lkz() (k + 1)d/2

ko)"’z‘lY<"“>},<3.23)

( 1)(1 K)k/2
Z ¢ (k+ 1P

One can see that the dependence of the total number of
particles created from the vacuum by the strong exponential
field on the field magnitude and space-time dimensions

vatrong =exp { _ﬂNStmné} (3.24)
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mimics the case of particle creation by a strong 7-constant
electric field, E (see [18]), for big T and with the identification
T= Z(kod)_l. This is due to the effect of saturation for the
distribution, N, — 1, in the wide uniform range of initial
longitudinal momentum, where there is a big increment of the
kinetic momentum, |gE|/kg and |gE| T, for both cases,
respectively.

Let us consider two strong T-exponential electric fields of
the same magnitude, E, but with distinct parameters, kél ) and
k{™ < k{P. Let them create from a vacuum the total number
of particles, N and NUD, respectively. One can see from
equation (3.22) that NYO > ND—that is, the electric field of
a longer, more effective duration creates many more pairs.
The total number of out-particles created from in-vacuum due
to a decreasing exponential field is the same as the total
number of particles created from a vacuum due to an
increasing exponential field, provided that the modulus of
potential difference is the same in both cases. Thus, we can
consider N as the total number of particles created from a
vacuum due to the increasing field. We see that if
k{™ < k§P, the main contribution to particle creation by an
external electric field that switches on fast enough and then
slowly decreases is due to its decreasing part, whereas the
contribution from the increasing part of the field is relatively
small. In particular, the exponentially decaying electric field
can be treated as if it is created by an external current that
switches on fast enough and then slowly switches off because
of dissipation processes. Thus, we see that the exponentially
decaying electric field under consideration allows one to
study the role of the switching-on and switching-off
processes.
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Appendix A. Pair creation in a homogeneous
electric field

Following general consideration in [18], in this appendix we
recall some basic elements of the generalized Furry repre-
sentation [3, 4, 7], which is used to describe vacuum
instability in a strong external time-dependent electric field.
For the particular case of a homogeneous electric field,
we assume that the potential, A;(¢) (A,(t) =0, u# 1), is
constant for t < #; and for ¢ > t,. Therefore, the initial (at
t < t;) and the final (at 7 > #,) vacua are vacuum states of in-
and out-free particles that correspond to the constant effective

potentials A;(#;) and A;(f;), respectively. During the time
interval, t, — f; = T, the quantum Dirac field interacts with the
time-dependent effective potential, A;(¢). In the general case,
the initial and final vacua are different. We introduce an initial
set of creation and annihilation operators, a,:r (in), a,(in), of in
-particles (electrons), and operators, b,f (in), b,(in), of in-anti-
particles (positrons), with the corresponding in-vacuum being
|0, in ). There is also a final set of creation and annihilation
operators, anT (out), a,(out), of out-electrons and operators, b,,T
(out), b,(out), of out-positrons, the corresponding out-
vacuum, being |0, out ). Thus, for any quantum number, n, we
have

a,(in)|0, in) = b, (in)|0, in) = 0,

a,(out) |0, out) = b, (out)|0, out) = 0. (A.1)

In both cases, we use n = (p, o) to denote complete sets of
quantum numbers that describe both in- and out-particles and
antiparticles. The in-operators and theout-operators obey the
canonical anticommutation relations. The above in- and out-
operators are defined by two decompositions of the quantum
Dirac field, ¥ (x), in the exact solutions of the Dirac equation,

¥ ()= Y[ anlin) () + b, (in) ;@) |
= Z[an(out) . (x) + b, (out) Y, (x)]. (A2)

Thus, the in-operators are associated with a complete ortho-
normal set of solutions, {le//n (x)} (we call it the in-set), of
equation (2.1), where { = + stays for electrons and { = —
for positrons. Their asymptotics at ¢ < #; are wave functions
of free particles in the presence of a constant electric poten-
tial, A{(#). The out-operators are associated with another
complete orthonormal out-set of solutions, {Q//n (x)} of
equation (2.1). Their asymptotics at r > f, are wave functions
of free particles in the presence of a constant electric poten-
tial, A; ().

The inner product between two solutions, y (x) and
v’ (x), of the Dirac equation on the 7-const hyperplane,

(ow) = [vi @w ), (A3)

is time-independent. Then, taking into account the structure
(2.7) and initial or final forms of the functions sy, (x) and gl/ln,
respectively, one finds the orthonormality relations:

(cvhs ) = duwdcen (Y W) = Suidee. (A

Here we apply the standard QFT volume regularization,
assuming that all the processes are confined in a big D
dimensional space box with the volume, V. In- and out-
solutions with given quantum numbers, n, are related by
linear transformations of the form

Y =g F) w0+ 8(_F) w.
a0 =g (o) w0 + 2(¢) W), (A.5)

where the coefficients, g, are defined via the inner products of



Phys. Scr. 90 (2015) 074005

T C Adorno et al

these sets,

(5%5' l//n‘) = 5n,n'g(g‘5'), g(<’|¢) = g(§|¢’)*.

These coefficients satisfy the unitarity relations, which follow
from the orthonormality relations (A.4), and can be expressed

(A.6)

in terms of two of them: g (+‘ +) and g(_‘ +). However, even
these coefficients are not completely independent,

() + [ )f =1

A linear canonical transformation (Bogolyubov trans-
formation) between in- and out-operators that can be derived
from equation (A.2) has the form

a,(out) = g(*|+)an(in) + g(*-)5 (in),
b, (out) = g(7|+)an(in) + g(7]-)b, (in).

(A7)

(A.8)

Then one can see that all the information about electron-
positron creation, annihilation, and scattering in an external
field can be extracted from the coefficients, g(gl‘:').

One of the most important quantities for the study of
particle creation is the differential mean number of created
particles, defined as the expectation value of an out number
operator with respect to the in-vacuum,

N, = (0, in|a, (out)a, (out)|0, in) = [g(-|H)|%.  (A.9)
It is equal to the mean number of particle-antiparticle pairs
created. The total number of created particles is obtained by
the summation over the quantum numbers, 7,

N= ZN,,.
n

(A.10)

The probability of a vacuum remaining a vacuum is defined
as

P, = |{0, out|0, in)? = exp{;cz In(1 - KNH)}, (A.11)

n

where ¥ = +1 for fermions and x = —1 for bosons. The
probability of the electron scattering, P (+|+),,and the
probability of a pair creation, P (— +|0),_, are, respectively,

P(+]+),. = KO, out|a,(out)a,(in)|0, in)|2

= 5n,n' #Rz,
I - K]vn
P (= +/0),., = [0, out|b,(out)a,(out)|0, in)|?
N,
= 6n.n ) (A.12)
1 — kN,

The probabilities for a positron scattering and a pair annihi-
lation are given by the same expressions, P(+|+) and
P (- +]0), respectively.
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