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Abstract

A measurement of off-shell Higgs boson production in the H* — ZZ — 4/ decay channel is
presented. The measurement uses 140 fb~! of proton—proton collisions at \/s = 13 TeV
collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous
result in this decay channel using the same dataset. The data analysis is performed using a
neural simulation-based inference method, which builds per-event likelihood ratios using neural
networks. The observed (expected) off-shell Higgs boson production signal strength in the

ZZ — 40 decay channel at 68% CL is 0.877013 (1.001(:02). The evidence for off-shell Higgs
boson production using the ZZ — 4/ decay channel has an observed (expected) significance of
2.50 (1.30). The expected result represents a significant improvement relative to that of the
previous analysis of the same dataset, which obtained an expected significance of 0.50. When
combined with the most recent ATLAS measurement in the ZZ — 2¢2v decay channel, the
evidence for off-shell Higgs boson production has an observed (expected) significance of 3.7¢
(2.40). The off-shell measurements are combined with the measurement of on-shell Higgs
boson production to obtain constraints on the Higgs boson total width. The observed (expected)
value of the Higgs boson width at 68% CL is 4.3737 (4.1737) MeV.

Supplementary material for this article is available online
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1. Introduction

The Higgs boson was observed in 2012 by the ATLAS [1] and
CMS [2] collaborations at the Large Hadron Collider (LHC).
Since then, a series of measurements were performed to estab-
lish the fundamental nature of this new particle. Measurements
of the spin [3, 4], mass [5-7], and couplings [8, 9] of the Higgs
boson have been performed in several decay channels. The
total width of the Higgs boson (I'y) in the Standard Model
(SM) is calculated to be 4.10 MeV [10], and is a particularly
challenging parameter to be measured. Direct measurements
of the Higgs boson lineshape are unable to reach the preci-
sion required to measure the Higgs boson width due to limited
detector resolution, O(1.5-3 GeV) [7, 11].

Due to the small total width, the differential cross-section
with respect to the four-lepton invariant mass do/dmy, in
the H— ZZ — 40 decay channel falls steeply for invariant
masses larger than the Higgs boson mass of 125GeV. Several
authors have pointed out that this differential cross-section
increases again at the kinematic threshold at twice the Z boson
pole mass mgy = 2my to a level that could be probed by the
LHC experiments [12—-14]. Similar kinematic thresholds can
be exploited at twice the pole mass of the W boson [15] and
of the top quark [16] in different production and decay chan-
nels. Both the ATLAS and CMS collaborations have recently
reported evidence for the production of off-shell Higgs
bosons using the H* — ZZ — 4¢ and H* — ZZ — 202v decay
channels [7, 17, 18].

Measurements of the Higgs boson production rate in
H — VV decay channels, where V = Z or W, are used to probe
the Higgs boson couplings to vector bosons and fermions.
These measurements depend on the Higgs boson total width
if performed with on-shell Higgs bosons, but are independent
of the width if the Higgs boson is off-shell, as can be seen from

the Breit—Wigner model of the Higgs boson’s resonance:
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where gprod(S) and gaecay(S) are, respectively, the effective
couplings of Higgs boson production and decay, as a function
of the Higgs boson virtuality 5. A comparison of the off-shell
and on-shell Higgs boson production rates allows an indirect
measurement of the Higgs boson total width assuming that
there is no beyond SM (BSM) physics that alters the on-shell
and off-shell couplings differently [13, 14, 19].

In the presence of light BSM states, off-shell Higgs boson
production can probe new kinematic thresholds produced by
one-loop electroweak (EW) corrections [20]. Off-shell Higgs
boson production can also be used to constrain BSM phys-
ics at high energy. Using the formalism of SM Effective Field
Theory [21-23], off-shell Higgs boson production breaks the
degeneracy between the top-quark Yukawa and Higgs-gluon
interaction which exists for on-shell Higgs boson produc-
tion [24]. In these cases, using the SM prediction for on-shell
and off-shell Higgs boson production would no longer provide
an indirect measurement of the Higgs boson total width, since
the new states can have a non-negligible contribution to the
Higgs boson propagator and decay. The ATLAS Collaboration
has recently reported limits on dimension-6 operators that
modify the production of off-shell Higgs bosons [25], while
the CMS Collaboration reported limits on dimension-6 oper-
ators that modify both production and decay [18, 26].

This paper reports a new measurement of off-shell Higgs
boson production in the H* — ZZ — 4/¢ decay channel using
a novel method to interpret the data. The method, known
as neural simulation-based inference (NSBI) [27-30], uses
neural networks (NNs) to estimate the per-event likelihood
ratio of different hypotheses instead of using histograms of
kinematic observables as an approximation to probability
density ratios. The specific implementation of NSBI used in
this paper is described in section 6 and in more detail in [31].

The NSBI method improves several aspects of a histogram-
based analysis by providing a better approximation of the exact
likelihood ratio between different hypotheses [27]. The likeli-
hood ratio obtained by the NSBI approach is optimally sens-
itive to any value of the off-shell Higgs boson production sig-
nal strength. This cannot be achieved by analyses that inter-
pret a ratio of likelihoods constructed from a single observable
when the signal model is non-linear, even if this observable is
optimal for a given parameter value [31]. Multidimensional
optimal observables [32] and parameterized optimal observ-
ables [33] can alternatively be used with the same goal. In
addition, the NSBI construction allows for unbinned measure-
ments of parameters. Binned histograms treat all events inside
a given bin as equivalent leading to an unavoidable loss in
the power to separate different hypotheses. These losses can
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be minimized by choosing bin widths compatible with the
observable resolution. This optimization may be challenging
in high-resolution final states and may require large simulated
samples, while an unbinned NSBI analysis can make better
use of limited-size simulation samples.

The NSBI construction can be understood as a machine
learning approach to the matrix-element method [34, 35]
where NNs learn both the theory dependency of the likelihood
ratio relative to a high-dimensional final-state phase space and
the complex detector response using simulated samples. The
use of large NN models and the unbinned character of the
NSBI analysis require a more advanced computational infra-
structure than that used in histogram-based analyses [36].

The results of this paper supersede those of [17] for the 4¢
channel, using the same dataset, object selection, and event
selection. The measurement is combined with the 2/2v chan-
nel, which is not re-analyzed, applying the same method for
its interpretation as in [17].

2. ATLAS detector

The ATLAS detector [37] at the LHC covers nearly the entire
solid angle around the collision point!. It consists of an inner
tracking detector surrounded by a thin superconducting solen-
oid, electromagnetic and hadronic calorimeters, and a muon
spectrometer incorporating three large superconducting air-
core toroidal magnets.

The inner-detector (ID) system is immersed in a 2 T axial
magnetic field and provides charged-particle tracking in the
range |n| <2.5. The high-granularity silicon pixel detector
covers the vertex region and typically provides four measure-
ments per track, the first hit generally being in the insertable
B-layer (IBL) installed before Run 2 [38, 39]. It is followed
by the SemiConductor Tracker (SCT), which usually provides
eight measurements per track. These silicon detectors are com-
plemented by the transition radiation tracker (TRT), which
enables radially extended track reconstruction up to || = 2.0.
The TRT also provides electron identification information
based on the fraction of hits (typically 30 in total) above a
higher energy-deposit threshold corresponding to transition
radiation.

The calorimeter system covers the pseudorapidity range
|n| < 4.9. Within the region || < 3.2, electromagnetic calor-
imetry is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) calorimeters, with an additional thin
LAr presampler covering |n| < 1.8 to correct for energy loss
in material upstream of the calorimeters. Hadronic calorimetry

! ATLAS uses a right-handed coordinate system with its origin at the nominal
interaction point (IP) in the center of the detector and the z-axis along the beam
pipe. The x-axis points from the IP to the center of the LHC ring, and the y-
axis points upwards. Polar coordinates (r, ¢) are used in the transverse plane,
¢ being the azimuthal angle around the z-axis. The pseudorapidity is defined

in terms of the polar angle 6 as 7 = —Intan(6/2) and is equal to the rapidity
y= % In (%) in the relativistic limit. Angular distance is measured in units
of AR = /(Ay)2 + (A¢p)2.

is provided by the steel/scintillator-tile calorimeter, segmen-
ted into three barrel structures within |n| < 1.7, and two cop-
per/LAr hadronic endcap calorimeters. The solid angle cover-
age is completed with forward copper/LAr and tungsten/LAr
calorimeter modules optimized for electromagnetic and had-
ronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger
and high-precision tracking chambers measuring the deflec-
tion of muons in a magnetic field generated by the supercon-
ducting air-core toroidal magnets. The field integral of the
toroids ranges between 2.0 and 6.0 Tm across most of the
detector. Three layers of precision chambers, each consist-
ing of layers of monitored drift tubes, cover the region || <
2.7, complemented by cathode-strip chambers in the forward
region, where the background is highest. The muon trigger
system covers the range |n| < 2.4 with resistive-plate cham-
bers in the barrel, and thin-gap chambers in the endcap regions.

The luminosity is measured mainly by the LUCID-2 [40]
detector that records Cherenkov light produced in the quartz
windows of photomultipliers located close to the beampipe.

Events are selected by the first-level trigger system imple-
mented in custom hardware, followed by selections made by
algorithms implemented in software in the high-level trig-
ger [41]. The first-level trigger accepts events from the 40 MHz
bunch crossings at a rate below 100 kHz, which the high-level
trigger further reduces in order to record complete events to
disk at about 1 kHz.

A software suite [42] is used in data simulation, in the
reconstruction and analysis of real and simulated data, in
detector operations, and in the trigger and data acquisition sys-
tems of the experiment.

3. Modeling of off-shell Higgs boson production

The measurement of off-shell Higgs boson production presen-
ted in this paper is interpreted using a model in which the
effective couplings of the Higgs boson to gluons and to
EW vector bosons in the SM can have anomalous scalar
modifications. This analysis framework, known as the k-
framework [43], allows changes in the overall cross-section
without changing the process kinematics, and can be under-
stood as a sector of a larger Higgs Effective Field Theory
(HEFT) [44].

The gluon—gluon fusion (ggF) off-shell Higgs boson pro-
duction and subsequent decay into a ZZ pair, gg — ZZ, can be
described by using the Higgs boson effective coupling con-
stants g,(s) and gy(s) to gluons and vector bosons, shown in
figure 1(a). The effective couplings g, and gy depend on the
Higgs boson virtuality s, but the notation is suppressed here-
after for simplicity. The Higgs boson is represented by H* to
denote explicitly that its virtuality is well above the pole mass
mpy = 125GeV [45].

In gg — ZZ production, the signal (S) component is defined
at leading order (LO) in perturbation theory by the absolute
value squared of the amplitude of the diagram in figure 1(a).
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Figure 1. Illustrative leading-order Feynman diagrams for gg — ZZ
production. The diagrams indicate the effective couplings g, and gy.
Diagram (a) corresponds to the signal component and diagram (b)
corresponds to the background component. A large destructive
interference between the two components is present in the off-shell
regime.

The signal contribution scales as g3g7. The background (B)
component is defined at LO in perturbation theory by the
absolute value squared of the amplitude of the diagram in
figure 1(b). The background component is independent of
8¢ and gy. The interference (I) between the two diagrams
scales as gogv. The integrated interference between the two
diagrams is negative, as required by perturbative unitarity
conservation [46].

The effective coupling between gluons and the Higgs boson
g, 1s represented by a blob in figure 1(a) since in the SM, at
LO in perturbation theory, it can be resolved to a fermion tri-
angle loop dominated by the top-quark contribution. In several
BSM scenarios, the contribution of new heavy particles can-
not be resolved at the scales probed by this measurement, but
can modify the Higgs boson effective couplings as well as the
background process.

The same concepts can be applied to the EW production of
qq — ZZ+2j — 4¢ +2j. In this case, the signal scales as g},
the interference scales as g%, and the background component
is independent of gy. Similar to the case of ggF production, a
negative interference is present in the off-shell regime between
the EW signal background components. The LO Feynman dia-
grams for the production of EW gq — ZZ 4 2j — 4¢ + 2j are
shown in figure 2.

The scaling of the cross-sections with the effective coup-
lings g, and gy defines uniquely each component (signal, inter-
ference, and background) in the ggF and EW production of
off-shell Higgs bosons. The probability density model used
to measure the off-shell Higgs boson production is defined
as function of the coupling modifiers k, = g,/8,,sm and Ky =
gv/gv sm. independently of the Higgs boson virtuality, which
are used to define the signal strengths:

ggF _ 2 2 EW 4
Hoff-shell = Fg,off-shell ¥V, off-shell Hoff-shell = KV, off-shells 2

where the subscript off-shell indicates that the modifier only
affects processes with virtuality sufficiently above the pole
mass. These signal strengths are used in the definition of a
probability density model that is used to interpret the collected
data:

1

ggF EW
v (Moff-shelh Uoff-shell)

ggF EW _
4 (x | ot shell ,uoff-shell) =

ggF 2gF _ggF
X luoffshellys ps (%)

ggF ggF gk
1\ Hoft-shen’1 PI (x)

ggF ggF EW EW_EW
+vg Py (X) + HoftshenVs  Ps (%)
/ EW EW _EW
+ 1/ Hottshen i PI - (X)

+ " PR (%) + vaipn (X)l )

where x is a vector of reconstructed observables, which
are defined in section 5.2, and where px(x) and vx are
the probability density function and the expected yield for
process X, respectively. The expected number of events
v(pEE o mEW ) can be written as a function of the expec-
ted number of events vx for each process. The term pnp(x)
represents the probability density for processes that do not
interfere with the ggF and EW processes described above.
The leading non-interfering process is qqg — ZZ — 4¢ produc-
tion via a r-channel exchange at LO. Non-interfering tribo-
son VVV processes, including those from top-quark decays
11V, are subleading processes, but are also included in the ana-
lysis. The exception is the interfering ZZZ — 4¢ + jets process,
which is modeled as part of the EW B process. Figure 3(a)
shows the LO Feynman diagram of the leading non-interfering
qq — ZZ process (qqZZ) and figure 3(b) shows the correspond-
ing LO Feynman diagram of the subleading non-interfering
top-quark-induced VVV process.

Monte Carlo (MC) simulated samples are used to describe
the expected event yields vx and probability densities px(x)
in equation (3). Due to the technical challenges associated
with the efficient production of interference-only MC simula-
tions [47], the interference terms in equation (3) are not gener-
ated separately, but inferred from samples generated with sig-
nal, interference, and background terms (SBI sample, where
SBI = S + 1+ B). For ggF production, a sin§le SBI sample is
generated and the interference term 22 p (x) is calculated
as the difference of the SBI sample and the S and B samples
(I=SBI—S +B):

gk ggF

F ggF F ggF F_ ggF
VIg 23 gr_gg ger_gg ()C)—Vég g8 (X)

(x) = VgBIPSBI (x) = vs° ps Py

“

In the simulation of EW production, it is impossible to
generate an off-shell signal-only sample. Due to the diagram
shown in figure 2(b), where an s-channel Higgs boson propag-
ator is absent, and in figure 2(c), where the Higgs boson can
decay as H* — ZZ — 2(2q, there is always contamination of
on-shell events. Any on-shell contamination is formally part
of the EW background process, since it does not scale with
Wotishel- Instead of generating pure signal and interference
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Figure 2. Illustrative leading-order Feynman diagrams for the electroweak gq — ZZ + 2j processes. The diagrams indicate the effective
couplings gy used to define the off-shell Higgs boson production signal strengths. Diagrams (a)—(c) correspond to the vector boson fusion,
t-channel and VH signal components, respectively. In diagram (c), one of the vector bosons decays into a gg pair. Diagram (d) corresponds
to the electroweak background component. A large destructive interference is present in the off-shell regime between the vector boson

fusion signal and the background components.

b
” g g t W
Z
q Z g t w
b
(a) (b)

Figure 3. Illustrative leading-order Feynman diagrams for
non-interfering background processes. Diagram (a) shows the
leading ggZZ process and diagram (b) shows the top-quark induced
sub-leading VVV process. The leptonic decays of the Z and W
bosons are not shown.

samples, two linear combinations (EWSBI; and EWSBI) are
used to model the EW processes:

vep1PSEL, (X) =5 ps" (1) +ur it (%) +ug PR (x),

VS1, PSR, (¥) = 1008 ps™ (x) + V105 ™ (1)

+ 5V pEY (x). )

These samples contain the signal, interference, and back-
ground components, including any possible on-shell contam-
ination, albeit with different fractions. An additional sample
is generated exclusively modeling the diagram in figure 2(d)
to describe the EW B process 15" pEW (x). While this sample
does not contain the on-shell contamination from diagrams
figures 2(b) and (c) discussed above, it was found that con-
sidering the contribution of these terms only in EWSBI; and
EWSBIj is a good approximation.

The EW SBI,( sample is simulated by choosing the effect-
ive coupling between the Higgs boson and the EW vector
bosons to achieve an EW signal cross-section ten times lar-
ger than the SM value (k3 = 10). The change of the effective
coupling scales the interference component by a factor /10,
yielding the expression in equation (5). When simulating the
EW SBI|( sample, the Higgs boson width is modified to keep
the on-shell effective coupling unchanged at g{,/T'y. Linear
combinations of the EW B, EW SBI;, and EW SBI, samples

can be inverted to obtain the EW signal, interference and back-
ground processes separately, as shown in table 1.

As described earlier, the non-interfering background pro-
cess vnipni(x) in equation (3) contains both the leading ggZZ
and the subleading VVV processes:

UNIPNI (X) = VggzzPgazz (X) + vywwpyvy (X) . (6)

All VVV processes are considered separately as a single non-
interfering background process, except for the ZZZ — 4¢ +
jets sample is modeled as part of the EW background process.

A data-driven normalization is introduced for the leading
qq — ZZ process as a function of the number of reconstructed
jets, which is one of the observables in the vector x defined in
section 5.2:

__ pincl 0j 0j incl 1j 1j 1
UNIPNI (X) = eqqzz VogzzPagzz (x) + quzzz eqqzz Vogzz Pagzz (x)
incl plj 2j 2j 2j
+ anIZZ qu[ZZ ng;zz Vygzz Pagzz (xX) + vvyy pyvy (x).

)

The parameter 0%, provides a data-driven normalization for

the total qg — ZZ — 4/¢ observed yield. The parameter 9;{;122
(02222) provides a data-driven normalization for the ratio of the
observed yield of gg — ZZ — 4{ events with one (at least two)
reconstructed jet and that with zero (one) reconstructed jets.
The process referred to as V:{?ZZ pj’qzz(x) includes all events
with at least two reconstructed jets.

Table 1 summarizes the processes that are used in the model
after all transformations, as well as the simulated samples used
to describe them.

4. Data and simulated event samples

The analysis uses pp collision data collected with the ATLAS
detector in Run 2 of the LHC, at a center-of-mass energy
of /s =13TeV, corresponding to a total integrated lumin-
osity of 140fb™' [48] after data-quality requirements [49].
Events were recorded using a combination of single-lepton,
dilepton and trilepton triggers [50-52] with either a low trans-
verse momentum, pr, threshold and a lepton isolation require-
ment, or a higher threshold but a looser identification cri-
terion and without any isolation requirement. The overall trig-
ger efficiency for the ggF signal process is more than 98% in
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Table 1. Definition of processes in the probability model used to interpret the data and the simulated samples used to describe them. The
multipliers define both the measured off-shell Higgs boson production signal strength and the data-driven normalization of leading
backgrounds. The (H* —) notation is used for the SBI process. The multipliers are obtained after substituting the interference terms of
equations (4) and (5) into equation (3), since interference-only samples are not simulated. For instance, in the case of ggF production:

wvs + /I +ve = (n— /R)vs + /i(vs + 1+ vs) + (1 — \/B)vs.

Process Multipliers Samples
F *
geF S Hett-shett — V ui?f]-:shell g H — 22— 4l
ggF SBI [ eoF g8 — (H" —=)Z2Z — 4¢
Hoftshelt (H%/ — ])
ggF B ogF e —~>7ZZ— 4
1- \/ Hoft-shell ( /@%, =0)
EWB EWqgq—Z72Z+2j — 4L +2j
(1= V10) it spen + 90/ HEY ey — 104+ V10 " qu) +2j +2j
=
—10++10 777 — 40+ 2j
EW SBI EwW * j j
I VI0UEY e — 104/ pEY o qu)—> (H* =)ZZ+2j — 40+ 2j
¥ =
—10++10 777 — 40+ 2j
EW SBI / EW qq — (H* —)ZZ+2j — 40+ 2j
10 */igf‘?-,shell + ngshen 4 99~ ( V2242 = Al
(ky =10)
—10++v10 777 — 404 2j
4GZZ njers =0 o), qq — ZZ — 40
q4ZZ nijers = 1 00,0 77 4G — ZZ — 46
G477 Nigys =2 02002 770 77 qq — 77 — 40
44% — WWZ — 4¢
WZ7Z — 4¢
HZ — 4¢

each final state after object selection and after imposing the
180 < myy < 2000GeV requirement.

The gg — ZZ — 40 samples (ggF S, ggF B, and ggF SBI)
are generated with SHERPA v2.2.2 [53] and OpENLoOOPS [54—
56] at LO accuracy in quantum chromodynamics (QCD),
with up to one additional parton in the final state, using the
NNPDF3.0 NNLO parton distribution function (PDF) set [57].
The merging with the parton shower was performed using the
MEPS @NLO prescription [58, 59] and the SHERPA built-in
algorithm was used for parton showering and hadronization.
Next-to-leading-order (NLO) QCD corrections are included
as a function of the invariant mass of the two Z bosons,
myyz, separately for the ggF B, S, and SBI processes [60].
Fully differential next-to-next-to-leading-order (NNLO) cor-
rections to the gg — H — ZZ signal process are known [61—
63], but not for the interference and background compon-
ents. A common, average NNLO/NLO correction of 1.2 is
applied to the signal, interference, and background compon-
ents of the gg — ZZ process. Inclusive next-to-next-to-next-
to-leading-order (N>LO) corrections to the gg — H — ZZ sig-
nal process are known [64], dominated by the on-shell Higgs
boson contribution. Currently, N3LO corrections in the off-
shell region and for the interference and background compon-
ents are not available. An average, common N°LO/NNLO

correction of 1.1 is extrapolated to the off-shell region and
applied to the signal, interference, and background compon-
ents of the gg — ZZ process [65].

The EW ¢qq—ZZ+2j—4¢+2j samples (EW B,
EW SBI;, and EW SBI)) are generated with MADGRAPHS_
AMC@NLO [66] at LO QCD and LO EW accuracy using the
NNPDF3.0 NLO PDF set [57]. The PyTHIA 8.2 [67] program
was used for parton showering and hadronization with the
Al4 set of tuned parameters (Al4 tune) for the underlying
event [68] and NNPDF2.3 LO PDF set [69].

The gq — ZZ sample is generated with SHERPA v2.2.2 and
OpeNLooPs using the NNPDF3.0 NNLO PDF set. The matrix
elements (ME) are calculated to NLO accuracy in QCD for
0- and 1-jet final states, and to LO accuracy for 2- and 3-jet
final states. The merging with the SHERPA parton shower was
performed using the MEPS @NLO prescription. The NLO EW
corrections are included as a function of mzz [70, 71].

The triboson samples ZZZ, WZZ, and WWZ with fully
leptonic decays were modeled with SHERPA v2.2.2 at NLO
QCD accuracy. The ZZZ — 40+ 2j process is included in
the EW gq — ZZ + 2j sample described above. The simula-
tion of #fV production with at least one of the top quarks
decaying leptonically and the vector boson decaying inclus-
ively into either quarks or leptons was performed with
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Table 2. Matrix element generator, parton shower (PS), and higher-order corrections used to describe the different samples in the
measurement. The notation [Xj] indicates that up to X jets are included in the hard-scatter matrix element calculation.

Sample ME generator PS Higher-order correction
88 —~2727Z SHERPA 2.2.2 SHERPA 2.2.2 NLO QCD (mzz dependent) [60]
(LO [13D) Approx. NNLO QCD (global) [61-63]
Approx. N3LO QCD (global) [65]
EW gq — ZZ+2j MG5_AMC@NLO2.3.3 PyTHIA 8.244 —
qq — 272 SHERPA 2.2.2 SHERPA 2.2.2 NLO EW (mzz dependent) [70, 71]
(NLO [1j1, LO [3j])
WWZz, WZZ, 2772 SHERPA 2.2.2 SHERPA 2.2.2 —

itz MG5_AMC@NLO2.3.3

PyTHIA 8.210 NLO QCD + NLO EW (global) [72]

MaDGRrAPH5_AMC@NLO interfaced to PyTHIA 8.2 for par-
ton showering and hadronization with the A14 tune. The total
cross-sections for the 77V backgrounds were normalized to the
NLO QCD and EW predictions from [72].

Table 2 summarizes the order in perturbation theory with
which each simulated sample was generated and the source of
higher-order correction (K-factors) used to improve the mod-
eling. All simulated samples are processed with the ATLAS
detector simulation [73] based on GEANT4 [74]. The effects
of multiple inelastic interactions in the same and neighbor-
ing bunch crossings (pileup) were modeled by overlaying each
simulated hard-scattering event with inelastic pp events gen-
erated with PYTHIA 8.186 [75] using the NNPDF2.3 LO PDF
set and the A3 tune [76]. Simulated events are reweighted to
match the pileup conditions observed in the full Run 2 dataset.
Simulated events are reconstructed with the same algorithms
and analysis chain as the data.

5. Object reconstruction, event selection and
description

The measurement of the off-shell Higgs boson production is
performed in the H* — ZZ — 4¢ decay channel, where ¢ is
either an electron or a muon. The object and event selections
aim to identify opposite-charged electron or muon pairs con-
sistent with the decay of a Z boson. A quadruplet is formed
from two pairs with a common production vertex and invari-
ant mass above the ZZ threshold. The selection criteria are
optimized to increase the acceptance of H* — ZZ — 4{ events
while maintaining negligible levels of non-prompt background
events. The object and event reconstruction used in this ana-
lysis is exactly the same as in the previous result [17] and only
a short summary is provided here.

5.1 Object reconstruction

Muons are identified by tracks or segments reconstructed in
the MS and matched to tracks reconstructed in the ID, with
exceptions in areas where the MS lacks coverage. In the region
2.5 <|n| < 2.7, muons can also be identified by tracks from
the MS alone. In the central gap region (|| < 0.1) of the MS,
muons can be identified by a track from the ID associated with

a compatible calorimeter energy deposit (calorimeter-tagged
muons). Candidate muons are required to have pt > 5GeV
and |n| < 2.7, except calorimeter-tagged muons for which the
pr threshold is raised to 15 GeV. Muons must satisfy the
loose identification criterion [77] with at most one standalone
or calorimeter-tagged muon allowed per Higgs boson can-
didate. Electrons are reconstructed from energy deposits in
the electromagnetic calorimeter matched to a track in the ID.
Candidate electrons must have pr >7 GeV and |n| < 2.47,
and satisfy the loose identification criteria [78].

All electrons and muons used in both channels must be isol-
ated, satisfying a loose isolation criteria [77, 78]. Furthermore,
electrons (muons) are required to have associated tracks sat-
isfying |dy/oq4,| <5 (3) and |zpsinf| < 0.5 mm, where dj is
the transverse impact parameter relative to the beam line, oy,
is its uncertainty, and zo is the z coordinate of the r-¢ impact
point, defined relative to the primary vertex. The event is rejec-
ted if the minimum angular separation between two leptons is
dRyy < 0.1, where dRyy = \/(A¢M)2 + (A’I]g@)z.

Jets are reconstructed from particle-flow objects [79] using
the anti-k, algorithm [80, 81] with radius parameter R =0.4.
The jet-energy scale is calibrated using simulation and fur-
ther corrected with in situ methods [82]. Reconstructed jets
are required to have pr > 30 GeV and |n| < 4.5. A jet-vertex
tagger [83] is applied to jets with pt < 60 GeV and || < 2.4 to
suppress jets that originate from pileup. In the forward region,
for jets with pr < 50GeV and 2.5 < |n| < 4.5, another tagger
based on jet shapes and topological jet correlations [84] is used
to suppress pileup jets.

5.2. Event selection and description

The selection of candidate events follows that described
in [17]. Events with at least four leptons (electrons or muons)
are used in this analysis. The pr thresholds for the three lead-
ing leptons are 20, 15 and 10 GeV, respectively. The four-
lepton invariant mass is required to be above the on-shell
ZZ production threshold, 180 < myy < 2000 GeV. Candidate
lepton quadruplets are formed by selecting two opposite-
charge, same-flavor dilepton pairs in each event. In the 4e
and 4p channels, in which there are two possible pairings, the
one that includes the lepton pair with mass closest to that of
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Table 3. Definition of the observables to describe an event. The
observables are defined relative to the ATLAS coordinate system.
The vectors qi, q2, q11, 21, 1y, D, and N, are defined in
section 5.2.

Variable  Definition

M4y quadruplet mass

mgz, Z1 mass

mz, Z> mass

cosf* cosine of the Higgs boson decay angle [q, - n;/|q,]]

cos 6 cosine of the Z; decay angle [—(q,) - q,,/(|q,] - |q,;])]

cos b, cosine of the Z, decay angle [—(q,) - q,; /(|4 | - |d2;])]

D 7 decay plane angle [cos ™' (n; - ny) (q - (] X N/
(|- [m x nge[)]

P angle between Z;,Z, decay planes [cos ™' (n; -ny) (q, -
(1 xm)/(lq, [+ [m x ma[)]

¥ quadruplet transverse momentum

¥ quadruplet rapidity

Mjets number of jets in the event

mjj leading dijet system mass

Anj leading dijet system pseudorapidity

Agjj leading dijet system azimuthal angle difference

the Z boson mass is chosen. In each quadruplet, the lepton
pair with mass closest to the Z boson mass, my,, is referred
to as the leading pair and required to have 50 < mz < 106
GeV. The sub-leading pair mass, mz,, must satisfy 50 < mz, <
115 GeV when my4, > 190 GeV. Due to the increased probab-
ility of one Z boson being off-shell at lower values of myy,
the lower threshold for m, decreases linearly from 50 GeV at
mygy = 190 GeV to 45 GeV at myy = 180 GeV.

Events are described in the analysis by 14 observables,
summarized in table 3. The 14 observables provide a com-
plete description of the reconstructed final state phase space.
The three-momentum of the fermion (anti-fermion) in the Z;
decay is defined as q;; (q;2). Similarly, the three-momentum
of the fermion (anti-fermion) in the Z, decay is defined as q;
(q22). The three-momentum of Z; (Z,) is defined as q; (q2).
All three-momenta are defined in the rest frame of the quad-
ruplet. Jets are ordered in pr and their momenta are defined in
the laboratory reference frame.

The observables in table 3 are the components of the vec-
tor x in equation (3). The observables mj;, 77;;, and ¢;; related
to the leading dijet system, i.e. the two jets with highest pt in
the event, are only well-defined for events with at least two
jets. For events with fewer jets, the value of these observ-
ables are chosen as the median of the corresponding distri-
bution for events with at least two jets. The observable njes
is used for classification of the non-interfering background
in equation (7), where all events with more than two jets are
described by njers = 2.

The normal vectors n; and n; to the Z; and Z, decay planes
and the normal vector ng to the Higgs boson decay plane are
defined as:

= du X , = d X _ Mexqp
- ) - ) SC — )
lq;; < qy5] Q1 X | In; x q|
(8)

Figure 4. Representation of the angular observables used to
describe the probability density ratio of each event. The
three-momenta of the fermions (aiy, 93;) and anti-fermions (q7},,
q5,) are shown in their parent rest-frames, and the three-momenta of
the vector bosons (q;, q2) are shown in the quadruplet rest frame.

where n, is the unit vector in the z direction. These vectors are
used to build angles that are sensitive to the spin and parity of
the quadruplet. Their geometrical visualization [85] is given in
figure 4, where the three-momenta are shown in the rest frame
of each particle’s parent for clarity. Figure 5 shows the com-
parison between observed and expected background distribu-
tions for the my4, and m;; observables showing good agreement
for two of the observables used in the analysis.

6. Neural simulation-based inference

Several analyses at the LHC use multinomial probability dens-
ities (histograms) of a single observable to describe each com-
ponent px(x) of the probability model used to interpret the
data. A commonly used framework for histogram-based ana-
lyses in ATLAS is described in detail in [86] and was used
in the previous result on the off-shell Higgs boson produc-
tion [17]. In analyses with non-linear signal models, like the
measurements of processes with large quantum interference,
a single observable cannot optimally capture the informa-
tion needed to measure all possible signal strength values and
complete dimensional reduction cannot be achieved without
information loss. In addition, the multinomial modeling treats
all events inside a bin as indistinguishable, which leads to a
loss in statistical power. These losses can be partially mitig-
ated by using approximations to optimal observables [27], by
increasing the dimensionality of the histograms, and by redu-
cing the bin width. Recent measurements of the off-shell Higgs
boson production in the H* — ZZ — 4/ channel by the CMS
Collaboration [32] have used all of these strategies to improve
the significance of the result.

These mitigation strategies are limited by the finite num-
ber of simulated events and by the so-called curse of dimen-
sionality. Practical considerations may reduce the accuracy
of the multinomial approximation and reduce the power of
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Figure 5. Comparison between observed and expected distribution of two observables used to describe events: (a) the four-lepton invariant
mass and the (b) invariant mass of the two leading jets showing good agreement for two of the observables used in this analysis. The
expected distributions for g — ZZ, ggF SBI (gg¢ — (H* —)ZZ), EW SBI, (99 — (H* —)ZZ + 2j) and other backgrounds are shown as
stacked histograms, and the expected signal (interference) is shown as a red solid (blue dashed) line. The background is estimated under the
SM hypothesis (post-fit, poft-sheit = 1). The lower panels show the ratio of data to expectation. The hatched band shows the total systematic
uncertainty in the expected distribution. The last bin contains overflow events.

the statistical inference, especially in regions with high sig-
nal significance (signal regions). Regions with low signal sig-
nificance (control regions (CRs)), traditionally used for the
description of backgrounds and systematic uncertainties, are
less sensitive to these limitations.

NN approximations of probability densities and probability
density ratios can outperform histogram approximations when
high-dimensional parameter spaces are considered. The use of
NN for statistical inference is known as NSBI [27-30]. This
analysis uses a particular version of NSBI adapted to the type
of parameter inference done at the LHC to model events in the
signal region. A self-contained description of the method is
given below, and more details can be found in [31].

6.1. Signal and control regions

An initial multi-class classification NN is trained to split the
events into signal and CRs using the observables defined in
table 3. This NN has five hidden layers each with 1000 neur-
ons and a swish activation function [87]. The output layer has
five neurons with a softmax [e=* / 3. e ] activation function.
The NN is trained with a multi-class cross-entropy loss cor-
responding to the five processes used in the training: ggF S,
ggF B, VBF, EW B, and gq — ZZ. The vector boson fusion
(VBF) process is obtained from a dedicated MC sample that
uses only the EW VBF diagram in figure 2(a). While this
process does not provide a full description of the EW S pro-
duction of off-shell Higgs bosons, it provides a sufficiently
good approximation to define control and signal regions. The
preselection discriminant Dy (x) is defined as:
ggF S

Spre () + e (%)

spie (%) + SEWB (x) + 557 (x)

Dpre ()C) = ) (&)

where s(x) denotes the score function of the NN. The signal
region (SR) is defined as events satisfying Dy (x) > —0.85.
Events failing this condition define the CR. The CR is largely
dominated by gg — ZZ events and can be used to constrain
the parameters 02{7’2112’2’ in equation (7). Figure 6 shows a com-
parison between the observed and expected distribution of the
observable Dy (x) used to define the SR and the CR indicating
a good description of the acceptance times efficiency in each
region. Figure 6(b) depicts a comparison of the observed and
expected njers distribution, showing a good description of the
normalization obtained in each bin with the data-driven back-
ground normalization parameters.

In the CR, only the njes observable is used to describe the
probability model, while in the SR all 14 observables listed
in table 3 are used to create an NSBI model. For the NSBI
model, a probability density ratio is formed from each process
X (where X is one of the processes in table 1) and a fixed ref-
erence process, px (x)/pref(x), and each ratio is estimated with
a separate NN. The reference process is chosen as a mixture
of the ggF signal and EW SBI;( processes:

F F
VrefPref ()C) = ngg Pég (X) + Vgg,opggm ()C) 3 (10)

and does not depend on any parameter. While machine learn-
ing methods exist that allow to directly estimate the probability
densities px (x) [88] in equation (3), the estimation of probab-
ility density ratios [89] is a simpler numerical problem and is
used in this analysis. As shown in section 7, estimating these
probability density ratios for the different hypotheses is suffi-
cient for a frequentist statistical data analysis [90], as prer(x)
cancels out in the likelihood ratio test statistic. The choice
of reference sample is driven by the phase space where the
method is applied [31]. The density ratio px(x)/prer(x) can
only reliably be estimated when py¢(x) > 0, which is ensured
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Figure 6. (a) Comparison between observed and expected distribution of the preselection discriminant Dy (x) showing a good description
of the acceptance times efficiency in each region. (b) Comparison between observed and expected distribution of njes showing a good
description of the normalization obtained in each bin with the data-driven background normalization parameters. The expected distributions
for gg — ZZ, ggF SBI (gg — (H* —)ZZ), EW SBI, (qq — (H* —)ZZ+ 2j) and other backgrounds are shown as stacked histograms, and
the expected signal (interference) is shown as a solid red (dashed blue) line. The background is estimated under the SM hypothesis (post-fit,
Lott-shell = 1). The lower panels show the ratio of data to expectation. The hatched band shows the total systematic uncertainty in the
expected distribution. The last bin of panel (b) contains overflow events.

by the preselection condition Dy (x) > —0.85 without signi-
ficantly reducing the power of the analysis.

6.2. Probability density ratio estimation

The probability density ratios are estimated as functions of
the 14 observables in table 3 by using fully-connected NN,
i.e. where all neurons in a layer are connected to the neurons
in the next layer. The architecture of this NN is the same as
the one used for the preselection discriminant, but additional
steps are taken to improve the accuracy of the score, which are
described below.

The events in the simulated sample for each process X
are split into ten disjoint sets for use in ten-fold cross val-
idation [91]. For each cross-validation set, the events in the
other nine sets are used to train an ensemble of NNs, each with
the structure described above. The ten-fold cross validation
ensures that the NNs are never evaluated using events used in
their training, which would otherwise generate over-confident
estimates of the probability density ratios for rare events. An
ensemble member is trained with 80% of the events in the
training set of the cross-validation splitting, randomly sampled
without replacement. The total number of ensemble members
varies between 10 and 70 for each ten-fold cross-validation set,
depending on the process X, and resulting in 100 to 700 NN
in total. The larger ensembles are required for processes X that
are very different from the reference process. The estimate of a
probability density ratio is taken as its ensemble mean. Using
ensembles sampled without replacement helps to minimize
both the bias and variance of the final result, and the ensembles
are also used for an uncertainty estimate, as is explained
below.

The NNs are trained to minimize the binary cross-entropy
loss between the normalized simulated sample px(x) , with
truth label sy =1, and the normalized simulated sample
Drer(x), with truth label syuq =0. For balanced training
samples (rx = lf), the NN converges to the optimal clas-
sifier score function sx (x) = px (x)/(Pret(x) + px(x)) and the
probability density ratio can be written as px(x)/pref(x) =
sx(x)/(1 —sx(x)) [89, 91-93].

The batch size used for the gradient descent step of the
training process is optimized separately for each process, but
has to be kept sufficiently large to ensure that the NN extrapol-
ates well and remains representative for other samples not used
in the training. Larger batch sizes are also necessary when the
training samples have a large fraction of negatively-weighted
events to ensure convexity of the loss function. Events with
negative weights come from simulations with higher-order
corrections in perturbation theory and multijet merging with
parton showers. An average batch size of 1024 was used for
the NN in this analysis. The NAdam adaptive learning rate
algorithm [94, 95] is used for all trainings. In each training,
10% of the available events are used for loss function valida-
tion. A summary of the NN structure and training is given in
appendix A.

The NN-estimated probability density ratios px (x) /prer(x)
for each process X are used to construct the signal strength-
dependent probability density ratio:

px (x)

p('x‘ll'L?e) _ X
ref(x)’

1
Pref ()C) N V(N,H)

Z fX(M70) Vx

processes X

Y

where fx(u,0) are the sample-dependent multipliers listed in
table 1.
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Figure 7 Comparison between the NN-based and histogram-based estimate of the density ratio p(x|goft-shell ) /Pret (x) for (a) fofr-shen = 0.3

and (b) oft-shen = 1.7. The comparison is done as a function of log [p (x| ftoft-shent ) /Pret (x)] to separate the comparison for events that are very
signal-like and reference-like. The lower panels show the pull, defined as the difference between the NN and MC-based estimate divided by
the statistical uncertainty due to the finite number of MC events. The error bars indicate the uncertainty due to the finite number of simulated

events in the histogram-based estimate of the density ratio.

The different hyperparameters described above, including
the preselection threshold, the width and depth of each indi-
vidual NN, and the size of the NN ensembles were optimized
to obtain density ratio estimates as accurate as possible given
the number of events in the simulated samples available for
training. Several tests are performed to assess the accuracy
of the NN training. A complete description of all tests per-
formed can be found in [31], and only a summary is given here.
Figure 7 compares the NN-based and histogram-based estim-
ates of the density ratio p(x|oftshen)/Pret(x) for two high-
statistics Asimov samples2 with signal strengths frofg.shenn = 0.3
and 1.7. As can be seen with equation (3), these two samples
validate the NN-based procedure in a regime that is domin-
ated by the interference component (tiofishenn < 1), and in a
regime that is dominated by the signal component (fioff.shell >
1), respectively. In both cases, the NNs show excellent prob-
ability calibration. Note that the result is obtained without a
NN calibration layer [97].

If the NNs are unbiased, the probability density ratio
(x| phoftshel ) /Pref(x) can be used to reweight distributions from
one value of fiff.shel to another, where the reweighting factor is
obtained from the NN-based estimate of the probability dens-
ity ratio using:

2 An Asimov dataset is one for which the application of any unbiased estim-
ator for all parameters will provide the true values [96]. In unbinned analyses,
an approximation of such a dataset can be constructed using a large number
of simulated events with appropriate event weights.

_ P (¥l ptoft-shen)
P (x| ftoft-shen = 1)

() (o)

Comparisons between distributions estimated directly from an
Asimov sample with a known value of fiofrshen With those
obtained through reweighting of an Asimov sample with a
different value of piofrshenn allows to test for possible bias in
different regions of phase space. This test is demonstrated in
figure 8 where histograms of distributions of Dy (x) obtained
from high-statistics Asimov samples with signal strengths
Wotishetl = 0.3 and 1.7 are compared with the same distri-
butions obtained through reweighting of a SM (Uoff.shell =
1.0) Asimov sample. The results shown in figures 7 and 8
indicate that the NNs are trained with low bias and low
variance. A separate multidimensional test is performed by
training a second NN to discriminate between an Asimov
sample with known pio_shenr and another sample obtained from
reweighting the reference sample with p(x|goft-shen) /Pref(x)-
No discriminating power is observed in this second NN,
which indicates that it cannot distinguish between the ori-
ginal and reweighted samples, and that no significant biases
in the estimate of the density ratios are present. The mul-
tidimensional test probes a limited range of the complete
phase space and only confirms what thorough reweight-
ing tests performed with many different observables already
show.

(x| ttot-shenn = 1)
Pref (X)

(X | Hoff-shell )
Pref ()C )
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Figure 8. Comparison between the Dp(x) normalized distribution obtained using an Asimov sample with (a) pofr-shen = 0.3 and (b)
Hofi-shell = 1.7, and the same distributions obtained through reweighting of a SM (oft-shet = 1.0) Asimov sample. The ratio plots provide a
comparison between the two estimates (middle panel) and between the distributions at the given value of piofrshen and the SM expectation

(bottom panel).

6.3. Systematic uncertainties

Systematic uncertainties include experimental uncertainties in
the reconstructed objects and modeling uncertainties in the
simulated samples. The systematic uncertainty model follows
closely that reported in [17] and only a summary is presen-
ted here. Modeling uncertainties and uncertainties in the jet
energy scale and resolution dominate the systematic uncer-
tainty of the measurement. Jet-related observables used to
describe the events provide important information for discrim-
ination between hypotheses, especially for EW off-shell Higgs
boson production. However, they also make the result sensitive
to modeling of jet energy scale and resolution.

The uncertainty in the integrated luminosity for the full
Run 2 dataset is 0.83% [48], obtained using the LUCID-
2 detector [40] for the primary luminosity measurements.
Experimental uncertainties include momentum scale and res-
olution uncertainties for muons, electrons, and jets. These
uncertainties are estimated by using calibrations performed
for each individual object and by comparing them with dif-
ferent simulation models. Uncertainties in the reconstruc-
tion, identification and trigger efficiency of electrons [50,
78] and muons [51, 77] are determined from tag-and-probe
efficiency measurements using Z — £7¢~ and J/¢ — (70~
events. uncertainties in the jet energy scale are derived by com-
bining information from test-beam data, LHC collision data
and simulation [82]. Uncertainties in the jet energy resolution
are estimated as a function of jet pr and rapidity using dijet
events, based on a similar method as in [82].

Modeling uncertainties arise from the choice of PDF, miss-
ing higher-order corrections in both QCD and EW perturb-
ative calculations, the merging of additional partons to the
hard-scatter ME, and the description of the parton shower. The
methods used to estimate modeling uncertainties are summar-
ized in table 4.

The PDF uncertainties are evaluated using the NNPDF pre-
scription with 100 replicas from the NNPDF3.0 set [57]. The
uncertainties due to missing higher-order QCD corrections
are estimated by varying the renormalization and factorization
scales independently, by factors one-half and two.

For the gg — ZZ — 4/ processes, the renormalization and
factorization scales variations are evaluated on the NLO/LO
K-factors and propagated to the measurement as a function
of mzz only [60]. The gg — ZZ — 4¢ NLO scale variation
is found to be approximately uniform throughout the phase
space, with a 10% relative magnitude, and independent of
the process (ggF S, ggF B, ggF SBI). The NLO K-factors and
scale variations used for the gg — ZZ — 4/ processes do not
contain the complete top-quark mass dependency, which has
only been recently calculated [98]. Therefore, the gg — ZZ —
4/ uncertainties due to scale variations are increased by 50%
for mzz in the #f threshold region, and doubled in the phase
space containing a jet with pr > 150 GeV [17].

For all other processes, the two variations of the renormaliz-
ation and factorization scales with largest impact in the expec-
ted value vx were taken as representative of this uncertainty.
An additional uncertainty in missing higher-order QCD cor-
rections is estimated for the gg — ZZ — 4¢ and qq — ZZ — 4/
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Table 4. Description of the different sources of modeling systematic uncertainties considered for each process and the method used to

estimate it.

Process Uncertainty Method

qq — ZZ Missing higher-order QCD Renormalization and factorization scales
qq — ZZ Soft-gluon resummation QSF resummation scale

qq —~ 27 Jet merging CKKW merging scale

qq —~ ZZ Parton shower SHERPA showering scheme

qq —~ 27 Missing higher-order EW NLO/LO K-factor in regions of high recoil
qq— 77 PDF NNPDF MC replicas

EW qq — ZZ +2j Missing higher-order QCD Renormalization and factorization scales
EW gq — ZZ +2j Parton Shower A14 tune parameters, ISR and FSR scales
EW qq — ZZ+2j PDF NNPDF MC replicas

88—~ 27 Missing higher-order QCD Renormalization and factorization scales
88— 77 Soft-gluon resummation QSF resummation scale

88—~ 277 Jet merging CKKW merging scale

88—~ 27272 Parton shower SHERPA showering scheme

gg— 2727 PDF NNPDF MC replicas

processes by varying the soft-gluon resummation scale (QSF)
in SHERPA by half and twice the nominal value used in the
simulation. The QSF scale variation is evaluated separately for
each gg — ZZ — 4/ component (ggF S, ggF B, and ggF SBI)
and can induce variations as large as 40% on the expected
yield [59].

Jet merging uncertainties are evaluated by varying the
matching scale (based on the Catani-Krauss-Kuhn-Webber
CKKW prescription [99]) for the processes simulated with the
SHERPA generator. Parton-shower uncertainties are evaluated
by varying the SHERPA showering scheme [59]. For those pro-
cesses simulated with the PYTHIA shower program, the uncer-
tainty is assessed by varying the PYTHIA configurations, such
as the parameter values of the A14 tune, the multi-parton mod-
els, and the initial and final-state radiation scales.

The uncertainties due to missing higher-order EW cor-
rections are considered for the main qg — ZZ — 4/{ process.
The largest missing higher-order component comprises mixed
NLO QCD + NLO EW corrections, which are relevant in
regions of phase space with large NLO QCD corrections.
Following the procedure from [100], the full magnitude of the
NLO EW correction is taken as uncertainty for events in which
the quadruplet has large recoil. The same prescription was
used in histogram-based analysis and further discussion can be
found in [17]. These uncertainties are subleading when com-
pared to the dominant modeling uncertainties related to miss-
ing higher-order corrections in gg — ZZ, soft-gluon resumma-
tion in gg — ZZ, and jet matching in gg — ZZ.

Systematic uncertainties are introduced in the measurement
model by nuisance parameters (NPs) «,,, which modify both
the expected event rates vx () = Gx (o) vx and the prob-
ability densities px (x|au) = gx,m(x|am)px(x). The different
sources of systematic uncertainties are considered to be inde-
pendent, and lead to the following probability model for each
process X:

vx (@) px (xilar)

HGX,m (anl)] vx [ng,m (x,‘,Oém)‘| Px (Xi) . (13)

13

The values of the NPs are constrained by auxiliary meas-
urements that are defined by two auxiliary observables (AOs):
the central value a,, and the uncertainty d, ,,. The functions
Gx (o) are polynomial-exponential interpolations of the
expected number of events vx based on simulated samples
with NPs varied between a,, + 4., and a,, — dq,m [90]. The
same samples are used to describe the probability density
ratios gx (X, = ay £ 04 m) using NN estimates for the
density ratios px(x|am = am £ dam)/px (x|ay, =0) [31]. In
the CR, where no per-event density ratios are used, only
per-bin G functions are used. In the SR, the per-bin G
functions parametrize the normalization uncertainty, while
the per-event g functions parametrize the shape uncertainty
as a function of the 14 observables used to describe the
event.

For the theoretical modeling uncertainties of gg — ZZ —
4¢ production, common NPs are introduced for the ggF S,
ggF B, and ggF SBI processes. The same is done for the the-
oretical modeling uncertainties of EW gq — ZZ+2j — 4/ +
2j production, where common NPs are used for EW SBIj,
EW SBI,j, and EW B. In the description of theoretical uncer-
tainties in gg — ZZ — 4/, the normalization and shape com-
ponents are described with different NPs. Since separate nor-
malization parameters are introduced for the qg — ZZ — 4¢
processes with njes = 0,1, > 2, separate NPs are also used to
describe the corresponding modeling systematic uncertainty
for the three different processes.

Dedicated NPs are introduced to account for the uncer-
tainty due to the finite number of simulated events in each
process and to the natural stochasticity of the NN train-
ing. These uncertainties are evaluated by bootstrapping the
ensemble members used to estimate the density ratios. Each
bootstrapped ensemble is used to infer the signal strengths /i
using the maximum likelihood methods described in section 7.
The standard deviation 4 of the maximum likelihood estim-
ators (MLEs) is used as a proxy for the uncertainty arising
from the finite number of simulated events, with a correction
factor to account for the partial overlap of events in each mem-
ber of the ensemble [101]. The associated NP is introduced as
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a spurious signal uncertainty [102] by introducing a new NP
aMcstar and shifting p — 1+ amcsad -

7. Statistical analysis and results

Histograms of the scores sx(x) used to estimate the density
ratios in the SR are shown in figure 9 for all processes in this
analysis indicating a good modeling of the probability dens-
ity ratios throughout the SR. A single histogram is shown for
Sqgzz since a single NN ensemble is used for the three ggZZ
processes (with njes = 0, 1, and > 2). This is possible without
loss of information because the observable that distinguishes
the three processes (nje) is part of the vector x that describes
the event, and therefore:

Njets =1

9477 (x)

Pqgzz (%)
Pref (X)

Pref (X) ’

Tjets =1

4477 (14)

= Onjes,i V22

where 9, ; is the Kronecker delta.
The NN-based density ratios allows an unbinned analysis
to be performed. The data are analyzed using the likelihood

function A(u, 0, a):

—2InA(1,0,0) =2 Y In[Pois (Ny[v (1,0, 00))]

regions (I)
p xl|M,0 Ot):|
) In [
evgs: i) Pret (Xi) (15)
+ Z (am - am)2 .

systematics ()

The first term in the sum corresponds to the Poisson probabil-
ity of observing a total of N; events in a region / with v;(u, 6, @)
expected events. The second term is the ratio of the probability
density of the dataset {x;} for a hypothesis given by paramet-
ers (1,6, «) and the probability density of the same dataset for
the fixed reference hypothesis. The last term in the sum repres-
ents Gaussian constraints for the NPs «,, from auxiliary meas-
urements with value given by the AOs a,,. The values of the
NPs and AOs are considered to be normalized by the value of
the uncertainty of the corresponding auxiliary measurement,
so that the width of the Gaussian density can always be taken
as unity.

Four regions are considered in the sum of Poisson terms.
The SR (defined as Dy (x) > —0.85), and the CR (defined
by Dpre(x) < —0.85) that is further divided into three mjes
bins: 0, 1, and > 2 to provide enough constraining power for
the 9;?21’21 ¥ background normalization parameters, which are
treated as unconstrained NPs, i.e. they have no corresponding
auxiliary measurements that constrain them.

Only events in the SR are used in the sum over events,
as defined in equation (15). To simplify the notation, all
constrained and unconstrained NPs are collectively denoted
by « hereafter. The test statistic used in this measure-
ment is the profile log-likelihood ratio, traditionally used in

LHC measurements [90]:

Q))

— —21n()\(ﬁ;)), (16)

where (fz,@) are the parameters estimates that maximize the

function A(u,«) and &(u) is a parameter estimate that condi-
tionally maximizes the function \(u, «) for a given p:

(7,3) = argmax A (1)

5(/0 = argmax A (u,q).
JTRe" e}

a7

The term ) . . In(per(x)) in the denominator of
equation (15) cancels in the ratio used to define the test statistic
t,, since it is independent of any parameter (u,c). Figure 10
shows the results of a closure testof the z,, . ., test statistic: the
value of the estimate [iofr_sher for an Asimov sample with a true
value of piofrshen for a wide range of pofesnen values. Closure
is observed for all values of pofr.shen, Within the statistical
uncertainty of the simulation samples used. An additional test
was performed replacing the gg — ZZ SHERPA sample in the
Asimov data by an alternative simulation done with POWHEG.
The hard scattering ME in both samples is calculated at the
same perturbative order in QCD, but the samples have differ-
ent parton shower matching and simulation. Closure of the
Lottshetl MLE is also observed with the alternative Asimov
sample.

A total of 127 NPs are used in the measurement, and no
significant differences between the MLE estimates &, and the
values of the auxiliary measurements a,, are observed. The
observed and expected values of the profile likelihood ratios
ioegen are shown in figure 11 as functions of piefrshen for a
variety of scenarios, assuming fioft.sheli = mé,off_sheum%,}off_sheu =
/f“‘,pff_she“. Figure 11(a) compares the profile likelihood ratio
for the histogram-based [17] and the NSBI-based analyses,
and shows the improved constraints on fig.she; Obtained with
the latter. Additional comparisons with the histogram-based
analysis are shown in appendix B. Figure 11(b) compares the
profile likelihood ratio for the NSBI-based analysis to a variant
where the NPs are fixed to the best-fit value @, reflecting only
the statistical uncertainty on the data. The comparison indic-
ates that systematic uncertainties are more important for tests
of signal-dominated hypotheses (tof.shenn > 1) than for tests of
interference-dominated hypotheses (fioft.shent < 1)-

As is the case for the histogram-based analysis, the test
statistic is not distributed as a x> probability density, due
to the double minima created by the interference terms and
due to the constraint piofrghenr > 0 imposed by the model of
equation (3). Confidence intervals are built using the Neyman
construction (NC) [103] instead of relying on the asymptotic
approximation. In the NC, pseudo-experiments are built by
performing a Poisson bootstrapping on the high-statistic refer-
ence sample [102, 104]. In each pseudo-experiment, the boot-
strapped weight of an event x; with weight w; in the reference
sample is sampled from a Poisson distribution with expec-
ted value w; (v (u, @) /Vrer) (P (xi| 1, @) / Preg(x) ). The value of the
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Figure 9. Comparison between data and expectation in the SR (Dpr(x) > —0.85) of the NN scores of the all major samples used to
describe the probability density ratio of the reference process and (a) ggF SBI, (b) ggF S, (c) ggF B, (d) EW SBI,, (e) EW SBI,, (f) EW B,
(g) qq — ZZ, and (h) VVV. The comparisons show a good modeling of the probability density ratios throughout the SR. The lower panels
show the ratio of data to expectation. The expected SM distributions are shown as stacked histograms and the expected signal (interference)
is shown as a solid red (dashed blue) line. The background is estimated under the SM hypothesis (post-fit, pofr-shen = 1). The hatched band
shows the total systematic uncertainty in the expected distribution. The last bin contains overflow events.

AO a,, associated with each constrained NP «,, is sampled

from a Gaussian probability density Gaus(a,,|@, 1) [90].
Figure 12 shows the expected distribution of #,, ;. ,—o for

the SM hypothesis (ph 1) and the no off-shell Higgs

off-shell —
boson hypothesis (40 0). The black and dashed blue

off-shell —
vertical lines indicate the observed and expected values of
tioaen=0- T€spectively. The red dash-dotted curve in figure 12
shows the expected distribution of 7, ; ., —o0 assuming the SM
hypothesis (u4®, ., = 1). The p-value of the observed value
of #,;wm=0 under the SM hypothesis is 0.11, correspond-

ing to one-sided significance of 1.20. The green solid curve

shows the shows the expected distribution of 7, ; , , —o0 assum-
ing puh =0 (no off-shell Higgs boson hypothesis). The
green dotted lines show the p-value thresholds correspond-
ing to the one-sided significance of 1o and 20 under this
hypothesis. The evidence for off-shell Higgs boson produc-
tion has an observed (expected) significance of 2.50 (1.30)
using only the H* — ZZ — 4{¢ decay channel. The evidence
for off-shell Higgs boson hypothesis has a larger significance
than the one observed (expected) in the previous histogram-
based analysis [17] of the same dataset, which had a value of
0.80 (0.50).
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Figure 11. (a) Values of the test statistic #,;,., assuming a single parameter of interest fioftshenl Obtained with an Asimov dataset (expected,
dashed blue) and with data (observed, solid black) in the H* — ZZ — 4¢ decay channel. The values from the histogram-based analysis [17]
are added in dash-dotted lines for comparison. The dotted gray lines show the 68% and 95% confidence belt, obtained from the Neyman
construction. (b) Same values obtained with data (observed, solid black) and Asimov dataset (expected, dashed blue) compared with the

statistics-only case with all NP fixed at their best-fit values @.

Figure 13(a) shows the distribution of the probability dens-
ity ratio p(x|pofishen = 0, @) /p(x|ttotr-shen = 1, &), which is a
optimal observable for piofshen = 0. The lower panel shows a
comparison with the distribution from the best-fit hypothesis
depicting the data behavior that leads to the observed exclu-
sion of the no off-shell Higgs boson hypothesis. The differ-
ence between the observed and expected values of 7, .0
indicates that there are regions of phase-space where the data
are more interference-like than signal-like, as can be seen by
the rightmost bins in figure 13(a) where the observed deficit of

events is larger than expect. Given the small significance of the
difference between expected and observed values of 7,, . ., —0,
it is difficult to isolate a specific region of phase-space with
this behavior.

Figure 13(b) shows the distribution of the quadruplet mass
myy and, in the lower panel, the comparison with the best-fit
hypothesis. This indicates that the quadruplet mass inform-
ation alone would not be enough to obtain evidence of off-
shell Higgs boson production in this channel and illustrates
the importance of the ME-based analysis performed with the
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Figure 12. Expected distribution of 7,, . ,.,_, estimated with pseudo-experiments for the case of i 1 = 0 (solid green, no off-shell Higgs
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Figure 13. Comparison between observed and the expected background distributions of (a) the optimal observable at piof.shen = 0 and (b)
the quadruplet mass m4,. The solid red lines shows the expected distribution of the best-fit hypothesis fi. The lower panel shows a
comparison between the distribution of the background-only and best-fit hypotheses. The background is estimated under the SM hypothesis
(post-fit, piofr-snen = 1). A comparison between the two distributions indicate that the optimal observable built with the NSBI method
provides better evidence for off-shell Higgs boson production than only the ma, distribution. The hatched area corresponds to the total
systematic uncertainty in the expected distributions. The first and last bins contain overflow events.

NSBI method. Further descriptions of the optimal observables
can be found in appendix C.

Two methods are used to estimate the sensitivity of the
measurement to different systematic uncertainties. The two
methods differ in what is varied: either the NPs «,,, or of
the AOs a,, associated with these NPs [105]. When using the
variations of NPs, each parameter o, is varied by its uncer-
tainty and the conditional maximum likelihood estimate ﬁ is
re-derived with only that NP fixed. On the other hand, when
varying AOs, each observable a,, is set to £1 and the uncon-
ditional maximum likelihood estimate /i is re-derived without

fixing any NP. In both methods, the difference between the new
and original estimate /i is taken as the propagated uncertainty.

The results of both methods are summarized in table 5.
The propagated uncertainties are summed in quadrature within
each group. The sum in quadrature does not take into account
correlations between the different parameters &, when using
the method based on the variation of NPs. The same prob-
lem does not exist when varying AOs: the sum in quadrature
can be made without loss of information and it can be used
to provide a consistent decomposition of the total uncertainty
into statistical and systematic uncertainties. In both methods,



Rep. Prog. Phys. 88 (2025) 057803

The ATLAS Collaboration

Table 5. Absolute systematic uncertainties in the measurement of fioft-shen in the H — ZZ — 4¢ decay channel. Two methods of estimation
are presented: based on the variation of nuisance parameters and on the variation of auxiliary observables. Uncertainties are given using the
auxiliary observables methods since it allows variations to be summed in quadrature. The total uncertainty is independent of the method

used to estimate systematic uncertainties.

Absolute impact on fioff-shell

Uncertainty source Nuisance Parameter Auxiliary Observable
Electron uncertainties (—0.05,+0.06) (—0.05,+40.06)
Muon uncertainties (—0.03,40.03) (—0.02,+40.03)
Jet uncertainties (=0.10,40.10) (—0.09,+0.11)
Luminosity (—0.01,+0.01) (—0.01,+0.01)
Total experimental (=0.12,+0.13) (=0.11,+0.12)
qq — ZZ modeling (—0.06,+0.07) (—0.06,+0.07)
8¢ — ZZ modeling (—0.08,+0.13) (—0.07,+0.09)
EW gg — ZZ + 2j modeling (—0.01,+0.01) (—0.01,+0.01)
Total modeling (=0.10,+0.15) (—0.09,+0.12)
Systematic uncertainty (—0.16,+0.19) (—0.14,40.17)
Statistical uncertainty (—0.49,+0.72) (—0.50,+0.73)

Total uncertainty

(—0.54,40.75)

the statistical uncertainty is obtained by the square root of the
difference of the total uncertainty squared and the systematic
uncertainty squared.

The largest contributions to the measurement uncertainty
are the statistical uncertainty on the data, the theoretical mod-
eling uncertainties, and uncertainties on the jet energy scale
and resolution. The contribution of MC statistical uncertainty
to the total uncertainty is less than 0.01. The observed (expec-
ted) value of piofrshenn at 68% CL is:

+0.75
7 —0.54

Hoft-shent = 0.8 (1.00%5:35) -

The fitted values of 9"};2'2, Gq 77> and 0, 4 g7z are 1.124+0.04,
0.85+£0.05, and 0.90 £ 0.07, respectlvely The result presen-
ted here has a reduced uncertainty when compared with the
previous histogram-based analysis observed value at 68% CL

of 0.79™ 2} (expected fofrshen < 1.14).

71. Combination with the analysis in the 2¢(2v decay channel

The new result presented in this paper is combined with the
most recent ATLAS off-shell Higgs boson production meas-
urement in the H* — ZZ — 202v decay channel [17]. The
histogram-based H* — ZZ — 2¢2v analysis uses the binned
transverse mass m%z distribution in three different SRs, in
addition to the yield of four CRs enriched in Z+ jets, non-
resonant ey events, and gg — WZ events. The test statistic used
for the combination is built from the log-likelihood ratio in
equation (15), where now the sum over regions also includes
the several m#Z bins and CRs of the analysis in the H* — ZZ —
202y decay channel.

The systematic uncertainty model used here is expan-
ded to include constrained and unconstrained NPs exclus-
ive to the analysis of the H* — ZZ — 2¢2v decay channels.
Experimental and common theory uncertainties, i.e. pertaining

to gg — ZZ and qq — ZZ modeling, are modeled with common
NPs that modify both likelihood components. Uncertainties
related to missing higher-order EW corrections in the gg — ZZ
process, which were estimated with different methods in both
analyses, are modeled with separate NPs for the H* — ZZ —
4¢ and H* — ZZ — 202v analyses. However, the measured
off-shell Higgs boson production is largely insensitive to this
modeling choice. Common qq —> ZZ data-driven normaliza-
tion parameters 6}, 0./, and 02/ ,, are used in the two chan-
nels since the phase space probed is similar within each 7jes
bin.

Figure 14(a) shows the test statistic values as a func-
tion of fiofr.shent, fOr a joint likelihood model with a single
common parameter of interest fioft.sheil (K off.shell A off-shell =
n“‘,joff_shen). Similar to the result using only the ZZ — 4/ chan-
nel, the comparison indicates that systematic uncertainties
are more important for tests of signal-dominated hypotheses
(Hoft-shert => 1) than for tests of interference-dominated hypo-
theses (toft.shent << 1). Figure 14(b) shows the expected dis-
tribution of 7, ., for the SM hypothesis (ugfl}ltslhell =1) and
the no off-shell Higgs boson hypothesis (uoff whenn = 0) using
the bootstrapping technique described above. The observed
(expected) value of fiofrshen at 68% CL is:

+0.62
6 —0.45

Hoff-shent = 1.0 (1 -00458:2;) .

The result using uncertainties at 95% CL can be found in
table 6. The evidence for off-shell Higgs boson production has
an observed (expected) significance of 3.70 (2.40).

Figure 15 shows the values of the test statistic #, . ., and
Ly oiranen @S @ function of Ky offshett and Ky off-shell, T€SPECtively.
In both cases, the  parameter not shown is profiled. The res-
ulting confidence intervals in Kg off-shell aNd K, off-shell Provide a
measurement of the Higgs boson couplings to gluons and vec-

tor bosons without any assumption on the Higgs boson total
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Figure 14. (a) Values of the test statistic 7, ,., assuming a single parameter of interest 7, ; ., obtained with an Asimov dataset (expected,
dashed blue) and with data (observed, solid black) combining the H* — ZZ — 4¢ and H* — ZZ — 2{2v decay channels. The dash-dotted
curves show the statistics-only results where all NP are fixed to their best-fit values &. The dotted gray lines show the 68% and 95%
confidence belt, obtained from the Neyman construction. (b) Expected distribution of ¢, ,.,—o estimated with pseudo-experiments for the

truth
case of Lyff-ghell

truth
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Figure 15. Values of the (a) test statistic 7y, . as @ function of g offshen and (b) the test Statistic tiy ., as @ function of Ky oft-shell
obtained with an Asimov dataset (expected, dashed blue) and with data (observed, solid black). The dash-dotted curves show the
statistics-only results where all NP are fixed to their best-fit values &. The dotted gray lines show the 68% and 95% confidence belt,
obtained from the Neyman construction. The ~ parameter not shown is profiled in both cases. The abrupt change at Ky ofishet = 0 comes

from the strong méyoff_sheu dependency in the EW production of off-shell Higgs bosons.

width [8]. The observed (expected) values at 68% CL are:

_ +0.39 +0.76

Fig.oftshel = 1.097035 (1.0055:49)
_ +0.16 +0.29

Kvoff-shett = 0.997 g (1'00—0.45) :

72. Combination with on-shell 4¢ analysis and Higgs boson
width interpretation

Measurements of the on-shell Higgs boson production [106]
provide constraints on the signal strengths yﬁﬁihen =

2 2 EW 4
K:g,on-shellK/V,on-shel]/ ke and  frog ey —”V,on-shen/ Kh, Where

kg =y/T3M is the Higgs boson width normalized to the
SM expectation.

Assuming that K;,on—shelln%/,on—shell = K’A\t/,on—shell =
K offshell A0 off-shell = KV,oftshetis the  off-shell Higgs boson
production measurement can be combined with the on-
shell H— ZZ— 4¢ production measurement [106] to
provide a measurement of the Higgs boson total width.
The joint likelihood model for this measurement extends
equation (15) with a common H — ZZ coupling mod-
ifier 0pzz; and the modifier xy to the Higgs boson
width:
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where Onzz = K‘;,on»shell K‘%/,on—shell - Hé\‘/,on—shell = K;,off—shell
ﬁ%,pﬁ_she" = /i“‘/,off_she“. This assumption follows the one used
in [17], but the sensitivity could be weakened by allowing xy
and k, to vary independently and account for BSM contribu-
tions. The NP model for common experimental uncertainties
follows the approach described in section 7.1. Events from
on-shell Higgs boson processes in the off-shell background
sample are also scaled as Oyzz/kg. Theoretical modeling
uncertainties in the on-shell and off-shell measurements are
modeled with separate parameters, given the distinctness of
the phase-space regions, but the measured Higgs boson width
is largely insensitive to this modeling choice. Background
normalization factors are also modeled separately.

Figure 16 shows the test statistic values as a function of kg
when profiling 0zz. The observed (expected) value of kg and
'y at 68% CL are:

= 1055053 (100103

2.7
Iy=43"7

),

(4.1737) MeV.

The result using uncertainties at 95% CL can be found in
table 6.

20

A similar combined measurement strategy can be
used to constrain Rg, = /{é)on_she" / /iioﬁ_she" and Ryy =
K% oncshell/ ¥ ofi-shei- The value of the two test statistics as a
function of Rg, and Ryy are shown in figure 17. The observed
(expected) values at 68% CL are:

0.89
Ree =1.1970%;

0.44
Ry =0.95+04

(1.00%555) .
(1.00%56) .

profiling the other R parameter and setting sy to unity. Table 6
summarizes all the results presented in this paper.

8. Conclusion

A measurement of the off-shell Higgs boson production in
the H* — ZZ — 4/ decay channel is presented. The measure-
ment uses 140fb~! of integrated luminosity collected at Vs =
13 TeV during the Run 2 of the LHC by the ATLAS detector.
The data are analyzed with a NSBI strategy in which NNs are
used to estimate a per-event contribution to the likelihood ratio
between different hypotheses. This result is combined with the
most recent measurement of the off-shell Higgs boson pro-
duction in the H* — ZZ — 2£2v decay channel. The observed
(expected) value of the off-shell Higgs boson signal strength
is 1.067062 (1.0070:83) at 68% CL. The evidence for off-shell
Higgs boson production has an observed (expected) signific-
ance of 3.70 (2.40). The off-shell Higgs boson production
measurement in the H* — ZZ decay channel is combined with
the on-shell Higgs boson production measurement in the same
channel to obtain a constraint on the Higgs boson total width.
The observed (expected) value of the Higgs boson total width
is Ty = 4.3t%:(7)(4.1t§:2)M6V at 68% CL, improved relative
to the ATLAS previous result of Ty = 4.4733(4.1138)MeV
using the same dataset.
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Figure 17. Values of (a) the test statistic #g,, as a function of Rgy = nf,,on,shen / /ci’off,she” and of (b) the test statistic tg,, as a function of
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parameter not shown is profiled and kp is fixed to 1.

Table 6. Summary of the results for kg oftshell, £V, oft-shell> aNd foft-shetl cOmbining the measurement of the off-shell Higgs boson production
analysis in the H — ZZ — 4/{ decay channel presented in this paper with the analysis in the H — ZZ — 2¢2v decay channel from [17]. The
results for 'y, Rge and Ryy are obtained combining the off-shell production measurement with the on-shell analysis from [106]. All results
are presented with their 68% CL and 95% CL intervals. No expected 95% CL interval for x ofi-shen is obtained because the Asimov sample

is unable to break the degeneracy between kg off-shell and Ky, oftshelt in ggF production. All results use the full Run 2 dataset with 140tb~! of

integrated luminosity.

68% CL interval 95% CL interval
Parameter  Value  Observed Expected  Observed Expected
Loff-shell 1.06  [0.61,1.67] [0.17,1.83] [0.21,2.24] [0.01,2.42]
Kg off-shell 1.09 [0.74,1.48] [0.11,1.76] <2.08 —
KV, off-shell 0.99 [0.80,1.15] [0.55,1.29] [0.58,1.30] [0.01, 1.42]
'y [MeV] 429 [2.41,695] [0.66,7.61] [0.76,9.66] [0.12, 10.50]
Rge 1.19  [0.53,2.07] [0.02,1.92] <2.96 <2.73
Ryv 095 [0.61,1.39] [0.31,1.70] [0.30,1.86] [0.06,2.14]
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