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Abstract

We present CAMELS-ASTRID, the third suite of hydrodynamical simulations in the Cosmology and Astrophysics
with MachinE Learning (CAMELS) project, along with new simulation sets that extend the model parameter space
based on the previous frameworks of CAMELS-TNG and CAMELS-SIMBA, to provide broader training sets and
testing grounds for machine-learning algorithms designed for cosmological studies. CAMELS-ASTRID employs
the galaxy formation model following the ASTRID simulation and contains 2124 hydrodynamic simulation runs
that vary three cosmological parameters (Ωm, σ8, Ωb) and four parameters controlling stellar and active galactic
nucleus (AGN) feedback. Compared to the existing TNG and SIMBA simulation suites in CAMELS, the fiducial
model of ASTRID features the mildest AGN feedback and predicts the least baryonic effect on the matter power
spectrum. The training set of ASTRID covers a broader variation in the galaxy populations and the baryonic impact
on the matter power spectrum compared to its TNG and SIMBA counterparts, which can make machine-learning
models trained on the ASTRID suite exhibit better extrapolation performance when tested on other hydrodynamic
simulation sets. We also introduce extension simulation sets in CAMELS that widely explore 28 parameters in the
TNG and SIMBA models, demonstrating the enormity of the overall galaxy formation model parameter space and
the complex nonlinear interplay between cosmology and astrophysical processes. With the new simulation suites,
we show that building robust machine-learning models favors training and testing on the largest possible diversity
of galaxy formation models. We also demonstrate that it is possible to train accurate neural networks to infer
cosmological parameters using the high-dimensional TNG-SB28 simulation set.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Hydrodynamical
simulations (767)

1. Introduction

Traditional methods used to extract information from
cosmological surveys typically rely on studying the properties
of the Universe (e.g., galaxy distribution, neutral hydrogen
distribution) on sufficiently large scales beyond a few
megaparsecs (see, e.g., Mandelbaum et al. 2013; Abbott et al.
2018), so that uncertainties from astrophysical processes such
as halo–galaxy connection, feedback from supernovae (SNe),
and supermassive black holes (SMBHs) remain small and
under control. However, the study of the distribution on small,
nonlinear scales of a few megaparsecs potentially holds the
strongest statistical constraining power on cosmology owing to
the high signal-to-noise ratio measurements. Recent studies
have shown that extracting information embedded in (mildly)

nonlinear scales can significantly tighten the constraints on the
cosmological parameters (e.g., Seljak et al. 2017; Hahn et al.
2020; Banerjee & Abel 2021).
In order to extract the maximum available information on

nonlinear scales from cosmological surveys, we need to
overcome two important obstacles: (1) the optimal estimator
that can capture the statistical properties of the considered
tracer (e.g., galaxies) is unknown, and (2) astrophysical
processes alter the properties and spatial distribution of tracers
in an unknown manner. Recent advances in machine learning
(ML) have enabled new possibilities to tackle this problem. On
one hand, neural networks can be used to build surrogate
models for summary statistics such as the power spectrum,
allowing predictions to be made for different cosmologies
(Villaescusa-Navarro et al. 2020). On the other hand, we can
attempt to marginalize uncertainties from baryonic effects by
training networks based on dark matter, gas, and stellar fields
from a variety of simulations (Villaescusa-Navarro et al. 2021a,
2021c). Thus, it seems that a powerful way to approach this
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problem will be to train models based on a large variety of
simulations that explore different galaxy formation models
spanning the possible space of cosmological and astrophysical
parameters.

This is one of the main ideas behind the Cosmology and
Astrophysics with MachinE Learning Simulations (CAMELS)
project (Villaescusa-Navarro et al. 2021a). CAMELS contains
thousands of N-body and state-of-the-art hydrodynamic
simulations that cover a range of cosmological and astro-
physical parameters. Its data have been used for a large variety
of tasks, from weighing the Milky Way (Villanueva-Domingo
et al. 2021) to checking the robustness of halo finders (Vallés-
Pérez et al. 2022). The hydrodynamic simulation suites in
CAMELS contain two distinct subgrid physics models based
on IllustrisTNG (henceforth TNG; Weinberger et al. 2017;
Pillepich et al. 2018) and SIMBA (Davé et al. 2019), run with
the AREPO (Springel 2010) and GIZMO (Hopkins 2015)
codes, respectively. This allows us to test the robustness of
developed ML models, i.e., to investigate whether a model
trained on one simulation suite (produced by a particular
subgrid physics model) will still perform well when tested on
the other. We note that it is essential to distinguish between the
precision and accuracy of the ML model. Models that are
precise but not accurate are not useful. CAMELS aims to build
accurate ML models by providing many different simulations
that can be used to test the model’s robustness (or accuracy).

Some works have shown that certain ML models are not
robust to variations in subgrid physics (see, e.g., Villaescusa-
Navarro et al. 2021a; Villanueva-Domingo & Villaescusa-
Navarro 2022; Delgado et al. 2023), while others have found
the opposite (Villaescusa-Navarro et al. 2021c; Shao et al.
2022; Villanueva-Domingo et al. 2022; de Santi et al. 2023;
Shao et al. 2023; Wadekar et al. 2023). Several natural
questions arise given this situation. Will the ML models that
are robust across the two subgrid physics implementations also
be accurate when tested on a third different subgrid physics
model? Can we build more robust ML models when training on
simulations from two different subgrid models combined?
Should we build ML models based on extensions of the
original galaxy formation models to larger parameter spaces
that capture more of their innate flexibility?

Those essential questions motivate us to expand the
CAMELS simulation sets by incorporating new suites of
hydrodynamic simulations with distinct subgrid physics
models, as well as to extend the previous simulation model
parameter space to higher dimensions to explore other
cosmological and astrophysical parameters that can play crucial
roles in various observational properties. Ideally, ML models
built to marginalize over astrophysics uncertainties should be
tested on simulations from as many galaxy formation models
(with well-explored parameter spaces) as possible to gain
confidence that those ML models will perform well when tested
on real data.

In this paper, we introduce the third hydrodynamic simulation
suite in CAMELS: CAMELS-ASTRID, carried out with the
galaxy formation models of the ASTRID simulation and distinct
from the models of TNG and SIMBA. The ASTRID simulation is
a recently developed large-volume, high-resolution cosmological
hydrodynamic simulation. The production run of ASTRID evolves
a -( )h250 Mpc1 3 cosmic volume with 2× 55003 particles (Bird
et al. 2022; Ni et al. 2022), currently run to z= 1.3. ASTRID is
descended from the simulation and model code used to run the

BlueTides (Feng et al. 2016) and MassiveBlack-II simulations
(Khandai et al. 2015) and incorporates a full array of modern
subgrid models for stellar and black hole (BH) feedback. ASTRID
uses the simulation code MP-Gadget, an extremely scalable thread-
based variant of Gadget that incorporates the hierarchical
gravitational algorithm from Gadget-4 (Springel et al. 2021) and
scales to 5× 105 cores.
We also introduce the CAMELS extension simulation sets of

TNG, SIMBA, and ASTRID, which aim to further broaden the
study of cosmological and astrophysical parameters in their
respective galaxy formation models, in addition to the six
fiducial parameters varied in the core CAMELS simulation sets.
This incorporates the new TNG-SB28 set that contains 1024
simulations varying 28 parameters in the TNG model,
accompanied by the TNG-1P-28 set that varies one parameter
at a time, and an analogous SIMBA-1P-28 set based on the
SIMBA model. It also incorporates the ASTRID-SBOb set that
contains 1024 simulations varying Ωb in addition to the six
fiducial parameters, focusing on disentangling the effect of Ωb

with Ωm for cosmological studies based on baryonic observables.
This paper is organized as follows. In Section 2, we first

summarize the astrophysical subgrid models employed in
CAMELS-ASTRID and then give an overview of the new
CAMELS-ASTRID suite and the CAMELS parameter extension
simulation sets. Section 3 presents an illustrative comparison
between the fiducial model of the ASTRID simulation and that
of the TNG and SIMBA simulations. In Section 4, we diagnose
the effect of the six fiducial cosmological and astrophysical
parameters varied in CAMELS-ASTRID and compare them to
TNG and SIMBA. We give a detailed review of the 28
parameters that are varied in the new TNG- and SIMBA-based
simulations in the appendices. Section 5 provides an overview of
some cosmological and astrophysical properties covered by the
five large simulation sets in CAMELS: the three Latin
Hypercube (LH) training sets of ASTRID, TNG, and SIMBA
and the two parameter extension sets of ASTRID-SBOb and
TNG-SB28. In Section 6, we present some test cases and
examples of ML applications enabled by introducing the large
hydrodynamic simulation suites of CAMELS-ASTRID and
TNG-SB28. We finally summarize this work in Section 7.

2. Simulations

In this section, we give a brief overview of the new
simulation sets brought by the ASTRID astrophysical model.
We also introduce additional simulation sets in CAMELS that
aim to explore an extended parameter space in the TNG and
SIMBA models. This section is organized as follows.
Section 2.1 introduces the astrophysical models and the varied
parameters in CAMELS-ASTRID. Section 2.2 gives an
overview of the main simulation sets of CAMELS-ASTRID.
Section 2.3 gives a brief introduction of the CAMELS
extension simulation sets for extended cosmological and
astrophysical parameter studies.

2.1. ASTRID Models in CAMELS

The ASTRID galaxy formation model is described in Bird
et al. (2022) and Ni et al. (2022). ASTRID utilizes a new
version of the MP-Gadget simulation code, a massively
scalable version of the cosmological structure formation code
Gadget-3 (Springel 2005), to solve the gravity (with an N-body
tree-particle-mesh approach, TreePM), hydrodynamics (with a
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smoothed particle hydrodynamics method), and astrophysical
processes with a series of subgrid models. An earlier version of
MP-Gadget was used to run the BlueTides simulation
(Feng et al. 2016), and the most recent version was used for
ASTRID.

Radiative cooling and photoionization heating include
primordial radiative cooling (Katz et al. 1996), metal line
cooling with the gas and stellar metallicities traced following
Vogelsberger et al. (2014), a spatially uniform ionizing
background from Faucher-Giguère (2020), and hydrogen self-
shielding following Rahmati et al. (2013).

Star formation is implemented based on the multiphase star
formation model in Springel & Hernquist (2003a) and accounts for
the effects of molecular hydrogen based on H2 fraction calculated
from the metallicity and local column density (Krumholz &
Gnedin 2011). ASTRID tracks metal enrichment from AGB stars,
Type II SNe, and Type Ia SNe, following nine individual elements
(H, He, C, N, O, Ne, Mg, Si, Fe).

2.1.1. SN Wind Models and ASN1, ASN2

Galactic winds driven by stellar feedback are implemented
kinetically via temporarily hydrodynamically decoupled parti-
cles. Winds are sourced by newly formed star particles, which
randomly pick gas particles from within their SPH smoothing
length to become wind particles. Once a particle is in the wind,
it is hydrodynamically decoupled for a minimum of 60 Myr, or
20 kpc/vw, and is recoupled once its density drops by a factor
of 10. Particles in the wind do not experience or produce
pressure forces, but they do receive the mass return, cool, and
contribute to density estimates.

In the CAMELS-ASTRID suite, we use two parameters ASN1
and ASN2 to vary the strength of the SN wind feedback. In
particular, ASN1 modulates the total energy injection rate per
unit star formation, and ASN2 controls the speed of the SN
wind. In the fiducial ASTRID model, the prescribed wind
speed vw is proportional to the local one-dimensional dark
matter velocity dispersion vw,fid= κωσDM with κω= 3.7
(following the Illustris model; see Vogelsberger et al. 2013).
In the ASTRID suite, we have

= ´ ( )v A v . 1w wSN2 ,fid

The SN feedback model in ASTRID is purely energy driven.
Therefore, the asymptotic mass-loading factor of the SN wind
scales with the wind speed by h µ -vw w

2. In the fiducial
ASTRID model, h s= -( )vw w,fid 0,fid

2 with σ0,fid= 353 km s–1

(Bird et al. 2022).
With ASN1 modulating the power of the SN feedback energy,

the SN wind mass-loading factor in the ASTRID suite is

h h
s
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We note that ASN1 in CAMELS-ASTRID controls the total
energy injection rate (power) per unit star formation, similar to
the ASN1 parameter applied in the CAMELS-TNG suite.

2.1.2. Black Hole Models and AAGN1, AAGN2

The SMBH models in ASTRID are described in Ni et al.
(2022). They are built on the earlier models applied in
BlueTides (Feng et al. 2016) and have added new features
related to dynamical friction to improve the BH dynamics and
mergers, as well as applied a power-law seeding prescription

with BH seed mass Msd between 3× 104 h−1Me and
3× 105 h−1Me.
However, due to the low resolution of CAMELS, we did not

adopt the BH seeding and dynamical friction model as applied
in the ASTRID production run. Instead, we adopted the BH
seeding and dynamics prescriptions applied in BlueTides.
BHs with initial mass Msd= 5× 105 h−1Me are seeded in
halos with Mh= 5× 1010 h−1Me by means of the on-the-fly
friends-of-friends (FOF) halo finding. BH particles are
repositioned to the location of the local potential minimum at
each active time step, and two BHs located within 2òg (where òg
is the gravitational softening length) of each other are
instantaneously merged.
The gas accretion rate onto the BH is estimated via the

Bondi–Hoyle–Lyttleton–like prescription (Di Matteo et al.
2005). We allow for short periods of super-Eddington accretion
in the simulation but limit the accretion rate to 2 times the
Eddington accretion rate. The BH radiates with a bolometric
luminosity LBol proportional to the accretion rate MBH , with a
mass-to-light conversion efficiency η= 0.1 in an accretion disk
according to Shakura & Sunyaev (1973).
SMBH feedback follows a two-mode approach including the

thermal and kinetic feedback mode delineated by the Eddington
ratio of the instantaneous BH accretion rate. The Eddington
threshold χthr is capped at c = 0.05thr,max and is also a function
of the BH mass such that the kinetic mode is turned on only for
massive BHs with MBH 5× 108 h−1Me. In CAMELS-
ASTRID, we use AAGN1 and AAGN2 to modulate the efficiency
of the kinetic and thermal feedback separately, where AAGN1

has the same physical meaning as that in the CAMELS-TNG
suite. In the high-accretion mode, the AGN feedback is
deposited thermally with

l cD = ´ >( ) ( ) E A M c . 3f rhigh AGN2 ,th BH
2

Edd thr
 

In the fiducial run, we have a mass-to-light conversion
efficiency òr= 0.1 and òf,th= 0.05, assuming that 5% of the
radiation energy is thermally injected into the surrounding gas
within a feedback sphere with a radius two times that of the
SPH kernel.
The formalism of the AGN kinetic feedback in the low-

accretion mode largely follows Weinberger et al. (2017) with
different choices of parameter values. The AGN kinetic
feedback energy is deposited as

l cD = ´ <( ) ( )E A M c , 4flow AGN1 ,kin BH
2

Edd thr
 

where òf,kin scales with the BH local gas density and has a
maximum value of = 0.05f ,kin,max . The energy is accumu-
lated over time and released in a bursty way once the
accumulated kinetic feedback energy exceeds the threshold

s=E f minj,min re
1

2 DM
2

enc. Here sDM
2 is the one-dimensional dark

matter velocity dispersion around the BH, menc is the gas mass
in the feedback sphere, and =f 5re for the fiducial run. The
released kinetic energy kicks each gas particle in the feedback
kernel in a random direction with a prescribed momentum
weighted by the SPH kernel.
Compared to TNG (Weinberger et al. 2017), ASTRID turns

on the AGN kinetic feedback based on a more stringent
criterion (with a lower χthr and a higher MBH,pivot) and also
adopts a lower upper limit for the feedback efficiency  f ,kin,max.
Therefore, we note that the AGN kinetic feedback in the
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ASTRID suite is milder compared to TNG, as will be discussed
in the next sections.

2.1.3. Summary of the CAMELS-ASTRID Model

Table 1 briefly summarizes the physical meaning of the four
astrophysical feedback parameters. ASN1, ASN2, and AAGN1 in
ASTRID modulate the energy of SN feedback per unit star
formation, the wind speed, and AGN kinetic feedback energy
per unit BH accretion (similarly to those parameters in the TNG
suite). AAGN2 modulates the AGN thermal feedback energy per
unit BH accretion, as the thermal mode is the dominant channel
of AGN feedback in the ASTRID simulation.

We note again that the CAMELS-ASTRID suite has applied
some adaptations in astrophysical models compared to the
production run of ASTRID, mainly due to the limited volume
and resolution of the CAMELS simulations. In particular,
simulations in CAMELS-ASTRID do not adopt the BH power-
law seeding and dynamical friction model as applied in the
ASTRID production run (Ni et al. 2022), as those models
require higher mass resolution. Moreover, with the limited
volume of 25 h−1 Mpc, CAMELS-ASTRID does not model
patchy hydrogen reionization, helium reionization, or the effect
of massive neutrinos as in the ASTRID production run.

2.2. CAMELS-ASTRID Suite

CAMELS-ASTRID is a third hydrodynamic simulation suite
in CAMELS (Villaescusa-Navarro et al. 2021a) brought by the
astrophysical models of the ASTRID simulation. The core
CAMELS-ASTRID suite shares a similar design to the
simulation sets from the “TNG” and “SIMBA” suites, containing
1092 simulation runs in four simulation sets (CV, 1P, LH, EX)
as will be briefly discussed below. In Table 2, we summarize the
core simulation sets of the CAMELS-ASTRID suite (appending
to Table 2 of Villaescusa-Navarro et al. 2021a) and describe
them individually below. We introduce the extended simulation
sets of CAMELS (based on ASTRID, TNG, and SIMBA) in the
next subsection.

(1) The CV set (CV for cosmic variance) contains 27
simulations with different realizations (random seed) of initial
conditions and fiducial cosmological and astrophysical para-
meters fixed at Ωm= 0.3, σ8= 0.8, = = =A A ASN1 SN2 AGN1

=A 1AGN2 . Note that the CV set shares the same set of the
initial random seeds across ASTRID, TNG, and SIMBA,
allowing cross-comparison between the three simulation suites
of the same realizations with their respective fiducial models.

(2) The 1P set (1P for one-parameter) contains 61 simulations
sharing the same realization (random seed) of the initial
conditions and varying the cosmological and astrophysical
parameters one at a time. The varied ranges of the parameters are
Ωmä [0.1, 0.5], σ8ä [0.6, 1.0], Î [ ]A 0.25, 4.0SN1 , ÎASN2
[ ]0.5, 2.0 , AAGN1ä [0.25, 4.0], and AAGN2ä [0.25, 4.0]. The
spacing is linear for Ωm and σ8 and logarithmic for the four
astrophysical parameters.

We note that the different range of AAGN2, which is varied
between 0.25 and 4.00 for ASTRID, and between 0.5 and 2.0
for TNG and SIMBA, is motivated by their corresponding
physical meaning. Unlike AAGN2 in the TNG and SIMBA
suites that modulates the gas ejection speed in the jet/kinetic
mode feedback, the function of AAGN2 in ASTRID resembles
that of AAGN1 and controls the AGN feedback efficiency in

another channel (thermal feedback); therefore, it shares the
same variation range as AAGN1.
(3) The LH set contains 1000 simulations with the value of

the cosmological and astrophysical parameters (Ωm, σ8, ASN1,
ASN2, AAGN1, AAGN2) arranged in an LH with the same
parameter range described for the 1P set. The initial random
seed is also different for each simulation.
(4) The EX set (EX for extreme) contains four simulations

with the same initial random seed and fiducial cosmological
parameters Ωm= 0.3 and σ8= 0.8. One simulation has the
fiducial astrophysical parameters, one has extreme SN feedback
with =A 100SN1 , one has extreme kinetic AGN feedback with
AAGN1= 100, and the last one has no SN or AGN kinetic
feedback with = =A A 0SN1 AGN1 .
We note again that the CV, 1P, and EX sets of ASTRID

share the same realization of the initial conditions as their
counterparts used in the TNG and SIMBA suites (e.g., the three
simulation suites share the same initial conditions for CV0),
while the LH and SBOb sets (see Section 2.3) use a separate set
of random seeds to generate the initial conditions.
As in the CAMELS-TNG and CAMELS-SIMBA suites,

each simulation in the CAMELS-ASTRID suite evolves a
periodic box of comoving volume equal to (25 h−1 Mpc)3 from
z= 127 to z= 0, with 2563 dark matter particles and 2563 gas
particles in the initial conditions. In the core simulation sets
described above, each simulation shares the cosmological
parameters of h= 0.6711, ns= 0.9624, Mν= 0.0 eV, ω=−1,
ΩK= 0 and Ωb= 0.049.
The simulations in the CAMELS-ASTRID suite each

contain 91 snapshots from z= 15 to z= 0, covering the time
stamps in the TNG and SIMBA suites but with higher time
resolution for merger tree generation. For each snapshot, dark
matter halos and subhalos/galaxies are identified using the
SUBFIND (Springel et al. 2001), Rockstar (Behroozi et al.
2013a), and AMIGA (Knollmann & Knebe 2009) halo finders.
Moreover, we also have merger trees generated from Rockstar
(Behroozi et al. 2013b) and SubLink (Srisawat et al. 2013)
available for each simulation.

2.3. CAMELS Extension Simulation Sets

The core CAMELS hydrodynamic simulation sets have six
cosmological and astrophysical parameters varied, covering the
key parameter space of interest with 1000 samples in the LH
sets of ASTRID, TNG, and SIMBA suites. However, there are
still many unexplored parameters in cosmology and astro-
physical models that can have a significant impact on many
observational properties and can have nonnegligible conse-
quences for cosmological studies. Sampling the higher-
dimensional parameter space with hydrodynamic simulations
is rather expensive. Here we introduce the recently developed
extension simulation sets in CAMELS that serve as the first
stepping stone for extended parameter studies. Table 3 gives a
summary of the extension simulation sets based on the
ASTRID, TNG, and SIMBA models.
TNG Extension: We introduce here the TNG-SB28 set,

which is an analog of the original TNG-LH set except where
not 6 but 28 parameters of the model are varied simultaneously.
They represent a semicomplete account of the free parameters
in the TNG model, and they include 5 cosmological
parameters, 2 parameters concerning star formation and the
interstellar medium (ISM), 2 parameters related to stellar
population modeling, 10 parameters controlling galactic wind
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Table 1
Summary of the Physical Meaning of the Four Astrophysical Parameters (ASN1, ASN2, AAGN1, AAGN2) in the ASTRID, TNG, and SIMBA Suites

Simulation ASN1 ASN2 AAGN1 AAGN2

ASTRID Galactic winds: energy per unit SFR
[0.25–4.00]

Galactic winds: wind speed
[0.50–2.00]

Kinetic mode BH feedback: energy per unit BH accre-
tion [0.25–4.00]

Thermal mode BH feedback: energy per unit BH
accretion [0.25–4.00]

TNG Galactic winds: energy per unit SFR
[0.25–4.00]

Galactic winds: wind speed
[0.50–2.00]

Kinetic mode BH feedback: energy per unit BH accre-
tion [0.25–4.00]

Kinetic mode BH feedback: ejection speed / burstiness
[0.50–2.00]

SIMBA Galactic winds: mass loading [0.25–4.00] Galactic winds: wind speed
[0.50–2.00]

QSO & jet mode BH feedback: momentum flux
[0.25–4.00]

Jet mode BH feedback: jet speed [0.50–2.00]

Note. The fiducial parameter value in each simulation is normalized to ASN1 = ASN2 = AAGN1 = AAGN2 = 1. The variation of each parameter is also shown in each cell. We note that the range of AAGN2 in the ASTRID
suites is different from that in TNG and SIMBA, as AAGN2 in the ASTRID suite represents energy flux, similar to AAGN1.
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feedback, 3 parameters governing the growth of SMBHs, and 6
parameters describing AGN feedback. We provide concise yet
well-defined descriptions of each of the 28 parameters,
including their range of variation, in Appendix A.1.

Another, minor difference between TNG-SB28 and the
original TNG-LH is that the 28-dimensional parameter space is
sampled using a Sobol sequence rather than an LH. Both
methods provide a quasi-uniform (or low-discrepancy), yet
irregular, sampling of the space, but compared to the LH, the
Sobol sequence is deterministic, is faster to compute, has a
lower discrepancy, and more easily allows the potential
addition of newer, future samples.

In addition to the semi-uniform sampling of the 28-dimensional
parameter space, we introduce another new simulation set,
TNG-1P-28, which is composed of simulations that vary one
parameter at a time, iterating over each of the 22 new parameters
beyond the original six of the TNG-LH set. In TNG-1P-28, there
are four simulations around the fiducial one for each parameter,
two where the value of the parameter is lower than the fiducial
value and two where it is higher.13 The minimum and maximum
values of each parameter are the same between TNG-1P-28 and
TNG-SB28. The spacing of values for each parameter in TNG-
1P-28 is uniform either in linear or in logarithmic space, and
that distinction translates directly to whether the sampling of
values in the Sobol sequence of TNG-SB28 is performed in
linear or logarithmic space.

The range of variation of each parameter was chosen based on
a combination of two (sometimes competing) considerations: (i)
a physical intuition into its realistic range of values, with an
attempt to err on the side of a large range in order to avoid edge
effects; and (ii) an empirical examination of its effects on the
simulation results, with a (very) rough goal of having the
variations of different parameters resulting in effects of similar
magnitudes. Appendix A presents the effects of the various
parameters on a select number of physical quantities from the
simulation results based on the TNG-1P-28 set. It is important to
note that for any given physical quantity some model parameters
are significantly more influential than others. We have verified,
however, that each of the 28 parameters has a significant impact
on at least some physical quantities that can be considered as
basic to any cosmological galaxy formation model.
ASTRID Extension: Apart from the fiducial hydrodynamic

simulation sets, the ASTRID suite also contains an additional
SBOb set that adds one more degree of freedom by also
varying Ωb in addition to the six parameters in the ASTRID-LH
set. ASTRID-SBOb contains 1024 simulations with the value
of the cosmological and astrophysical parameters (Ωm, σ8, Ωb,
ASN1, ASN2, AAGN1, AAGN2) arranged in a Sobol sequence with
the same parameter ranges as in the 1P set. The variation range
of Ωb is Ωbä [0.01, 0.09]. Unlike the TNG-SB28 set that
broadly (and sparsely) samples 28 parameters in the simulation
model, the main focus of the ASTRID-SBOb set is to explicitly
disentangle the effect of Ωb and Ωm for cosmological parameter
inference based on baryonic observables (e.g., Villaescusa-
Navarro et al. 2022a; de Santi et al. 2023; Shao et al. 2023).
The initial random seed is also unique for each simulation.

Table 2
Summary of the Core ASTRID Simulation Sets, which Share the Same Design as CAMELS-TNG and CAMELS-SIMBA, as Described in Villaescusa-Navarro et al.

(2021a, See Their Table 2)

Name Hydrodynamic Method Code Simulation Set Number Varying Parameters

ASTRID Pressure–Entropy SPH MP-Gadget CV 27 S
1P 61 Ωm, σ8, ASN1, ASN2, AAGN1, AAGN2

LH 1000 Ωm, σ8, ASN1, ASN2, AAGN1, AAGN2, S
EX 4 ASN1, ASN2, AAGN1, AAGN2

Note. ASN1, ASN2, AAGN1, and AAGN2 represent the values of subgrid physics parameters controlling stellar and AGN feedback. S is the random seed of the initial
conditions of a simulation. The LH set is a Latin hypercube where the values of {Ωm, σ8, ASN1, ASN2, AAGN1, AAGN2, S} are varied simultaneously. Note that the
parameters in the LH are different between ASTRID, TNG, and SIMBA. Simulations in the 1P set have the same initial random seed and vary only one of the
parameters at a time. Simulations in the CV set have fixed values of the cosmological and astrophysical parameters (at fiducial values) but different initial random
seeds. The EX set has the simulations with the same cosmological parameter and random seeds while exploring the extreme values in the four astrophysical
parameters. See text for further details.

Table 3
Summary of the Additional Simulation Sets in CAMELS (Based on ASTRID, TNG, and SIMBA) for Extended Parameter Studies

Name Simulation Set Number Varying Parameters

ASTRID Extension ASTRID-SBOb 1024 {Ωm, σ8, ASN1, ASN2, AAGN1, AAGN2} + Ωb, S
ASTRID-1P-Ob 8 Ωb

TNG Extension TNG-SB28 1024 {Ωm, σ8, ASN1, ASN2, AAGN1, AAGN2} + 22 additional parameters, S
TNG-1P-28 88 22 additional parameters (details in Appendix A)

SIMBA Extension SIMBA-1P-28 88 22 additional parameters (details in Appendix A)

Note. The ASTRID-SBOb set is the extension of the ASTRID-LH set that also has Ωb varied in addition to the original varied six parameters, where the seven
parameters are sampled in a Sobol sequence. TNG-SB28 set is the extension of the TNG-LH set that explores the variation of 22 additional cosmological and
astrophysical parameters, with individual parameter variation studied in the TNG-1P-28 set. The SIMBA-1P-28 simulation set presents individual parameter variations
in the SIMBA model for 22 additional cosmological and astrophysical parameters. See text for further details.

13 There is one exception to this rule, when the fiducial value is zero and
negative values are unphysical; hence, the four variations all use larger values
than the fiducial. See details in Appendix A.1.
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SIMBA Extension: In analogy with the TNG-1P-28 set, we
introduce the SIMBA-1P-28 simulation set to investigate the
impact of 22 new cosmological and astrophysical parameters
beyond the six-parameter variations in the original CAMELS-
SIMBA suite. The SIMBA-1P-28 set consists of 88 simulations
that vary one parameter at a time, including four simulations
around the fiducial model for each of the 22 new parameters (two
simulations decreasing the parameter value and two simulations
increasing the parameter value relative to the fiducial value). In
full, the SIMBA-1P-28 suite includes variations of five
cosmological parameters, three parameters controlling star forma-
tion and the ISM, eight parameters controlling galactic winds
driven by stellar feedback, six parameters controlling the growth
of SMBHs, and six parameters controlling AGN feedback. We
describe the parameters in detail and their range of variation in
Appendix A.2. We illustrate the effects of the various parameter
variations on different physical quantities in Appendix C.

3. Comparison of the Three Fiducial Models

We start with a comparison between the fiducial models of
the ASTRID, TNG, and SIMBA suites, to demonstrate the

systematic differences between the three hydrodynamic
simulations brought by their respective subgrid physical
models. We highlight one of the most distinctive and
interesting differences among the three simulation models:
large-scale gas properties and correspondingly the influence of
baryonic feedback on the matter power spectrum.
Figure 1 shows the large-scale gas density field colored by

the temperature at z= 2 and z= 0 from the CV0 simulation,
where the three simulation suites share the same initial
conditions and adopt their corresponding fiducial astrophysical
models.14 One can see the clear differences with respect to the
gas thermal properties of the intergalactic medium (IGM),
where SIMBA heats up the gas surrounding large halos
starting from higher redshift (z 2), producing hotter IGM gas
compared to ASTRID and TNG. The striking difference in the
large-scale gas field is mostly caused by the AGN feedback
models, as in SIMBA AGN feedback turns on earlier and
deposits kinetic and thermal energy on larger scales with

Figure 1. Illustration of the gas field of CV0 set for ASTRID (the first column), TNG (the second column), and SIMBA (the third column), centered on the most
massive halo in the simulation. Each panel shows the gas density field colored by temperature (blue to red indicating cold to hot, respectively, as indicated by the 2D
color map) over the full box volume of -( )h25 Mpc1 3 at z = 2 (top panels) and z = 0 (bottom panels). The yellow spikes mark the locations of massive BHs with
MBH > 108 Me.

14 See https://www.youtube.com/watch?v=zfxBa_Zp6WM for a movie
visualization of the systematic difference between TNG, SIMBA, ASTRID,
and Magneticum in the large-scale gas field.
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fast jet outflows (see Davé et al. 2019; Borrow et al. 2020;
Christiansen et al. 2020).

To illustrate where the most efficient AGN feedback takes
place, Figure 1 marks the position of massive BHs with
MBH> 108Me in yellow spikes. The bipolar lobe of hot gas in
SIMBA at z= 2 clearly indicates the imprint of AGN jet mode
feedback. On the other hand, TNG and ASTRID adopt a more
localized (and also noncollimated) AGN kinetic feedback
model for massive BHs at low Eddington ratio and therefore
exhibit less impact on the gas field on large scales. Compared
to TNG, ASTRID AGN kinetic feedback is even milder and
turns on later (as it hinges on larger BH masses MBH> 5×
108 h−1Me), and therefore it has the least impact on the large-
scale gas properties among the three simulations. The gas
properties have been studied previously in the work of Butler
Contreras et al. (2023) for warm–hot IGM gas and Tillman
et al. (2023) for the Lyα forest using the TNG and SIMBA
suites, and these will be followed up with new simulation suites
of ASTRID.

We compare the fiducial models of ASTRID, TNG, and
SIMBA and diagnose their baryonic feedback impact across
different redshifts. In Figure 2, we quantify the baryonic
feedback of the fiducial models by calculating the ratio of the
total matter power spectrum from the hydrodynamic simula-
tions to that from their respective dark-matter-only simulations
in the CV set, where the lines show the median of Phydro/Pdmo

for the CV set and the shaded regions give the 10th–90th
percentile in each k bin.

The Phydro/Pdmo ratio clearly shows the systematic differ-
ences in baryonic feedback between the three simulation suites
with their fiducial astrophysical models. Compared to the
collisionless dark-matter-only simulation, gas cooling and star
formation enhance matter clustering on small scales, while the
astrophysical feedback processes redistribute matter (especially
the baryonic gas) and suppress clustering (as in Springel et al.
2018; van Daalen et al. 2020; Delgado et al. 2023). These two
competing processes leave imprints on different scales and
together shape the suppression and enhancement features in the
Phydro/Pdmo ratio as seen in Figure 2.

Among different astrophysical feedback processes, the AGN
jet mode is the most important channel for efficiently
redistributing the gas on large scales. Therefore, among the
three simulation suites, SIMBA with its most aggressive AGN

feedback (which launches high-speed gas outflows and
deposits energy at large distances that can reach hundreds of
kiloparsecs away from the AGN host halos) produces the most
prominent suppression of the matter power on large scales. On
the other hand, ASTRID exhibits the least impact on the matter
power spectrum as a consequence of having the mildest AGN
feedback among the three simulation suites. The power
spectrum ratio at z= 0 can reach <70% at k∼ 10 h−1 Mpc in
the SIMBA model while only 90% in ASTRID at the same k
scale.
The baryonic impact on the matter power spectrum in the

three simulation models exhibits a similar trend in time
evolution. At higher redshifts (z> 2 in this small volume)
when the majority of BHs have not grown massive enough to
launch jets, baryons mostly enhance the matter power as a
result of gas cooling and galaxy formation. When going to
lower redshifts, the suppression of power emerges and
propagates to large scales with time, as BHs become more
massive and produce more powerful feedback that can affect
the matter distribution on larger scales. The onset of matter
power suppression is earliest in SIMBA and latest in ASTRID,
mainly due to the different AGN feedback models.

4. 1P Sets: The Effects of Individual Parameters

In this section, we diagnose the effect of the six fiducial
cosmological and astrophysical parameters on a selection of the
key physical quantities and compare the three simulation suites.
In particular, we use the 1P set of the ASTRID, TNG, and
SIMBA suites to investigate how varying one parameter (with
other parameters fixed) would change the matter power
spectrum, the global star formation rate (SFR) history, and
the galaxy and BH populations.
All the simulations in the 1P set have the same initial

conditions and therefore diminish the effects of cosmic
variance in the comparison. We note that the parameter study
in this section focuses on the six fiducial parameters (Ωm, σ8,
ASN1, ASN2, AAGN1, AAGN2) that are varied in the LH sets of
ASTRID, TNG, and SIMBA. In Appendices B and C, we show
the effect of 22 additional parameters varied in the TNG and
SIMBA through the extended 1P sets of TNG-1P-28 and
SIMBA-1P-28.

Figure 2. Illustration of baryonic feedback on the total matter density field in the fiducial model of the three simulation suites. The x-axis is the k mode in comoving
units, and the y-axis in each panel gives the ratio of the total matter density power spectrum in hydrodynamic simulations relative to that of the corresponding N-body
simulations for the CV set, at redshifts z = 0, 1, 2, 4. Green, orange, and blue lines represent the results from TNG, SIMBA, and ASTRID separately. The solid line
and shaded regions give the median and 10th–90th percentiles from the 27 simulations in the CV set.
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4.1. Matter Power Spectrum

The left panels of Figure 3 show the response of the matter
power spectrum to the variation of the cosmological and
astrophysical parameters individually. The fiducial model
represents a simulation run with parameters {Ωm, σ8, ASN1,
ASN2, AAGN1, AAGN2} = {0.3, 0.8, 1, 1, 1, 1}.
As expected, one can see that the matter power spectrum on

large scales (with k 1 hMpc−1) is mainly affected by the
variation of cosmological parameters (Ωm and σ8), while the
impact of the astrophysical parameters is limited to smaller
scales of k> 1 hMpc−1 (with the exception of SIMBA, where
the astrophysical parameters can mildly impact large scales
owing to long-range AGN jet feedback).

We note that with the same variation in cosmological
parameters the matter power spectrum responds similarly on
large scales but differently on small scales between the three
simulation suites. For example, with increased Ωm or σ8,
ASTRID predicts less relative enhancement in the small-scale
matter power compared to TNG and SIMBA. This is due to the
different astrophysical models in each simulation suite that
interact differently with the varied cosmological parameters.
Notably, compared to a smaller Ωm (or σ8), a larger Ωm (or σ8)
promotes the (earlier) formation of more massive halos,
galaxies, and BHs, bringing nonlinear effects on the small-
scale matter power into play earlier, and resulting in the
different small-scale P(k) variations among the three simulation
models. The interaction between cosmological parameters and
astrophysical processes again stresses the importance of

including different astrophysical models to improve the
robustness of cosmological inference.
Variations in all four astrophysical parameters affect the

amplitude and shape of the matter power spectrum in a
nontrivial way. In ASTRID, AAGN1 exhibits the weakest
influence among all four astrophysical parameters. This is
mainly due to the limited volumes of the simulations, which do
not form the massive objects containing the most massive BHs
that can trigger AGN jet feedback. The same trend is also seen
in TNG and SIMBA, as all three simulation suites adopt a
MBH-dependent AGN jet feedback model that biases jet
feedback to more massive BHs. Given a larger volume, we
might expect to see a more prominent impact of variations in
AGN jet feedback on both galaxy formation and matter power
spectrum.
The influence of SN and AGN feedback parameters is

different between the three simulation suites, as they do not
necessarily share the same physical meanings (as noted in
Table 1). Even for ASN2, which represents the speed of
hydrodynamically decoupled galactic winds in the three
simulation suites, its impact on the matter power spectrum
(and on galaxy formation, as will be discussed later) can be
quite different owing to other “nuisance” parameters in detailed
model implementations, the interplay with other astrophysical
processes, and the nonlinear evolution of galaxy formation.
It is expected that AGN feedback should make the dominant

contribution to the baryonic suppression of the total matter
power spectrum. Therefore, increased AGN feedback should
lead to more suppression of the matter power. However, we

Figure 3. Left panels: ratio of the matter power spectrum of the 1P simulations (where only one parameter is varied and other parameters are fixed) to that of the
fiducial model. The matter power spectra are evaluated at z = 0. Green, orange, and blue represent the results from TNG, SIMBA, and ASTRID, respectively. The
solid and dotted lines indicate the simulations with the highest and lowest parameter value, respectively. Note that the value of AAGN2 is varied between 0.25 and 4.00
for ASTRID and between 0.5 and 2.0 for TNG and SIMBA. Right panels: global SFRD of the 1P simulations. Solid, dotted, and dashed lines represent the simulations
with the fiducial, lowest, and highest parameter values in the variation range, respectively.
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note that the total amount of AGN feedback cannot be simply
controlled by the AAGN feedback parameters, as the growth of
galaxies and BHs is strongly regulated by feedback.

One example is the behavior of the AAGN2 parameter in the
ASTRID suite. AAGN2 in ASTRID controls the efficiency of
AGN thermal feedback, and we can see that a larger AAGN2

enhances (rather than suppresses) the matter power spectrum
on small scales. As will be shown in Figure 4, this is because
strong AGN thermal feedback aggressively suppresses the
growth of the BH population and ends up curtailing the total
amount of injected AGN feedback energy. In particular, by
limiting the formation of the massive BHs that are able to turn
on jet mode feedback, strong AGN thermal feedback prevents
an efficient suppression of the matter power. Therefore, we
note that varying the feedback efficiency induces nonlinear
effects in the galaxy and BH populations and eventually the
matter power spectrum.

4.2. Star Formation Rate Density

The right panel of Figure 3 shows the change in the SFR
density (SFRD) due to individual variations of the six
cosmological and astrophysical parameters. At high redshifts,
z> 2, the SFRD is significantly affected by changes in Ωm, σ8,
and also ASN1, while at lower redshifts the SFRD begins to be
noticeably impacted by the ASN2 parameter in all three
simulation suites and by AAGN2 in ASTRID.

We note that the ASN2 parameter in the ASTRID suite drives
larger variations in star formation (also at higher redshifts)
compared to TNG and SIMBA. ASN2 modulates the speed of
hydrodynamically decoupled galactic winds in all three

simulation suites. However, the detailed SN wind models and
the fiducial parameters are different. Star formation in the
ASTRID model turns out to be more sensitive to the SN wind
speed than in TNG and SIMBA. This behavior leads to a
broader variation in the galaxy population in the ASTRID-LH
set compared to the LH sets of TNG and SIMBA.
The bottom left panels of Figure 3 indicate that the variation

in AGN jet mode feedback (AAGN1 in all simulations and
AAGN2 in TNG and SIMBA) has a limited impact on the global
star formation. This result is somewhat affected by the small
simulation volume, which limits the formation of the most
massive systems that are subject to AGN jet feedback. The
contribution of such systems to the global SFRD is, however,
subdominant even without AGN feedback, except at late times,
z 1 (Springel & Hernquist 2003b). We can see that the SFRD
in SIMBA exhibits a relatively larger response to AAGN1

compared to ASTRID and TNG at lower redshifts (z< 2). That
is because the AGN jet mode in SIMBA hinges on a lower
MBH threshold (MBH> 107.5Me) compared to TNG and
ASTRID and therefore allows an earlier onset of AGN jet
feedback that can impact the SFR.
Interestingly, we find that the AGN thermal mode feedback

(AAGN2 in the ASTRID suite) begins to impact the global star
formation at low redshift (z< 2). The enhanced AGN thermal
feedback efficiency boosts global star formation. This is partly a
consequence of the nonlinear impact of AGN feedback and self-
regulation of BH growth as discussed in Section 4.1, where a
higher AAGN2 efficiency limits the growth of BHs and eventually
curtails the total budget of AGN feedback energy deposited into
the ISM. We note that this effect is also seen in the TNG model
when varying the AGN thermal feedback efficiency in the

Figure 4. Impact of cosmological and astrophysical parameters on the GSMF (left panel) and BHMF (right panel). Both mass functions are evaluated at z = 0. The y-
axis gives the ratio between the mass function of the 1P simulation (with only one parameter varied and other parameters fixed) and the mass function of the fiducial
run. The convention of colors and line styles is the same as that in the left panel of Figure 3.
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extended parameter study of TNG-1P-28, as shown in
Appendix B (parameter 25, BlackHoleFeedbackFactor).

4.3. Galaxy and Black Hole Population at z= 0

We now study the impact of the variation of the six parameters
on the mass functions of the galaxy and BH populations. To
investigate the variation across the mass range, Figure 4 shows
the ratio of the galaxy stellar mass function (GSMF) and BH
mass function (BHMF) at z= 0 for each parameter variation
compared to the fiducial model in the 1P set.

Figure 4 shows that the galaxy and BH populations respond
to Ωm in all mass intervals, while σ8 has less impact compared
to Ωm and only affects the galaxy and BH populations at the
most massive end at z= 0. As it sets the amplitude of the initial
density fluctuations, σ8 modulates the onset of gravitational
collapse and structure formation. Due to hierarchical structure
formation, in which small galaxies form earlier and merge to
form more massive galaxies later, a lower σ8 with delayed
structure formation leaves an imprint on the abundance of
massive galaxies, while the population of less massive galaxies
has sufficient time evolution to grow down to z= 0. The impact
of σ8 is thus larger at higher redshifts. For example, at z= 4,
the abundance of M*∼ 109Me galaxies can be 0.5 dex higher
(lower) with σ8= 1.0 (0.6). Therefore, in general, it is more
challenging to do parameter inference for σ8 compared to Ωm

based on halo or galaxy populations at z= 0 in CAMELS (see,
e.g., Shao et al. 2022; Villanueva-Domingo & Villaescusa-
Navarro 2022; de Santi et al. 2023), due to the limited number
of massive systems in the simulation volume.

The impact of the ASN1 parameter on the galaxy population
exhibits a similar trend among the three simulation suites, with
larger SN feedback efficiency leading to suppression of the
galaxy abundance in all mass intervals. For the BH population,
we note that a larger ASN1 greatly suppresses the low-mass BH
population in SIMBA, as SIMBA adopts a BH seeding
prescription based on the stellar mass threshold M*> 109.5Me
(Davé et al. 2019; Thomas et al. 2019; Habouzit et al. 2021),
which is affected by SN feedback (while the TNG and ASTRID
suites seed BHs based only on halo mass).

The effects of ASN2 in the ASTRID suite are more drastic
compared to TNG and SIMBA, where a larger ASN2
significantly reduces the abundance of galaxies (especially at
the massive end), as well as the population of massive BHs, as
BHs accrete from the gas reservoir that also fuels star
formation. We note that, due to the halo-based BH seeding
model in CAMELS-ASTRID, the total number of BHs seeded
is not affected by the astrophysical parameters. Therefore, in
the cases where BHs do not grow efficiently, the BH
population accumulates at the low-mass end.

The AAGN1 parameter, controlling the energy (in TNG and
ASTRID) or the momentum flux (in SIMBA) of the AGN jet
feedback, exhibits limited impact on the galaxy and BH
populations, with the BH population in SIMBA showing a
larger response to AAGN1, as the jet mode feedback hinges on a
lower MBH threshold and can regulate BH growth at an earlier
stage, as previously discussed in Section 4.2.

The AAGN2 parameter controls the BH thermal feedback
efficiency in the CAMELS-ASTRID suite (as opposed to the
jet speed in TNG and SIMBA). As the AGN thermal feedback
is the dominant feedback channel that strongly regulates the
growth of BHs before they become massive enough to turn on
AGN jet feedback, AAGN2 in ASTRID shows a prominent

impact on both the BH and galaxy populations. As discussed in
earlier sections, a larger AAGN2 suppresses the formation of
massive BHs, thereby curtailing AGN feedback on galaxy
formation and producing an enhancement of the global SFR
and galaxy populations in the ASTRID suite.

5. Overview of the Training Set Variation Range

In this section, we present an overview of some key
cosmological and astrophysical properties for the five large
hydrodynamic simulation training sets currently available in
CAMELS: the three LH sets of TNG, SIMBA, and ASTRID
(1000 simulations each, with six varied parameters), and the
two extension sets of ASTRID-SBOb and TNG-SB28 (1024
simulations each, with additional varied parameters).
We note that many of these cosmological and astrophysical

properties have been introduced in the first CAMELS presenta-
tion paper (Villaescusa-Navarro et al. 2021a) for the TNG and
SIMBA-LH simulation sets. Here we revisit some of those
quantities by comparing the fiducial astrophysical models of
ASTRID with TNG and SIMBA and showing the range of
variation of those properties covered by the five simulation sets.
We present several one-dimensional statistics in Section 5.1 and
various scaling relations between halos, gas, galaxies, and BHs in
Section 5.2.
Various studies have been carried out to compare between

CAMELS simulations and various observations, including Jo
et al. (2023; the galaxy mass function and the SFR history),
Moser et al. (2022; Sunyaev–Zeldovich signals from the
circumgalactic medium), Parimbelli et al. (2023; emissions
from warm–hot IGM), and Tillman et al. (2023; Lyα forests at
low redshifts). In this section, we focus on illustrating the range
of variations in different physical properties within the new
training sets. We reserve detailed comparisons between the new
simulation suites and observational data, as well as potential
applications for model calibration, for future work.

5.1. 1D Statistics

We first look at the 1D statistics of the matter power
spectrum, SFRD, and mass functions as shown in Figure 5.
Note that for each of the panels in Figure 5 the solid lines give
the median value in the CV sets from the fiducial astrophysical
models of ASTRID, TNG, and SIMBA and the shaded regions
give 10th–90th percentiles in the LH (or SB) sets to illustrate
the variation range of the property considered. All quantities
are measured at z= 0 except for the SFRD. We describe each
quantity in more detail below.
Gas Power Spectrum: The first row of Figure 5 shows the

power spectrum of the gas component Pgas(k), which exhibits
systematic differences between the three hydrodynamic
simulation models. For the result of the CV set (the fiducial
model), the clustering of gas is highest in ASTRID and lowest
in SIMBA, with the difference reaching one order of magnitude
at the scale of k∼ 10 hMpc−1. As already discussed in
Section 3, among the three hydrodynamic simulation models,
the fiducial version of ASTRID has the mildest AGN feedback
and therefore leads to the lowest suppression of gas clustering.
In spite of this, the variation of the gas power in ASTRID is

the largest among the simulation suites on small scales. At
k∼ 10 hMpc−1, the gas power can vary across two orders of
magnitudes in the ASTRID-LH set, covering the total range of
SIMBA and TNG, and even TNG-SB28, which varies a
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significantly larger number of model parameters than ASTRID-
LH. This large variation in the small-scale gas power is driven
by the combination of AAGN2 and the two ASN parameters, as
can be inferred from Figure 3.

The similarity between ASTRID-LH and ASTRID-SBOb,
and even between TNG-SB28 and TNG-LH, where the
addition of 22 varied parameters increases the diversity of
Pgas(k) responses only by a modest factor, does not demonstrate

Figure 5. Illustration of the range of different cosmological and astrophysical properties in the five large simulation suites: SIMBA-LH (orange), ASTRID-LH (blue),
ASTRID-SBOb (purple), TNG-LH (green), and TNG-SB28 (yellow green). From top to bottom the panels show the gas power spectrum, the ratio of the matter power
spectrum in hydrodynamic simulations to that of the corresponding N-body simulations, the SFRD history, the stellar mass function, and the BHMF. The power
spectra and mass functions are shown at z = 0. Note that the halo masses and stellar masses are from the SUBFIND catalogs. For each panel, the orange, green, and
blue lines give the predictions from the fiducial models of SIMBA, TNG, and ASTRID, respectively, calculated by taking the median of the CV set. Each simulation
suite has its corresponding fiducial model result emphasized in a thicker line. The shaded regions indicate 10th–90th percentiles from each large LH simulation set (or
SB set for ASTRID and TNG extension).
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that variations in Ωb or any other of these additional parameters
are necessarily subdominant for Pgas(k) with respect to the
original six parameters of the LH sets. The Pgas(k) responses to
the individual additional parameters are, in fact, in some cases
no less significant than the original ones, as shown explicitly in
Appendices B and C.

Instead, we interpret the rough similarity between the diversity
of Pgas(k) results in the original and extended parameter spaces to
be the result of a “regression toward the mean” effect, whereby
the variations in a larger number of relevant parameters tend to
roughly cancel each other out. Nevertheless, by successfully
using these simulation sets in future work to learn the relations
between the parameters and simulation results, such as Pgas(k),
we will be able to probe the entirety of these extended parameter
spaces, including regions therein that are far from the sampling
points directly simulated here. We do expect this task, however,
to become more challenging, as the sparsity of this sampling
increases significantly owing to the “curse of dimensionality.”

Matter Power Spectrum Ratio: We consider the total matter
power spectra for each hydrodynamic simulation in comparison
to the matter power spectrum of the corresponding dark-matter-
only runs and give the value of Phydro/Pdmo in the second panel
of Figure 5.

Compared to Figure 2, where the shaded regions give the
cosmic variance driven by different realizations in the CV set, we
can see that the variation of Phydro/Pdmo in the LH sets is
significantly larger. The ASTRID-LH set can yield larger
variation compared to the LH set of SIMBA and TNG, which
reflects the similar trend pointed out above for Pgas(k). In some of
the strong feedback scenarios, the power spectrum ratio of
ASTRID can reach ∼50% on small scales (k∼ 10 hMpc−1). On
the other hand, some of the astrophysical models in the ASTRID-
LH set can produce Phydro/Pdmo> 1, which is not seen in the
TNG and SIMBA suites. Simulations in those scenarios usually
have a limited number of massive BHs (caused by, e.g., a large
AAGN2 parameter), and the AGN kinetic (jet) feedback cannot
efficiently counteract the small clustering from star formation.
Therefore, those simulations predict enhancement rather than
suppression of the total matter power.

Star Formation Rate Density: The third panel of Figure 5
shows the global SFRD for each of the simulation sets. The
shaded regions indicate the 10th–90th percentiles for the given

redshift bin in the LH (or SB) sets. Comparing the three LH
sets, the SFRDs in the ASTRID-LH set display larger variation
at lower redshift z< 2 compared to the LH sets of SIMBA and
TNG. We can see from the right panel of Figure 3 that the
SFRD in ASTRID at low redshift is very sensitive to ASN2. The
same level of variation in ASN2 in the ASTRID suite drives a
larger diversity of SFRDs compared to TNG and SIMBA.
Furthermore, the SFRD at low redshifts is more sensitive to
AAGN2 in ASTRID. Therefore, ASTRID-LH also features a
larger variation in the star formation history, as well as the
galaxy population at z= 0, compared to the other two LH sets.
With the additional parameters varied, the extension suites of

ASTRID-SBOb and TNG-SB28 both show mildly larger
variation in the SFRDs compared to their corresponding LH
sets (more so for the larger extension represented by TNG-
SB28 than that of ASTRID-SBOb, as might be expected). Our
interpretation for this follows the ones we presented for Pgas(k)
above.
Galaxy and Black Hole Population: The bottom two rows of

Figure 5 present the GSMF and BHMF at z= 0. The stellar
masses are summary statistics from the subhalo catalogs given
by the SUBFIND algorithm, including the contribution of both
host and satellite halos (galaxies). The statistics of galaxies and
BHs exhibit systematic differences among the simulation suites
owing to the different astrophysical models.
Figure 6 illustrates the galaxy and BH population at z= 0 in

the three fiducial models of ASTRID, TNG, and SIMBA over a
projected region of -( )h3 Mpc1 3 surrounding the most massive
halo in the CV0 simulations. The orange circles mark the
positions of galaxies with M* > 108Me, and the yellow spikes
mark the locations of all BHs. The radii of circles and sizes of
the spikes are scaled by M* and MBH, respectively.
The large-scale pattern of the galaxies is similar among the

three simulations owing to the same initial conditions and
therefore the resulting large-scale structure. Meanwhile, we can
see differences in the population of small galaxies and BHs due
to the various astrophysical models used in the three
hydrodynamical simulations. Noticeably, the small satellite
galaxy population is suppressed in TNG compared to ASTRID
and SIMBA, as also indicated by the GSMF in Figure 5. On the
other hand, small galaxies in SIMBA do not host BHs owing to
its BH seeding model. Therefore, we can see that SIMBA

Figure 6. Illustration of galaxies and BHs in the CV0 simulation for ASTRID (first column), TNG (second column), and SIMBA (third column). Each panel shows the
stellar density field over a region of -( )h3 Mpc1 3 centered on the most massive halo in the simulation. The orange circles mark galaxies with stellar mass
M* > 108 Me, as identified by SUBFIND. The radii of the circles correspond to the virial radii of the subhalos. The yellow spikes mark the positions of all BHs in this
region, with the size scaled by MBH.
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produces a smaller BH population and lower occupation
fraction in galaxies compared to the other two simulations.

For the fiducial models, galaxy abundance in ASTRID is
slightly lower than in TNG and SIMBA by ∼0.3 dex in the
stellar mass interval M* = 1010–1011Me. SIMBA features a
spike in the galaxy mass around M* = 5× 109Me. The TNG
galaxy abundance is slightly lower at the low-mass end of
M* < 109Me compared to the other two models.

The variation of the GSMF in the ASTRID-LH set is larger
than the LH sets of TNG and SIMBA for the same reasons as
discussed for the SFRD. At the low-mass end (M*< 1010Me),
the range of variation in ASTRID covers that of the SIMBA and
TNG simulation suites, including TNG-SB28. The broad variation
of the galaxy population in ASTRID-LH allows ML models
trained on the ASTRID galaxy catalogs (of the LH set) to provide
the best extrapolation results when applied to other simulation
suites as test sets (e.g., N. Echeverri et al. 2023, in preparation).

Compared to the galaxy population, the BHMF shows much
larger differences between the fiducial models of the three
simulation suites, especially at the low-mass end of
MBH< 108Me, due to different prescriptions for BH seeding,
accretion, and feedback (as well as poor observational constraints
for model calibration; see also Habouzit et al. 2021). Compared
to TNG and SIMBA, ASTRID has a larger BH population,
especially at the low-mass end of MBH= 106−108Me. The low-
mass end BH population can be sensitive to the BH seed mass.
We reiterate that the CAMELS-ASTRID suite does not adopt the
same BH seeding prescription as the large volume ASTRID
production run owing to the limited resolution of CAMELS, as
discussed in Section 2.

The diversity of the BHMF as a result of parameter variations
is larger in ASTRID than in the LH sets of the other suites,
similarly to the case for the quantities discussed above. It is also
true that the extension into Ωb variations in ASTRID-SBOb does
not noticeably increase the diversity compared to ASTRID-LH.
However, in the case of the BHMF, TNG-SB28 displays a much
larger diversity than TNG-LH, or even than the ASTRID sets,
unlike what was seen above for other quantities. We interpret this
as being a result of a high sensitivity of BH masses to a number
of the new parameters introduced in TNG-SB28, which include
specifically a significant number of parameters that directly
control BH growth. This is as opposed to the six parameters in
the original TNG-LH set, most of which made little difference for
the growth of BHs.

5.2. Galaxy Catalogs and Scaling Relations

In this subsection, we inspect the halo and galaxy catalogs in
the five simulation sets and compare various scaling relations
of astrophysical properties.

Halo Baryon Fraction: The first row of Figure 7 shows the
scaling relation between the baryon fraction fb=Mb/Mhalo and
Mhalo, where Mhalo is the FOF halo mass and Mb is the total
baryonic mass (including the stars, gas, and BHs) in the FOF
halo. We can see the systematic difference between the three
simulation suites. The baryon fractions in the three simulation
suites all peak at around Mh∼ 1012Me and decrease when
going to larger halo mass as a result of AGN (jet) feedback in
massive halos, where ASTRID exhibits the largest baryon
fraction for massive halos while SIMBA predicts the lowest. A
smaller baryon fraction in halos corresponds to less clustering
of gas (see, e.g., van Daalen et al. 2020; Delgado et al.
2022, 2023; Pandey et al. 2023, for more detailed studies).

Therefore, the baryon fraction in the three simulation suites
exhibits a similar trend to the gas power spectrum as seen in
Figure 5. Meanwhile, the ASTRID-LH set displays the largest
variation in the baryon fraction within the same halo mass bin,
almost covering the range of TNG and SIMBA, whether or not
the LH or SB sets are considered.
Star Formation Rate versus Stellar Mass: The second row of

Figure 7 shows the galaxy SFR versus the stellar mass of
galaxies from the galaxy subhalo catalogs. Here SFR is the
instantaneous star formation of all gas particles associated with
their galaxy hosts. We only consider galaxies with nonzero
SFRs to avoid the distributions being heavily affected by fully
quenched galaxies. The three simulation suites exhibit a similar
trend in that the SFR increases with stellar mass and flattens
when going to more massive galaxies owing to quenching from
feedback. As discussed in Villaescusa-Navarro et al. (2021a),
in the low-M* end, cosmic variance can make the dominant
contribution to the variation in the SFR–M* relation. Therefore,
we see a similar range of the LH set variation for the three
simulation suites for lower-mass galaxies at M* < 1010Me.
The variation of the SFR increases at higher galaxy masses.
The SFR variation can exceed 3 orders of magnitude for
M* > 1011Me in the three simulation suites, as the AGN
feedback begins to quench the galaxies, therefore giving rise to
a larger scatter in this mass regime by variations of the
feedback parameters in the LH and SB sets.
Metallicity versus Stellar Mass: The third row of Figure 7

shows the relation between stellar metallicity, in units of solar
metallicity (Ze= 0.012), and stellar mass. The three simulation
suites exhibit systematically different Z*–M* relations (or
metal enrichment histories) owing to different astrophysical
models. The fiducial model of TNG predicts the largest stellar
metallicity in all stellar mass bins, while ASTRID gives Z*
between SIMBA and TNG. The variation in the ASTRID-LH
set tends to be larger than that in the other two LH sets,
especially for the massive galaxies, but TNG-SB28 shows a
much higher diversity than both TNG-LH and ASTRID-LH.
We believe that this is due to the particularly large effect of two
of the additional parameters in TNG-SB28 on this relation,
specifically the slope of the initial mass function (IMF) and the
metal loading factor of the galactic winds.
Black Hole Mass versus Stellar Mass: The bottom panel of

Figure 7 shows the MBH–M* relation. For each galaxy
identified by SUBFIND, we consider the single most massive
BH associated with that galaxy. We only include galaxies with
nonzero BHs, which results in the cutoff at M* 109.5Me in
SIMBA due to its M* threshold for BH seeding.
MBH in the ASTRID suite is systematically larger than that in

TNG and SIMBA within a given stellar mass bin. For lower-
mass galaxies M* < 1010Me, ASTRID predicts MBH about
0.5–1 dex more massive compared to TNG, as BHs in ASTRID
grow more rapidly in the initial phase with boosted Bondi
accretion factor α= 100 and the possibility of super-Eddington
accretion (the MBH in ASTRID is capped at 2× LEdd). At
higherMBH (or M*), BH growth starts to become self-regulated
by AGN feedback. At higher masses M* > 1010Me, ASTRID
galaxies host MBH about 0.4 dex more massive compared to
TNG and SIMBA. We note again that the MBH at z= 0 and the
MBH–M* relation can be sensitive to the initial BH seed mass,
where the CAMELS-ASTRID suite applies a different BH
seeding prescription compared to the ASTRID production run
because of the lower resolution of CAMELS.
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The range of variation in the resulting MBH–M* relations
when the simulation parameters are varied is quite distinct
between the five different sets, with the exception of ASTRID-
LH and ASTRID-SBOb, which are virtually the same. In
particular, this diversity is a strong function of stellar mass,
with different dependences on mass in the different sets. We
see again, similarly to the BHMF, that the diversity in TNG-
SB28 is much larger than in TNG-LH, which we associate with
the addition of new parameters that directly affect BH growth
and evolution.

6. Machine-learning Tests

In this section, we demonstrate several ML applications that
can be performed using the new simulation suites introduced in

this work. As a simple demonstration, we carry out ML tasks
following our previous work on field-level likelihood-free
inference of Ωm and σ8 using 2D maps of the total matter
density field and gas temperature field. These 2D maps represent
the projection of ´ ´ -( )h25 25 5 Mpc1 3 slices of the simula-
tion volume and have been created for the new CAMELS-
ASTRID and TNG-SB28 simulations using the same procedure
as presented in Villaescusa-Navarro et al. (2022b). These maps
have been included in the CAMELS Multifield Dataset.15

In Section 6.1, we test previously developed ML models that
are robust across the two subgrid models of TNG and SIMBA
on the new ASTRID field. In Section 6.2, we demonstrate the

Figure 7. Various scaling relations between astrophysical properties from the (sub)halo catalogs at z = 0. Conventions for the colors, lines, and shaded regions are the
same as in Figure 5. The top panel shows the halo baryon fraction vs. halo mass. The lower panels show the scaling relations between stellar mass and SFR (second
row), mean stellar metallicity (third row), and the maximum MBH (fourth row). For each property, we combine the subhalo catalogs from the CV set and LH set and
show in solid lines the median value of y for each mass bin in x from the CV set and in the shaded area the 10th–90th percentile of the y distribution from the combined
catalog from 1000 simulations of the LH set (or 1024 simulations of the SB set). See text for more details.

15 https://camels-multifield-dataset.readthedocs.io
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case of training ML models based on a combination of two
simulation suites (LH sets of TNG + SIMBA) and testing them
on the ASTRID-LH set. In Section 6.3, we present the first use
of the new TNG-SB28 suite as a training set to showcase the
possibility of developing ML inference models based on a
simulation set embedded in a high-dimensional parameter
space.

We note that in this section we use the new CAMELS-
ASTRID suite to test model robustness and validate the
performance of ML models trained on two simulation suites.
ML models trained on the new ASTRID suite have already
been presented in Shao et al. (2022), de Santi et al. (2023), and
Pandey et al. (2023) and have exhibited good performance. In
particular, de Santi et al. (2023) showed that, among all the
available suites, ASTRID was the one with the best general-
ization properties when studying galaxy clustering, while N.
Echeverri et al. (2023, in preparation) reached similar
conclusions when studying properties of individual galaxies.

6.1. Robustness Tests

In this subsection, we investigate whether models that are
robust across two simulation suites will also be accurate when
tested on simulations from a third suite. For this, we take
advantage of the results presented in Villaescusa-Navarro et al.
(2021c), where it was shown that a convolutional neural
network (CNN) model was able to perform a robust field-level
likelihood-free inference on the values of Ωm and σ8 from 2D
maps containing slices of the total matter density field.

The ML model is trained to predict the mean and standard
deviation of the marginal posterior for each parameter (of Ωm,
σ8, ASN1, ASN2, AAGN1, AAGN2) from the input 2D maps. The
architecture of the model consists of a set of convolutional
layers followed by a fully connected layer. The training process
uses the loss function modified from the moments network
following Jeffrey et al. (2021). We refer to Villaescusa-Navarro
et al. (2021b) for further details of the ML model.

The network was trained on maps created from the LH set of
TNG simulations and tested on maps from both TNG and

SIMBA, showing that the approach was able to infer the values
of Ωm and σ8 with comparable accuracy and precision. The
same test was performed training the model on SIMBA maps
yielding the same conclusion. Having a model that is robust
across the TNG and SIMBA models, we investigate whether it
is also robust when tested on data from ASTRID.
The result we find is that the TNG-trained model is able to

infer the true value of Ωm from the maps of all three
simulations, while for σ8 it is only able to perform such a
task in the TNG and SIMBA maps, failing on the maps from
ASTRID. This is demonstrated in Figure 8, which shows the
results of the model trained on TNG and tested on the CV set of
the three simulation suites (so the true values of Ωm and σ8 are
0.3 and 0.8, respectively).
To illustrate the model performance on the three simulation

suites, Figure 9 gives an example of the total mass map from the
TNG, SIMBA, and ASTRID CV set (with the same realization)
as one of the test sets. From the visual comparison, as well as the
residual plots shown in the bottom panels of Figure 9, one can
see that the total matter maps of TNG and ASTRID are more
similar to each other compared to the one from SIMBA.
However, the network that can infer σ8 for the TNG map (and for
the SIMBA map) gives a biased result when tested on the
ASTRID map. We also test the network on the CV set of the
Magneticum simulation (which also contains 27 CV simulations)
and find that the model also gives a biased result of σ8 similar to
that of ASTRID. We speculate that the network infers σ8
contingent on some complex, high-order (and possibly numer-
ical) features that happen to be shared between TNG and SIMBA
while broken by ASTRID (and Magneticum) maps. We leave it
to future work to interpret and understand such behavior and
develop a more robust model for σ8 inference.
We stress that the falsification of the model on the σ8

inference task demonstrates the importance of testing ML
models on a range of independent galaxy formation simulations
to ensure their robustness and generalizability, as ML models
that can work on two galaxy formation simulations are not
guaranteed to perform well when tested on a third one.

Figure 8. We use the model described in Villaescusa-Navarro et al. (2021c), which was trained on total matter maps from CAMELS-TNG simulations, to conduct
tests on 15 distinct maps with constant values of Ωm and σ8 (shown with black horizontal lines) from three different simulation suites: TNG (green), SIMBA (orange),
and ASTRID (blue). As observed, the model performed effectively in inferring the value of Ωm; however, it was not able to correctly infer σ8 from CAMELS-
ASTRID maps.
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6.2. Training on Two Simulation Suites Combined

With a third suite of hydrodynamic simulations in CAMELS,
we can train ML models on two simulation suites (i.e., based on
two galaxy formation models) and test whether they can
generalize to a third simulation suite that is carried out with a
distinct galaxy formation model. We perform this task by training
a CNN to infer Ωm and σ8 based on the 2D gas temperature map.
By visual inspection, the gas temperature maps are one of the
most divergent maps between the three CAMELS suites and
therefore pose a challenging test for the robustness of ML
inference models. As shown in Villaescusa-Navarro et al.
(2021b), the ML model trained on TNG gas temperature maps
does not generalize to SIMBA (and vice versa), due to the
distinct astrophysical models utilized in each suite.

In this subsection, we train the ML model based on the
combination of TNG and SIMBA maps and test that model on
the ASTRID maps. We note that the ML model is only trained
and tested on the 2D gas temperature maps from the LH sets of
the three simulation suites, to link to our previous work. In
Figure 10, the black points (with error bars) show the results of
the ML model trained based on TNG+SIMBA maps and tested
on TNG, SIMBA, and ASTRID individually. As a comparison,
we also show the test results from the model trained only on
TNG (green) and only on SIMBA (orange) that are presented in
Villaescusa-Navarro et al. (2021b). To qualify the model
performance, we calculate the rms error (RMSE) and reduced
chi-squared (χ2) to quantify the precision of the inference
model and the accuracy of the estimated errors.

Based on Figure 10, and in particular the RMSE and χ2 scores,
it is clear that while the models trained only on one suite perform
badly on the other suite (exceedingly so for σ8), the model trained

on TNG+SIMBA performs well when tested on TNG or
SIMBA. However, its performance degrades when tested on
ASTRID, indicating that the model trained on two simulation
suites does not generalize well when applied to a new galaxy
formation model. Nevertheless, it is interesting to note that when
tested on ASTRID the model trained on TNG+SIMBA (black)
outperforms the models trained only on TNG (green) or SIMBA
(orange). One might worry that when training a model based on
two distinct suites of gas temperature maps it would categorize
the input field as either TNG-like or SIMBA-like and make an
inference that resembles the result from a model trained on one of
the two separately. The fact that the black model outperforms
both the orange and green models on ASTRID suggests that this
is not the case. We also compared the inference results on
individual ASTRID maps from the three ML models and found
that in many cases the black model can make more accurate
inferences when the other two models are biased.
It is encouraging to see that the model trained on two suites is

performing better than the ones trained on a single suite, and it
shows some degree of extrapolation when applied to a new suite
of galaxy formation models. Our speculation is that during the
training process on the two distinct simulation suites the ML
model is encouraged to ignore features specific to TNG or
SIMBA that make the single-suite-trained models less robust
when tested on a previously unseen suite. Instead, it focuses on
capturing more general features that are shared between TNG and
SIMBA to make the inference. Therefore, it seems promising to
improve the robustness of ML models by including more distinct
galaxy formation simulations in the training set.
However, we should note that the black model’s perfor-

mance on ASTRID (especially on σ8) is relatively poor

Figure 9. The top row shows three images with the total matter surface density from three different simulations run with the same initial conditions. The panels in the
bottom row show differences with respect to the TNG image. From the residual plots, it can be seen that the images from the TNG and ASTRID models are more
similar to the ones from SIMBA.
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compared to the results tested on TNG or SIMBA. Thus, we
still caution that blindly training a model based on more
simulation suites does not guarantee generalization to other
galaxy formation models. Specially tailored machines that are
trained with robustness in mind are a promising research
direction, which we will explore in Y. Jo et al. (2023, in
preparation).

6.3. Training on the TNG-SB28 Set

In this subsection, we present the first results of ML models
trained on the new TNG-SB28 simulation set. The TNG-SB28
set sparsely samples a high-dimensional space of 28 cosmo-
logical and astrophysical parameters with 1024 simulations. It
was a priori uncertain whether it is feasible to train an ML
model for cosmological inference based on such a simulation
set or whether many more simulations would be needed to
perform such task.

In Figure 11, we show the test results for TNG-SB28, where
we train a neural network to infer Ωm and σ8 based on the 2D
total mass density field generated from TNG-SB28. The model
architecture is the same as that introduced in Villaescusa-
Navarro et al. (2021c). The model yields good scores for Ωm

and worse, yet still constraining, results for σ8, despite the
broad variation (and possible degeneracy) of all 28 parameters
in TNG-SB28.

In our previous work (Villaescusa-Navarro et al. 2021b)
training the neural network on the TNG-LH set and testing on the
TNG-LH set, the mean relative error (mre) based on the 2D total

matter density maps is 〈δΩm/Ωm〉= 0.034 and 〈δσ8/σ8〉= 0.024.
Compared to the results based on the TNG-LH set, the
constraining power on Ωm does not degrade by making the
parameter space larger in TNG-SB28 (with mre 〈δΩm/Ωm〉=
0.030), while σ8 is affected by it (the corresponding mre score
degrades to 〈δσ8/σ8〉= 0.060), potentially due to the degeneracy
introduced by additional parameters varied. However, there is
still some constraining power on σ8. We have also conducted a
similar training and testing for the Ωm and σ8 inference model
based on gas temperature maps, which produced slightly worse
but still constraining results, with mre = 0.064 and 0.072
for Ωm and σ8, respectively (while the corresponding mre values
based on the TNG-LH set are 0.053 and 0.037 for the gas
temperature maps).
This section demonstrates the possibility of training ML

models for cosmological inference based on the TNG-SB28
set. In future works, we will thoroughly investigate which
categories of physical maps can infer which cosmological or
astrophysical parameters in the TNG-SB28 set.

7. Summary and Conclusion

We have introduced the CAMELS-ASTRID simulation suite
as the third large hydrodynamic simulation suite in the
CAMELS project, carried out using the galaxy formation
model of the ASTRID simulation. The core CAMELS-
ASTRID suite contains the {CV, 1P, LH, EX} simulation sets
with the same design as the TNG and SIMBA suites presented
in Villaescusa-Navarro et al. (2021a), exploring the

Figure 10. We train a neural network to infer Ωm (top panels) and σ8 (bottom panels) from gas temperature maps, tested on TNG (left column), SIMBA (middle
column), and ASTRID (right column). The green, orange, and black colors represent the models trained on (the LH set of) TNG, SIMBA, and TNG+SIMBA suites,
respectively. The data points and error bars give the posterior mean and variance. The scores of RMSE and χ2 are shown in the legends.
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cosmological and astrophysical parameter space of {Ωm, σ8,
ASN1, ASN2, AAGN1, AAGN2 }. The extension of CAMELS-
ASTRID contains an additional LHOb set also varying the
cosmological parameter Ωb along with the six fiducial
parameters.

We have also presented CAMELS extension simulation sets
based on TNG and SIMBA that aim to explore a higher-
dimensional parameter space in their respective galaxy
formation models. In particular, the TNG-SB28 simulation
set contains 1024 simulations that semi-uniformly sample a
space of 5 cosmological parameters and 23 subgrid parameters.
It is accompanied by the TNG-1P-28 set that varies one
parameter at a time to study their individual impact on different
astrophysical properties. The analogous set SIMBA-1P-28 is
also carried out to explore the high-dimensional parameter
space in SIMBA. Details of the 1P-28 sets in TNG and SIMBA
are presented in the appendices.

We summarize the main features of the new simulation sets
below.

1. The fiducial model of ASTRID exhibits the least impact
on the large-scale gas properties and baryonic feedback
on the matter power spectrum owing to a milder AGN jet
mode feedback compared to TNG and SIMBA.

2. Varying feedback efficiency introduces nonlinear effects
to the overall galaxy and BH populations and eventually
the matter power spectrum. One example is the AAGN2

parameter in the ASTRID suite that controls the AGN
thermal feedback efficiency. A larger AAGN2 suppresses
the formation of massive BHs, curtails the energy budget
of AGN feedback, brings less baryonic suppression on
the total matter power spectrum, and enhances the global
SFR and galaxy populations. Given the intricacy of the
convoluted effects of feedback processes, we should view
the astrophysical parameters ASN and AAGN as modula-
tions of various astrophysical processes that lead to
variations in different physical quantities, rather than
directly infer the amount of feedback from each

astrophysical process as would be indicated by ASN and
AAGN at face value.

3. We show that in cases where the cosmological parameters
are varied identically between the ASTRID, TNG, and
SIMBA suites, the responses to those parameters can
show strong differences between simulation models. For
example, the matter power spectrum responds differently
to Ωm and σ8 on small scales between ASTRID, TNG,
and SIMBA. In the extended 1P-28 sets, TNG and
SIMBA show different responses of gas power spectrum
to changes in the h and ns cosmological parameters. This
stresses the importance of including different galaxy
formation models to improve and test the robustness of
cosmological inference tasks.

4. The TNG-1P-28 and SIMBA-1P-28 sets allow us to
develop a more complete picture of the sensitivity of the
galaxy formation process to a large number of parameter
variations in the TNG and SIMBA models and their
effects on the cosmic matter distribution. We find that
each of the 28 parameters, which are varied within
reasonable ranges based on physical intuition, has a
significant effect on the results of the models. Further,
there is significant variability in the effect of different
parameters on different quantities or “observables,”
where the overall impact of increasing one parameter is
not necessarily linear or even monotonic. This demon-
strates the enormity of the overall relevant galaxy
formation model parameter space, which is sampled
much more extensively here than in previous work, but it
is still largely unexplored and not well understood.

5. Compared to the LH sets of TNG and SIMBA, the
ASTRID-LH set drives larger variations in the gas power
spectrum, the baryonic effect on the total matter power
spectrum, the halo baryon fraction, the SFRD, and the
galaxy population. In the ASTRID suite, the matter
power spectrum is sensitive to the AAGN2 and ASN2
parameters that regulate BH growth, as well as the AGN
jet mode feedback. The large variation in the cosmic SFR

Figure 11. We show the results of a neural network trained and tested on the TNG-SB28 set to infer Ωm and σ8 from 2D total matter density maps. This demonstrates
that it is still possible to train an ML model to infer cosmological parameters even with the simulation set of TNG-SB28 that broadly (and sparsely) samples the high-
dimensional parameter space of a galaxy formation model.
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and global galaxy properties is mainly driven by the
sensitivity of ASTRID to the ASN2 parameter (which
controls the SN wind speed). The broad variation of the
ASTRID-LH set in some aspects promotes the robustness
of ML model training. We find that ML models trained
on galaxy catalogs from the ASTRID-LH set exhibit the
best extrapolation performances when applied to other
simulation sets.

6. The new TNG-SB28 set spans a much larger parameter
space of the TNG model compared to the original TNG-LH
set, and indeed it produces wider variations in the
simulation results in all the individual quantities and
scaling relations that we have examined, typically varia-
tions that are roughly as wide as those from the ASTRID-
LH set. The degree to which this extended TNG set
produces more varied results than the original TNG-LH set
is, however, different between different quantities. We
hypothesize that in some cases this is due to an averaging
effect of many important parameters, while in some cases
the new set produces significantly larger variations than the
original owing to the introduction of new parameters that
have a particularly significant effect on the quantity in
question. The TNG-SB28 set probes a much more
complete account of the flexibility in the TNG framework
and can be used as a more realistic testing ground for ML
models, since it does not hold fixed the values of many
parameters that are fundamentally not known but are kept
fixed in the original TNG-LH set.

We have presented a few ML applications allowed by the
new simulation sets introduced in this work, as summarized
below:

1. We evaluate the generalization performance of an ML
inference model trained on 2D mass maps from the TNG
suite, which generalizes to and can successfully predict
Ωm and σ8 in the SIMBA suite. However, when tested on
the ASTRID suite, the model fails to infer σ8, despite the
fact that ASTRID 2D mass maps are more similar to
TNG in many statistical properties compared to SIMBA.
This underscores the importance of including a diverse
set of independent galaxy formation models to assess the
robustness of trained ML models.

2. We develop a cosmological ML inference model by
training on gas temperature maps, which have been
previously shown to give rise to models that are not
robust, from a combination of the TNG+SIMBA suites.
While when trained on TNG+SIMBA the resulting model
generalizes well between TNG and SIMBA, when we test
its ability to predict Ωm and σ8 on the ASTRID data, our
findings suggest that training a model using multiple
simulation suites does not necessarily result in general-
ization to other galaxy formation models. Yet we observed
that the two-suite trained model (TNG+SIMBA) per-
formed better when tested on the ASTRID data than the
models trained only on one suite (TNG or SIMBA
separately), indicating the potential for improving the
robustness of ML models by incorporating additional
distinct galaxy formation models in the training sets.

3. We demonstrate the feasibility of training neural networks
to infer Ωm and σ8 using the TNG-SB28 simulation set,
which sparsely samples the high-dimensional parameter
space of a galaxy formation model. Our results show that it

is possible to train accurate ML models using this set,
which can successfully infer cosmological parameters.
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Appendix A
Description of the 28 Varied Parameters

Here we provide brief yet explicit and complete accounts of
the 28 parameters that are varied in each of the new TNG and
SIMBA sets discussed in this work. In addition to a concise
description of the physical meaning of each parameter, we
provide references to previous work that presented the
parameter in the broader context of the model, as well as the
range within which we vary the parameter value in this work.
We also note whether the sampling of the parameter values
within said range in this work is uniform in linear or
logarithmic space.

A.1. TNG 28-parameter Variations

1. Omega0 is the standard cosmological parameter Ωm, the
z= 0 cosmic matter density in units of the critical density.
Here it is sampled linearly between 0.1 and 0.5, around
the fiducial value of 0.3.

2. Sigma8 is the standard cosmological parameter σ8, the
rms of the z= 0 linear overdensity in spheres of radius
8 h−1 Mpc. Here it is sampled linearly between 0.6 and 1,
around the fiducial value of 0.8.

3. WindEnergyIn1e51erg (ASN1) is a normalization
factor for the energy in galactic winds per unit star
formation and is denoted as ēw in Equation (3) in Pillepich
et al. (2018). In the existing literature using CAMELS,
including in this work, it is commonly referred to as ASN1,
albeit with a ratio of 3.6 between the two. Here it is
sampled logarithmically between 0.9 and 14.4, around the
fiducial value of 3.6.

4. VariableWindVelFactor (ASN2) is a normalization
factor for the galactic wind speed and is denoted as κw in
Equation (1) in Pillepich et al. (2018).16 In the existing
literature using CAMELS, including in this work, it is
commonly referred to as ASN2, albeit with a ratio of 7.4

16 Note that its description in Equation (4) in Villaescusa-Navarro et al.
(2021a) is incorrect in that ASN2 should have been located in front of κw instead
of the whole rhs.
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between the two. Here it is sampled logarithmically
between 3.7 and 14.8, around the fiducial value of 7.4.

5. RadioFeedbackFactor (AAGN1) is a normalization
factor for the energy in AGN feedback, per unit accretion
rate, in the low-accretion state and is implemented as a
pre-factor in front of the right-hand side (rhs) of Equation
(8) in Weinberger et al. (2017). In the existing literature
using CAMELS, including in this work, it is commonly
referred to as AAGN1. Here it is sampled logarithmically
between 0.25 and 4.0, around the fiducial value of 1.0.

6. RadioFeedbackReiorientationFactor
(AAGN2) is a normalization factor for the frequency of
AGN feedback energy release events in the low-accretion
state and is denoted as fre in Equation (13) in Weinberger
et al. (2017). In the existing literature using CAMELS,
including in this work, it is commonly referred to as
AAGN2, albeit with a ratio of 20 between the two. Here it
is sampled logarithmically between 10 and 40, around the
fiducial value of 20.

7. OmegaBaryon is the standard cosmological parameter
Ωb, the z= 0 cosmic baryon density in units of the critical
density. Here it is sampled linearly between 0.029 and
0.069, around the fiducial value of 0.049.

8. HubbleParam is the standard Hubble constant, in units of
100 km s−1Mpc−1. Here it is sampled linearly between
0.4711 and 0.8711, around the fiducial value of 0.6711.

9. n_s is the standard cosmological parameter ns, the
spectral index of the initial fluctuations.17 Here it is
sampled linearly between 0.7624 and 1.1624, around the
fiducial value of 0.9624.

10. MaxSfrTimescale is the timescale for star formation
at the density threshold of star formation and is denoted
as t0 in Equation (21) in Springel & Hernquist (2003a).
Here it is sampled logarithmically between 1.135 and
4.54 Gyr, around the fiducial value of 2.27 Gyr.

11. FactorForSofterEQS is an interpolation factor
between the effective equation of state for star-forming
gas obtained from the Springel & Hernquist (2003a)
subgrid model and an isothermal equation of state with
104 K and is denoted as qEOS in Springel et al. (2005).
Here it is sampled logarithmically between 0.1 and 0.9,
around the fiducial value of 0.3.

12. IMFslope is the power-law index of the stellar IMF
above 1Me (whereas below that mass, it is kept fixed
following Chabrier 2003). Here it is sampled linearly
between −2.8 and −1.8, around the fiducial value of −2.3.

13. SNII_MinMass_Msun is the lower threshold for the
mass of a star that produces an SN explosion and is
denoted MSNII,min in Vogelsberger et al. (2013). It affects
both the available energy for galactic wind feedback (and
in that sense is degenerate with WindEnergyI-
n1e51erg, or ASN1) and the effective (namely, stellar-
population-averaged) stellar mass return and enrichment.
Here it is sampled linearly between 4 and 12Me, around
the fiducial value of 8Me.

14. ThermalWindFraction is the fraction of the galactic
wind feedback energy that is injected thermally (the other
component being kinetically) and is denoted as τw in

Pillepich et al. (2018). Here it is sampled logarithmically
between 0.025 and 0.4, around the fiducial value of 0.1.

15. VariableWindSpecMomentum is a normalization
factor for the specific momentum in galactic winds per
unit star formation and is denoted as momw in
Vogelsberger et al. (2013). Note that it affects the
specific momentum of the winds only via their mass-
loading factor and not via their speed. Here it is sampled
linearly between 0 and 4000 km s−1. It is worth noting
that the variations in this parameter differ from those of
all the others in that the fiducial value of 0 lies at the edge
of the variation range rather than in its middle, for
physical reasons (negative values are unphysical).

16. WindFreeTravelDensFac sets the gas density
around (collisionless) galactic wind particles at which
they recouple back into the hydrodynamics. Here it is
sampled logarithmically between 0.005 and 0.5, around
the fiducial value of 0.05, all in units of the density
threshold for star formation.

17. MinWindVel is the minimum value imposed for the
galactic wind speed and is denoted as vw,min in Pillepich
et al. (2018). Here it is sampled linearly between 150 and
550 km s−1, around the fiducial value of 350 km s−1.

18. WindEnergyReductionFactor is a normalization
factor for the energy of galactic winds at high metallicity
compared to low metallicity and is denoted as fw,Z in
Pillepich et al. (2018). Here it is sampled logarithmically
between 0.0625 and 1.0, around the fiducial value
of 0.25.

19. WindEnergyReductionMetallicity sets the
metallicity at which the transition from high- to low-
energy galactic winds occurs and is denoted as Zw,ref in
Pillepich et al. (2018). Here it is sampled logarithmically
between 0.0005 and 0.008, around the fiducial value of
0.002, in terms of fractional metal mass.

20. WindEnergyReductionExponent controls the
abruptness in metallicity of the transition between high-
and low-energy galactic winds and is denoted as γw,Z in
Pillepich et al. (2018). Here it is sampled linearly between
1 and 3, around the fiducial value of 2.

21. WindDumpFactor is the fraction of the metals in a star-
forming cell getting ejected into a galactic wind that get
deposited in neighboring star-forming cells prior to the
ejection and is denoted as 1− γw in Pillepich et al.
(2018). Here it is sampled linearly between 0.2 and 1.0,
around the fiducial value of 0.6.

22. SeedBlackHoleMass is the mass of seed SMBHs, as
described in Vogelsberger et al. (2013). Here it is
sampled logarithmically between 2.5× 105Me and
2.5× 106Me, around the fiducial value of 8× 105Me.

23. BlackHoleAccretionFactor is a normalization
factor for the Bondi rate for the accretion onto SMBHs
and is implemented as a pre-factor in front of the rhs of
Equation (2) in Weinberger et al. (2017). Here it is
sampled logarithmically between 0.25 and 4, around the
fiducial value of 1.

24. BlackHoleEddingtonFactor is a normalization
factor for the limiting Eddington rate for the accretion
onto SMBHs and is implemented as a pre-factor in front
of the rhs of Equation (3) in Weinberger et al. (2017).
Here it is sampled logarithmically between 0.1 and 10,
around the fiducial value of 1.

17 Note that since the power of the fluctuations at a scale of 8 h−1 Mpc serves
as a pivot point that is set by Sigma8, most scales available in our 25 h−1 Mpc
boxes are enhanced when n_s is increased, with smaller scales enhanced more
than larger ones.
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25. BlackHoleFeedbackFactor is a normalization
factor for the energy in AGN feedback, per unit accretion
rate, in the high-accretion state and is denoted as òf,high in
Equation (7) in Weinberger et al. (2017). Here it is
sampled logarithmically between 0.025 and 0.4, around
the fiducial value of 0.1. We note that this parameter is
similar to the AAGN2 parameter in ASTRID suite.

26. BlackHoleRadiativeEfficiency is the radiative
efficiency of AGN feedback, namely the fraction of the
accretion rest mass that is released in the accretion process.
In the high-accretion state, it is denoted as òr in Equation
(7) in Weinberger et al. (2017). In the low-accretion state, it
plays a dual role in setting òf,kin in Equation (9) in
Weinberger et al. (2017) by (i) serving as an upper limit on
its value (replacing the constant 0.2 that appears in that
equation) and (ii) modulating the density at which that
upper limit is reached, by scaling the density in the
numerator of the first term in that equation, where a factor
(BlackHoleRadiativeEfficiency/0.2) is missing
for the general case of BlackHoleRadiativeEffi-
ciency ≠0.2. Here it is sampled logarithmically between
0.05 and 0.8, around the fiducial value of 0.2.

27. QuasarThreshold is the Eddington ratio (at the
“pivot mass” of 108Me) that serves as the threshold
between the low-accretion and high-accretion states of
AGN feedback and is denoted as χ0 in Equation (5) in
Weinberger et al. (2017). Here it is sampled logarith-
mically between .000063 and .063, around the fiducial
value of 0.002.

28. QuasarThresholdPower is the power-law index of
the scaling of the low- to high-accretion state threshold
with BH mass and is denoted as β in Equation (5) in
Weinberger et al. (2017). Here it is sampled linearly
between 0 and 4, around the fiducial value of 2.

A.2. SIMBA 28-parameter Variations

1. Omega0 is the z= 0 cosmic matter density in units of the
critical density. Here it is sampled linearly between 0.1
and 0.5 around the fiducial value Ωm= 0.3.

2. Sigma8 is the rms of the z= 0 linear overdensity in
spheres of radius 8 h−1 Mpc. Here it is sampled linearly
between 0.6 and 1 around the fiducial value of σ8= 0.8.

3. ASN1 is a normalization factor for the mass loading of
galactic winds relative to the scaling from FIRE
simulations (Anglés-Alcázar et al. 2017b) implemented
in SIMBA. This is one of the feedback parameters
originally varied in CAMELS (see Equation (7) in
Villaescusa-Navarro et al. 2021a), and it is sampled
logarithmically between 0.25 and 4.0 around the fiducial
value =A 1.0SN1 .

4. ASN2 is a normalization factor for the speed of galactic
winds relative to the scaling from FIRE simulations
(Muratov et al. 2015) implemented in SIMBA. This is
one of the feedback parameters originally varied in
CAMELS (see Equation (8) in Villaescusa-Navarro et al.
2021a), and it is sampled logarithmically between 0.5 and
2.0 around the fiducial value =A 1.0SN2 .

5. AAGN1 is a normalization factor for the momentum flux of
kinetic AGN-driven outflows (Anglés-Alcázar et al.
2017a) in the radiative and jet modes. This is one of
the feedback parameters originally varied in CAMELS

(see Equation (9) in Villaescusa-Navarro et al. 2021a),
and it is sampled logarithmically between 0.25 and 4.0
around the fiducial value AAGN1= 1.0.

6. AAGN2 is a normalization factor for the speed of AGN-
driven outflows in jet mode. This is one of the feedback
parameters originally varied in CAMELS (see Equation
(10) in Villaescusa-Navarro et al. 2021a), and it is
sampled logarithmically between 0.5 and 2.0 around the
fiducial value AAGN2= 1.0.

7. OmegaBaryon is the z= 0 cosmic baryon density in
units of the critical density. Here it is sampled linearly
between 0.029 and 0.069 around the fiducial value of
Ωb= 0.049.

8. HubbleParam is the standard Hubble constant in units
of 100 km s−1 Mpc−1. Here it is sampled linearly
between 0.4711 and 0.8711 around the fiducial value
h= 0.6711.

9. n_s is the spectral index of the initial fluctuations. Here it
is sampled linearly between 0.7624 and 1.1624 around
the fiducial value of ns= 0.9624.

10. SfrCritDens is the gas number density threshold for
star formation. Here it is sampled logarithmically
between 0.02 and 2 cm−3 around the fiducial value of
0.2 cm−3.

11. SfrEfficiency is the star formation efficiency per
freefall time, denoted as òå in Davé et al. (2019). Here it is
sampled logarithmically between 0.01 and 0.04 around
the fiducial value òå= 0.02.

12. ISMJeansFac determines the level of artificial pressur-
ization in the ISM such that the Jeans mass is resolved
with a number of gas resolution elements given by
ISMJeansFac ×Nngb, where Nngb= 64 is the number
of neighbors in the smoothing kernel (Davé et al. 2016).
Here ISMJeansFac is sampled logarithmically between
0.25 and 4.0 around the fiducial value of 1.0.

13. WindTravTime is the maximum amount of time that
galactic winds can propagate before recoupling hydro-
dynamically to the surrounding gas, in units of the
Hubble time at launch (Davé et al. 2016). Here it is
sampled logarithmically between 0.2 and 0.002 around
the fiducial value of 0.02.

14. WindDensFac defines a gas number density threshold
below which decoupled galactic winds are forced to
recouple hydrodynamically to the surrounding gas (Davé
et al. 2016). Here it is sampled logarithmically between
0.1 and 0.001 cm−3 around the fiducial value of
0.01 cm−3.

15. WindColdTemp defines the temperature assumed for
the cold phase of galactic winds (Davé et al. 2016). Here
it is sampled logarithmically between 100 and 104 K
around the fiducial value of 1000 K.

16. WindHotFrac is the fraction of wind particles ejected
in the hot phase, where the wind temperature is
determined by the fraction of the SN energy not used
for kinetic ejection (Davé et al. 2016). Here Wind-
HotFrac is sampled linearly between 0.0 and 0.6
around the fiducial value of 0.3.

17. WindVelSlope sets the power-law dependence
of the galactic wind velocity on the circular velocity
of the galaxy such that µ( )vlog10 wind (1+WindVel-
Slope) ´ (vlog10 circ), as defined in Equation (3) of
Davé et al. (2019). Here WindVelSlope is sampled
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linearly between −0.38 and 0.62 around the fiducial value
of 0.12.

18. AGBWindHeatVel is the velocity of winds from AGB
stars that are assumed to thermalize with the ambient ISM
following the model of Conroy et al. (2015). Here
AGBWindHeatVel is sampled logarithmically between
25 and 400 km s−1 around the fiducial value of
100 km s−1.

19. BHSeedMass is the mass of the SMBH seeds, which is
varied logarithmically between 103 and 105 h−1Me
around the fiducial value of 104 h−1Me (Davé et al.
2019).

20. BHSeedRatio defines the minimum galaxy stellar mass
required for BH seeding as BHSeedRatio×Mseed

(Anglés-Alcázar et al. 2017a). Here BHSeedRatio is
sampled logarithmically between 3× 104 and 3× 106

around the fiducial value of 3× 105.
21. BHAccrFac is a normalization factor for the BH growth

rate applied to both accretion of hot gas following Bondi
(1952) and accretion of cold gas driven by gravitational
torques (Hopkins & Quataert 2011; Anglés-Alcázar et al.
2017a). Here BHAccrFac is sampled logarithmically
between 0.25 and 4.0 around the fiducial value of 1.0.

22. BHAccrMaxR is the maximum size of the BH kernel
used when searching for neighboring gas elements. Here
it is sampled logarithmically between 2 and 8 h−1 kpc
around the fiducial value of 4 h−1 kpc.

23. BHAccrTempThr is the temperature threshold above
which gas accretes onto the BH at the Bondi rate and
below which gas accretion proceeds at the gravitational
torque accretion rate (Davé et al. 2019). Here it is
sampled logarithmically between 104 and 106 K around
the fiducial value of 105 K.

24. BHEddingtonFac is a normalization factor for the
limiting Eddington rate applied to the accretion of cold
gas onto BHs through gravitational torques (hot-mode
accretion is always limited to the Eddington rate). Here
BHEddingtonFac is sampled logarithmically between
0.75 and 12.0 around the fiducial value of 3.0.

25. BHNgbFac sets the desired effective number of
gas resolution elements within the BH kernel as
BHNgbFac ×Nngb, where Nngb= 64 is the number of
neighbors in the gas smoothing kernel. Here it is sampled
linearly from 2 to 6 around the fiducial value of 4.

26. BHRadiativeEff is the radiative efficiency of the BH
accretion disk, denoted as η in Davé et al. (2019), which
determines the fraction of the rest-mass energy of the
accreting material lost to radiation, the amount of energy
injected as X-ray feedback, and the momentum flux of
outflows in radiative and jet modes (Davé et al. 2019).
Here BHRadiativeEff is sampled logarithmically
from 0.025 to 0.4 around the fiducial value of 0.1.

27. BHJetTvirVel sets the outflow velocity above which
gas ejected in jet mode is heated to the virial temperature
of the host halo (Davé et al. 2019). Here BHJetTvir-
Vel is sampled logarithmically from 500 to 8000 km s−1

around the fiducial value of 2000 km s−1.
28. BHJetMassThr is the BH mass threshold above which

BHs are allowed to transition into the jet feedback mode.
It is sampled logarithmically from 4.5× 106Me to
4.5× 108Me around the fiducial value of 4.5× 107Me
(Davé et al. 2019).

Appendix B
TNG Extended 1P Set

Here we present a few examples for how individual model
parameters affect the results of simulations in the TNG
framework, by way of showing three distinct quantities based
on the TNG-1P-28 set—the cosmic SFRD, the MBH–M*
relation, and the gas power spectrum Pgas(k) normalized by that
of the fiducial model. Figures 12, 13, and 14 each show one of
these quantities, respectively, for 57 simulations from the
TNG-1P-28 set, which are the two extremes for each of the 28
parameters (red for the highest and blue for the lowest value),
as well as the fiducial model (black, repeating in all panels).
The panels are organized such that the first six correspond to
the original six parameters from the TNG-LH set, followed by
the three new cosmological parameters, followed by the star
formation and then the galactic wind parameters, and finally in
the bottom row the BH growth and AGN feedback parameters.
This presentation of the dependencies of these three

quantities on the model parameters in Figures 12, 13, and 14
serves to support the interpretation of the diversity of results in
the TNG-SB28 set that is discussed in Section 5, to contribute
to the justification for the choice of parameter variation ranges,
and to explore the degree to which the various parameters are
degenerate with one another in terms of their effects on the
simulation results, as discussed below.
Figure 12, for the cosmic SFRD versus redshift, demon-

strates that some of the original six parameters, namely Ωm, σ8,
and ASN1, are some of the most influential ones. However, two
of the new cosmological parameters, h and ns, have effects of
similar overall scale. It is notable, though, that the response to
each of these five most influential parameters has a unique
shape, such that they are not degenerate with one another, even
for just this single quantity. A few additional galactic wind
parameters also have fairly significant effects; it is worth noting
that one of those, WindFreeTravelDensFac, can be
considered rather “numerical” in nature, as it controls the
ambient density at which collisionless “wind particles”
recouple into the hydrodynamics. This highlights a situation
where even “nuisance” parameters without a very clear analog
in physical reality, which are often “buried” deep inside the
model, can be consequential for modern galaxy formation
simulations. Finally, we note that BH parameters have a mild
effect on this quantity, as expected, given that they tend to
affect the most massive galaxies but that star formation is
dominated by low- and intermediate-mass galaxies.
Figure 13, for the z= 0 stellar-to-halo mass ratio, shows a

much broader set of parameters that matter than is the case for
the SFRD in Figure 12. Essentially all the parameters except
the original AGN parameters AAGN1 and AAGN2 make a visible
effect in the figure. On the other hand, of the galactic wind
parameters, the original ones, ASN1 and ASN2, are the most
significant, joined by WindFreeTravelDensFac. These
types of parameters, as well as the cosmological ones, tend to
affect a wide range of halo masses, while the BH and AGN
parameters meaningfully affect only halos more massive than
∼1012Me, as expected. Newly varied star formation para-
meters, the star formation timescale and the IMF slope, also
have a significant impact. It is interesting to explore the
degeneracy, and breaking thereof, across the two quantities
shown in Figures 12 and 13. For example, the effects of ns and
MaxSfrTimescale (second and third panels in the second
row) appear to be almost degenerate for the M*–Mh relation,
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but they have radically different consequences for the SFRDs.
Conversely, ASN2 and BlackHoleRadiativeEffi-
ciency, which have a similar effect on the SFRDs, have
rather distinct impacts on the M*–Mh relation.

Finally, Figure 14, for the gas power spectrum Pgas(k)
(relative to the fiducial model), demonstrates its own distinctive
trends. For example, the newly added cosmological parameters

h and ns that prove so significant for the SFRDs in Figure 12
make barely a dent on Pgas(k). In contrast, QuasarThre-
sholdPower, which does not stand out as the most important
AGN parameter in Figures 12 and 13, has a very strong effect
on Pgas(k), in particular when its value is small, likely by
moving many massive BHs from the kinetic to the thermal
feedback mode. Overall, Pgas(k) shows a large variation in

Figure 12. Global SFRD of the TNG extended 1P set. The 28 panels reproduce the fiducial model as the black line. The red and blue lines in each panel represent the
simulations run with the highest and lowest parameter value (except for the WindSpecMom parameter in TNG; see text for more details).

Figure 13. Same as Figure 12, but this plot gives the z = 0 stellar mass fraction of the TNG extended 1P set. Mhalo here is the FOF halo mass, and M* is the stellar
mass within the FOF halo. The y-axis gives the averaged (M*/Mhalo) for each halo mass bin for each simulation.

24

The Astrophysical Journal, 959:136 (28pp), 2023 December 20 Ni et al.



terms of the strength of its dependence on different parameters,
while both the important ones and the nonimportant ones
sample all parameter types: cosmological, star formation and
ISM, galactic winds, and BH parameters.

Appendix C
SIMBA Extended 1P Set

As in Appendix B for TNG, here we illustrate how
individual parameters in the SIMBA model affect global
properties of galaxies and the large-scale distribution of
baryons in simulations. Figure 15 shows the evolution of the
cosmic SFRD, Figure 16 shows the stellar mass–halo mass
relation at z= 0, and Figure 17 shows the gas power spectrum
Pgas(k) at z= 0 normalized by that of the fiducial model. Each
figure consists of 28 panels corresponding to all parameter
variations in the SIMBA-1P-28 set, where the fiducial model is
indicated by the black line and the red and blue lines
correspond to the results for the highest and lowest parameter
values, respectively. The first six panels correspond to the
original SIMBA parameter variations in CAMELS (Villaes-
cusa-Navarro et al. 2021a), including Ωm, σ8, and four
parameters controlling the efficiency of kinetic outflows driven
by stellar feedback (ASN1 and ASN2) and AGN feedback (AAGN1

and AAGN2). Then, we show variations of three additional
cosmological parameters (Ωb, h, and ns), followed by
astrophysical parameters controlling star formation, galactic
winds, BH accretion, and AGN feedback.

Figure 15 shows that the cosmic SFRD increases system-
atically with higher Ωb, h, and ns, as seen for TNG in Figure 12.
Interestingly, the SFRD increases not only with the star
formation efficiency, as expected, but also with a higher
threshold density for star formation, suggesting that stellar
feedback is less efficient at regulating star formation when the
star-forming gas reaches higher densities. Besides the normal-
ization of the mass loading (ASN1) and velocity (ASN2) of

galactic winds, the next most important wind parameter appears
to be the power-law dependence of wind speed with the
circular velocity of the galaxy WindVelSlope. Numerical
parameters related to the hydrodynamic treatment of winds also
have a noticeable effect, with longer hydrodynamic decoupling
times decreasing the SFRD and higher recoupling densities
having the opposite effect. Interestingly, increasing the BH
seed mass at fixed BH-to-host mass ratio has similarly strong
effects on the SFRD to increasing the BH-to-host mass ratio by
the same factor at fixed BH seed mass. This suggests that the
seed mass itself is not important, as expected given the weak
dependence of gravitational torque accretion on BH mass
(Anglés-Alcázar et al. 2013, 2017a), but the stellar mass at
which galaxies are seeded is crucial, with significantly higher
SFRD when BH seeding occurs only in higher-mass galaxies.
Relatedly, increasing the BH accretion normalization system-
atically decreases the SFRD. Other important AGN feedback
parameters besides the momentum flux (AAGN1) and the jet
speed (AAGN2) include the BH mass threshold for jet feedback,
with higher SFRD when only the most massive BHs are
allowed to transition to the jet mode.
Figure 16 shows that most parameter variations have a

noticeable effect in the stellar mass–halo mass relation at z= 0,
as seen for TNG. Increasing Ωm at fixed Ωb decreases the
stellar-to-halo mass ratio, as expected given the decline in the
cosmic baryon fraction (Delgado et al. 2023), while increasing
Ωb at fixed Ωm has the opposite effect. Increasing the
momentum flux of AGN-driven outflows (AAGN1) results in a
reduction of M*/Mhalo across the halo mass range, while
increasing the jet speed (AAGN2) only affects the higher-mass
galaxies (Davé et al. 2019). Interestingly, increasing the speed
of galactic winds (ASN2) drives a clear decrease in M*/Mhalo at
all masses, while increasing the mass loading of winds (ASN1)
increases the stellar-to-halo mass ratio in massive galaxies. This
counterintuitive effect could result from an increase in the

Figure 14. Same as Figure 12, but this plot gives the ratio between the gas power spectrum of the TNG extended 1P simulations and that of the fiducial model.
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intergalactic transfer of gas from lower-mass galaxies, provid-
ing an additional source of gas to higher-mass galaxies
(Anglés-Alcázar et al. 2017b), or could reflect the complex
nonlinear interplay between stellar and AGN feedback as noted
in previous works (Booth & Schaye 2013; van Daalen et al.

2020; Nicola et al. 2022; Delgado et al. 2023; M. Gebhardt
et al., in preparation). As expected from Figure 15, increasing
the galaxy stellar mass above which BHs are seeded (i.e.,
higher BHSeedMass or BHSeedRatio) results in signifi-
cantly higher M*/Mhalo across the halo mass range, while

Figure 15. Global SFRD of the SIMBA extended 1P set. The 28 panels share the same black line that corresponds to the result from the fiducial model of SIMBA.

Figure 16. Same as Figure 15, but this plot gives the z = 0 stellar mass fraction of the SIMBA extended 1P set. Mhalo here is the FOF halo mass, and M* is the stellar
mass within the FOF halo. The y-axis gives the averaged (M*/Mhalo) for each halo mass bin for each simulation.
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increasing the BH accretion normalization decreasesM*/Mhalo.
Another expected trend is the strong increase in stellar mass at
fixed halo mass when only the most massive BHs are allowed
to switch into the jet feedback mode (Davé et al. 2019).
Nonetheless, several parameter variations indicate complex
nonlinear behavior, with nonmonotonic trends when system-
atically increasing parameter values.

Figure 17 illustrates the very complex response of the gas
power spectrum in SIMBA to changes in model parameters,
where the relative impact of either increasing or decreasing
parameter values often depends on and can even revert trend
with scale. In addition to the original six parameters (1–6)
varied in CAMELS, other key parameters affecting the
clustering of gas include WindVelSlope, BHSeedRatio,
BHAccFac, and BHJetMassThr, which also have important
effects on the cosmic SFRD and the M*–Mhalo relation.
Interestingly, increasing the threshold temperature for accretion
of “hot” gas via Bondi accretion (instead of “cold” gas via
gravitational torques) had only a minor impact on the SFRD
but increased the M*/Mhalo ratio and therefore decreased the
efficiency of AGN feedback in the most massive halos,
resulting in enhanced clustering of gas on scales k 1 h Mpc−1

relative to the fiducial model. It is also interesting to note that
the variations of h and ns in SIMBA have a significant impact
on the gas power spectrum, while for TNG their effect on
Pgas(k) was negligible, despite h and ns having similar large
effects on the cosmic SFRD for both models. In SIMBA, the
impact on Pgas(k) is primarily driven by AGN jet feedback,
which comes from the most massive BHs, whose growth and
abundance are very sensitive to cosmology. The fact that
different simulation models predict different responses of the
gas (and hence the total matter) power spectrum to the same
variation of the cosmological parameters stresses the impor-
tance of incorporating diverse galaxy formation models to
improve and test the robustness of cosmological inference.
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