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Abstract. We propose a generalization of the BPS Skyrme model [1], in which
the Skyrme field takes values in any simple compact Lie group G that gives leads
to a Hermitian symmetric space G/H ® U(1), where H is a subgroup of G. In
addition, the model includes extra scalar fields corresponding to the entries of a
symmetric, positive, and invertible dim G x dim G matrix h. We investigate the
self-dual sector of this theory within the generalized rational map ansatz proposed
in [2]. Apart from the special case G = SU(2), the self-dual equations do not fully
determine the matrix h in terms of the Skyrme field, which is totally arbitrary. In
general, the number of free components of h tends to grow with the dimension of
G. Furthermore, we show how to construct particular self-dual solutions whenever
the generalized rational map ansatz can be explicitly implemented, which includes
the case G = SU(p+ ¢) with the Hermitian symmetric space SU(p+q)/SU(p) ®
SU(q) @ U(1), for all p, ¢ > 1.

1 Introduction
The notion of self-duality has provided profound insights into the structure of topological solitons
and it is a powerful tool to construct such a solutions in a broad class of nonlinear classical
field theories. The self-duality appears in models that have two main features. First, the
integer-valued homotopy invariant quantity that classifies the topological soliton, the so-called
topological charge (), must admits integral representation with a density with the form of the
contraction A, fla, where A, and fla are real-valued functions of the real-valued fields and their
first order derivatives. The meaning of the contraction in « index depends of the theory. Second,
the static energy density must be written as a sum of squares involving the two objects A, and
A, obtained from the splitting of the topological charge density. It follows that the so-called
self-duality equations A, = + A, also called BPS equations, imply second-order differential
Euler-Lagrange equations and also correspond to the global minimizer of the static energy to
each value of Q).

The self-duality significantly simplifies the construction of topological solutions, as the BPS
equations are first-order differential equations. The reduction by one integration arises from
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a mathematical identity stemming from the homotopy invariance of the topological charge. A
broad range of self-dual topological solutions is known. Notable examples include instantons
and kinks in (1 + 1) dimensions [3-6], as well as Abelian Chern-Simons vortices in (2 + 1)
dimensions [7].

By exploring the invariance of the topological charge density under the transformation
(Ag, Ag) — (AL, AL) = (kap Ag, Ii;é Ag), where k is a real invertible matrix, one can construct
more general models that contain extra fields using ideas of self-duality. The static energy den-
sity of these models have the form of the sum of A2 = A, has Ag and A2 = A, h;g, Apg, where

the extra fields corresponds to the entries of the positive symmetric matrix h = k k7. Examples
of BPS models in (3+ 1) dimensions constructed using this ideas are the self-dual Skyrme model
proposed in [1], also known as the BPS Skyrme model, and the self-dual generalization of the
Yang-Mills—Higgs system proposed in [8].

The standard Skyrme model is an effective classical field theory describing the triplet of
pions in (3 4 1) dimensions at low energies [4,9-12]. The model is formulated in terms of three
pseudoscalar pion fields assembled into the so-called Skyrme field, which takes values in the
SU(2) Lie group. The construction of finite energy solutions requires that the Skyrme field
approach the same constant at spatial infinity, allowing its domain to be compactified to S°.
The Skyrme field U : S3 — S is classified by a topological charge, which admits an integral
representation. The standard version of the model contains only one quadratic and one quartic
term in the space-time derivatives and supports stable topological solitons known as Skyrmions.
Unfortunately, the standard Skyrme model does not admit self-dual solutions, as established
in [11,13].

The BPS Skyrme model proposed in [1], mentioned above, generalizes the standard Skyrme
model through the introduction of six additional scalar fields corresponding to the entries of the
h matrix. This extension allows the model not only to possess an infinite number of self-dual
solutions for any value of the topological charge, but also to be exactly solvable. In fact, let us
introduce the matrix 7,, = R} Rf, which contracts the spatial components of the Maurer-Cartan
form R, =10,U Ul = R}, T, with a =1, 2, 3, where T, are the generators of the Lie algebra
of SU(2). In any domain where 7 is non-singular, the nine self-duality equations are equivalent
to six algebraic equations that fully determine the matrix h in terms of the Skyrme field, which
remains entirely arbitrary. This SU(2) field remains entirely arbitrary even at points where 7
is singular. However, in this case some of the components of the matrix h are also arbitrary.
The arbitrariness of the Skyrme field makes the self-dual sector of the model remarkably rich,
allowing for an infinite variety of exact self-dual solutions for any value of Q).

In this work, we propose a generalization of the BPS Skyrme model introduced in [1], in
which the Skyrme fields map physical space into any simple compact Lie group G that leads
to a Hermitian symmetric space G/H ® U(1), where H is a subgroup of G. This construction
includes the case G = SU(N) with N > 2, thereby extending the model [1] to larger groups
beyond SU(2). Each component of h is a scalar field, and h is a dim G x dim G symmetric
matrix that is invertible and positive definite. The dimension of h arises from the coupling of its
row and column indices to the algebraic indices of the components of the Maurer—Cartan form.
Examples of Lie groups that yield a Hermitian symmetric space are G = A,, B,., C,, D, Fg, E7,
while counterexamples include G = Eg, Fy, Go. Our second objective is to study the self-dual
sector of the generalized BPS Skyrme model using the generalized rational map ansatz proposed
in [2].

This work is organized as follows. In Section 2, we construct the generalized BPS Skyrme
model using ideas of self-duality. In section 3 we study its self-dual sector within the generalized
rational map ansatz proposed in [2]. In the section 4 we present our final considerations.
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2 The model and its construction
The third homotopy group of any simple compact Lie group G is w3 (G) = Z. Therefore, the
maps U : S% — G are classified by the integers and the associated topological charge can be
written in the integral representation as

7
48 72

Q= / &z £, Tr (R; R, Ry,) (2.1)

where R, is a Maurer-Cartan form defined by
R,=io,UU ' =RIT, (2.2)

with U taking its values on the group G, T, being the generators of the corresponding com-
pact simple Lie algebra G of the group G, with a = 1,...dim, G, satistying [T,, Tp] = i fape Te,
where fgpe is the structure constant. In addition, the generators are written in the orthogo-
nal basis Tr (7T, T,) = k04, and Tr represents the normalized trace defined by Tr (7T, Tp) =
kT (T, Tp) = Ogp.

The Maurer-Cartan form (2.2) satisfies by construction the Maurer-Cartan equation

0.R, — 0,R, +i [R,, R,] =0 (2.3)

which allow us to write the topological charge (2.1) as

Q

=5 /d% AL AL (2.4)

with A = Rli’ kp, and .,Z‘Z = % k';bl Eijk Tr (Ty [Rj, Ry]), where kqp is some invertible real dim G x
dim G dimensional matrix. Following the usual procedure of construction of self-dual theories
from the integral representation of the topological charge [1,6], one can introduce the self-duality
(BPS) equation

AA? = A & AR hyy = %sijkﬁ (T.[R;, Ri)) (2.5)

where A\ = +=m e and we have introduced a dim G x dim G dimensional matrix hy, = (k kT)ab =
Eac kpe, which is by consctruction invertible, symmetric and positive. The BPS equations (2.5)
implies the Euler-Lagrange equations associated to the following static energy functional

E = % / &P [mQ (Ag)2+ei2 (Xg)Q] (2.6)

which is the static energy of a generalized version of the Skyrme model [9,10]. Therefore, the
self-dual sector composed by the solutions of the self-dual equations (2.5) of the model (2.6) is
a subset of the static sector composed by the static solutions of the Fuler-Lagrange equations
associated to (2.6). The action associated to energy (2.6) that defines our generalized BPS
Skyrme model corresponds to

2
1
S = /d%: [m? hay By RV ¥ — — gl Hit, HY (2.7)

where we have introduced Hjj, = —iTr (Ta[Ru, Ry)).
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Using the definition (2.6) one can introduce the BPS bound for the static energy by
1 ~ 12
E = o /d% [A A — Ag] tsign (\) 4872 Q > sign (V) 48722 Q (28
e e e
which is saturated for the the self-dual solutions (2.5), reducing the static energy to

E:487T2% 1Q | (2.9)

where we have used the fact that E' is non-negative, which due to the BPS bound (2.8) implies
sign (Q \) = 1. Since the self-dual energy (2.9) is proportional to the modulus of the topological
charge, is so follows that the binding energy of the BPS Skyrmions per topological charge unit
Ep = Eg—1 — Eg/ | Q | vanishes for each value of Q.
We can write the self-duality equations (2.5) in an alternative form by contracting (2.5) with
R¢, which leads to
ATep hpy = Oca (2.10)

Tap = RY RY; Tab = —73 Eijk R?H]bk (2.11)

The hermitian symmetric spaces have the form of a coset G/K, where K is the little group
K = H ® U(1). Using the usual algebraic structure of a symmetric space we have that

(G,G]cG (G, P]CP [P, P]cg (2.12)

The hermitian character of such symmetric spaces is that P is even dimensional and it is split
by A into two parts according the its eigenvalues

P=PL+P_ [A, Pi] =+Py Py e Py (2.13)

It turns out that P_ is like the hermitian conjugate of Py, and so both spaces have the same
dimension, i.e. dimP; = dimP_ = %. Consequently, A provides a gradation of the Lie
algebra G into subspaces of grades 0 and +1, and so P are abelian (see [2] for more details).
The compact irreducible hermitian symmetric spaces G/H @ U(1) are

SU(p+q)/SU(p) @ SU(q) @ U(1); Sp(N)/SU(N) @ U(1);
SO(N +2)/SO(N) @ U(1) ; Es/SO(10) @ U(1); (2.14)
SO(2N)/SU(N) @ U(1) E7/Es® U(1)

3 The self-dual sector whithin the generalized rational map ansatz

In this paper we use a generalization of the rational map ansétze proposed in [2] on the Euclidean
space IR3, for any compact simple Lie group G such that G/H ® U(1) is a compact Hermitian
symmetric space, for some subgroup H of G. For a given element U € G, the ansatz has the
form

U= frohs™ (3.1)

where f (r) is a radial profile function, A is the generator of the U(1) subgroup of G appearing
in Hermitian symmetric space G/H ® U(1), and ¢ is a matrix that parameterizes the coset
G/H @ U(1). Using the coordinates (r, z, z) defined by

i(zZ—2) 24z (=14 ]2 %)
. ot —— pr— _— 3-2
r 1+ | Z |2 ) 332 r 1+ | Z |2 b I3 r ( )

= 1+ |2 2
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the matrix g is defined by

g(z,z)z]lvt%{i(S—l—ST)—%ﬂ(SS’H—STS)}; I=vitw  (33)

with S being a matrix in some special representation of G such that it satisfies
S2=0; (SST) S=ws (3.4)

with w being a real and non-negative eigenvalue. The matrix .S is either holomorphic, 9:5 = 0,
or anti-holomorphic, 9,5 = 0. For simplicity, we can write S = S(x), where x = z (x = Z) in
the case that S is (anti-)holomorphic. In addition, S and ST belongs to the Py and P_ abelian
subalgebras, respectively. For later convenience we can also introduce the sign function n = 1 for
X = z, and n = —1 for xy = Z. Therefore, the matrix g defines holomorphic, or anti-holomorphic,
maps from the two-spheres S? in IR3, parametrized by z and Z, to the Hermitian symmetric
space G/H @ U(1).

The components of the Maurer-Cartan form (2.2) associated to the generalized rational map
ansatz (3.1) becomes

RL=Tr(T,R) = Tt (VI V1 %,) = Tt (1. 5a) dey (V) (3.5)

where we have introduced the matrix for the group elements in the adjoint representation of G,
ie. T, g ' =Ty dy, (g). In addition, V = e~*/A2 g1 and the components X, are given by

. f N
.= fA; X, =-2 sin 5 P>£+) ; Yy =2 sin 5 Pé ) (3.6)
_ NN
where P)EH =9 (1+9)% 9, ((1 +9)72 S) € Py and P§< )= — (P;C )> € P_. We define
a sign function 7’ and fix the boundary conditions of the profile function as f(0) = 27 m and
f(c0) =0 for ' = —1, where m € N, and f(0) = 0 and f(oc0) = 27 m for ' = 1. The topological
charge (2.1) becomes

Q = 1'mQuop with Qtop =1 ﬁ / dzdz Tt (p)g+> P,%‘)) (3.7)
Using (3.5) and (3.6) the BPS equations (2.5) can be written as

Aoy By = Gea (3.8)

where we have introduced

hab = dac (V) headyy (V) 5 Tap = dae (V) Teady) (V) 5 Gap = dae (V) 0cady (V) (3.9)

The matrices izab and T, have the same eigenvalues of h and 7, respectively, and are sym-
metric, since the adjoint representation of a compact simple Lie group is unitary and real,
and so d is an orthogonal matrix, i.e. dT = d=!. In so follows that 7,, = b Eﬁ-’ and o, =
—% Tr (Ta Ei) Eijk Tr (Tb [Ej y Ek ])

For convenience, we adopt the convention that the index H, when appearing in the row or
column indices of the matrices 7 and &, denotes any index a labelling the generators T, of the
subalgebra H, and so on. A crucial consequence of the generalized rational map ansatz is that
the relations (3.6) and (3.9) imply 7,5y = da5 = 0 for all a = 1, ..., dimG. Consequently,
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none of the self-dual equations (3.8) depends on the hyy fields, which remain entirely arbitrary.
Therefore, in case H # 0, it follows that 7 is not invertible. Otherwise, we could contract the
self-dual equations (3.8) with ?d_cl, which would fix h entirely, contradicting the fact that 717.[7.[
is free.

Taking the row index ¢ as H in the BPS equations (3.8), one obtains that A 7y hba = 0% as
which are automatically satisfied using (3.6). On the other hand, using (3.6), the remaining
BPS equations in (3.8) are reduced to

= OAD

5/\1) = )\%AABAI) = hAb: m (310)
0 = p,p hp p,=7p.p. hp u=7p p, hp,p. =7p p, hp, u (3.11)
0 = 7 p, (heop, +03 f1) =Fpp (e p +aA 1) (312)

Although there is an implicit sum over the line index of the h matrix, leading to a linear system
to the hgyp fields, in (3.10) this sum is performed over a single generator, which corresponds to
the U(1) generator A. Therefore, hp, is fully determined by

haa = anTr <P>§+>P§<‘)); ay = anTr (7—[ [P>§+),P§<‘)]); hiap, =0 (3.13)

2sin® 7 (14z]?)?
FIT(AY) 12
Tr, since the x factor cancels in the self-duality equations (3.8).

Obviously, when the matrix 7p_p, is invertible, equations (3.11) and (3.12) imply that

where a = 5 and the normalized trace Tr has been replaced by the usual trace

hp,o = 0 hpp=-nA~'f'1 (3.14)

Nonetheless, in the case that 7p_p, is not invertible, the fields (3.13) and (3.14) continue to
provide a particular self-dual solution of (3.8). Regardless, the self-duality equation for the fields
hp, 94 in (3.11) can be expressed as

Tr (73_ P>(<+)) fip = Tr (79+ P;)) frp, 3 =0 (3.15)

Since there is no other BPS equation involving the fields ﬁp . #, there are only dim H equations
to determine the components hp . #, and there is an independent set of dim# equations to
determine the components hp ;. As a result, there are at least 2 dim A (dim P4 —1) components
of hyp free. The remaining self-duality equations in (3.11) correspond to dim P, equations for
the fields inf p, which can be written as

Tr (73_ P>§+>) o p, =0 (3.16)

Although there is also a set of dim P linear equations for the fields Tr (73+ P)%_)> hp .p. =0

in (3.11), this set of equations corresponds to the complex conjugate of (3.16). From (3.6) and
the definition of 7, we can write the remaining BPS equations, given in (3.12), as

Tr (m P;)) hp,p, = —pA LT (73+ P;)) (3.17)
Tr (73, P)§+>) hp p = —nA LT (73, Pﬁ) (3.18)
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Therefore, there are dim Py linear equations to determine dim P4 (dim Py + 1)/2 fields hp Py
and the same follows for the fields hp p . Once that the block hpp forms a dim P x dim P
dimensional symmetric matrix, the relations (3.16), (3.17) and (3.18) together compose a set
of 3dim P, linear equations to determined dim P, (2dim P, + 1) components of the h-fields,
leaving at least 2dim P4 (dim Py — 1) components undetermined.

The analysis above demonstrates that having dim Py = 1 is required for the fields ilpp to be
entirely fixed by the self-duality equations (3.8). Moreover, as shown earlier, in the cases where
Tp_p, is invertible, it follows that hpp must be entirely determined by (3.14). Consequently,
dimP; = 1 is also a necessary condition for 7p_p, to be invertible, which is the case for
G =5SU(2).

Note that for any representation of the group G where its is possible to construct the S €
P, matrix satisfying (3.4), the field configuration given in (3.13) and (3.14) that fixes the
components ha A, iLAH, ha Py Bp s il/p'p7 but do not fixes any component of iLHH, corresponds
to a particular solution of the BPS equations (3.8). Since the profile function remains arbitrary,
this leads to an infinite number of exact topological solutions for any simple compact Lie G that
leads to a Hermitian symmetric space, given in (2.14). In addition, the fields that parametrizes
the S matrix may be also arbitrary, enlarging the set of distinct exact BPS solutions of the
model.

By example, in the case of the Hermitian symmetric space SU (p + q) /SU (p)®SU (q)®U (1),
the S matrix was constructed in [2] in the fundamental (p + ¢) X (p + q) representation of the
group G = SU(p + ¢). In such a case, the S matrix is parametrized by p complex scalar
fields ug = uq(x), with @ = 1, ..., p, and g complex scalar fields v, = vp(x), with b = 1, ..., g,

corresponding with the entries of the objects u’ = (u1, ..., u,) and vI = (vy, ..., v,). The A and
S matrices, which defines the generalized rational map ansatz (3.1) and (3.3), are given by
1
A= —— ( 1lpp  Opxq ) and S = < Opxp 1 @ v > (3.19)
P+a \ Opp —Plgxq Ogxp  Ogxq

where Opyq is a p X ¢ zero matrix, and so on. When S is (anti-)holomorphic, both the fields u
and v are (anti-)holomorphic, and S satisfies (3.4) with w =| u |?| v |?. Therefore, (3.13) and
(3.14) corresponds to a particular solutions of the BPS Skyrme model, where the profile function
f and the matrix S given in (3.19) are arbitrary, i.e., u and v are arbitrary rational maps. The
topological charge (3.7) becomes

in dzdz Oyw Oxw
Q= n/mQtop§ Qtop = _ﬂ /? [6X8)—<w - ﬁ (3.20)

A special class of very simple self-dual solutions can be constructed choosing all the com-
ponents of the fields u are v equal to the same (anti-)holomorphic rational maps ui(x) =
Pu(X)/qu(x) and vi(x) = po(X)/q(x), respectively, between the Riemann spheres S?. There-
fore, the topological charge (3.20) is reduced to @ = n'nmmn, where n = deg (ujvy) is the
degree of the rational map u; v; which can be any natural number depending of the choice of
the rational maps u; and vs. On top of this freedom, the profile function is also free, leadind to
an infinit number of exact solutions to each integer value of the topological charge (). Using this
approach, and also choosing uv = x/,/p¢, the density of the topological charge and the static
energy density become spherically symmetric. Therefore, by adjusting the boundary condition
of the profile function, one can construct spherically symmetric BPS Skyrmions for any value of

Q.
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4 Conclusion

We have shown that in our generalization of the BPS Skyrme model for any compact Lie group
G leading to a Hermitian symmetric space, the full determination of the h fields in terms of the
Skyrme fields occurs only in the case G = SU(2). The generalized rational map ansatz employed
in these arguments drastically simplifies the self-dual equations, allowing the exact determination
of all components haa, hap L hay in terms of the Skyrme field, while yielding linear algebraic
equations for the components of iL’HPi,iLPiPi,BPqu:. Outside the case G = SU(2), these
equations are underdetermined, leaving at least 2dim P, (dim Py — 1) components of hpp and
2dim H (dim P4+ — 1) components of BHP entirely arbitrary.

In any representation of G where a matrix S satisfying (3.4) can be constructed, we have
shown how to generate an infinite number of exact topological solutions within the generalized
rational map ansatz. We have explicitly constructed the S matrix for the Hermitian symmetric
space SU(p+q)/SU(p) ® SU(q) @ U(1), where S is expressed in terms of p rational maps u;(x)
and ¢ rational maps v;(), which can be chosen freely. This allows us to construct a wide variety
of topological solutions for any value of Q). In a special case, choosing all components of u; and
v; are equal to ui(x) and vi(y), respectively, we have shown how to obtain any value of the
topological charge by changing either the boundary conditions of the profile function or the
degree n = deg(uy v1) of the rational map wu; vy.

The study of the generalized Skyrme model is greatly facilitated by the generalized rational
map ansatz, which also may play a key role in the construction of multi-Skyrmions in extensions
of this model. For instance, the global energy minimizer in such extensions may preserve all
the BPS equations, as occurs in the generalized False Vacuum Skyrme model [14]. Notably,
our model allows the construction of spherically symmetric multi-Skyrmions for any value of
Q@ in the case of G = SU(N), which has been employed to construct SU(N) False Vacuum
Skyrmions [14].
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