

20 a 23 de outubro de 2025

Majestic Hotel - Águas de Lindóia - SP - Brasil

Synergistic Effect of Combined Electrocatalysis and Ozonation for Efficient Tetracycline Removal in Different Media

Michel Zampieri Fidelis^{1*}, William Santacruz¹, Julia Faria¹, Artur de Jesus Motheo¹, ¹ São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos, SP, CEP 13560-97, Brazil.,

*e-mail: michelmzzf@usp.br

Advanced oxidation processes (AOPs), including electrocatalysis and ozonation, are potent for degrading persistent pollutants [1]. This work evaluates the degradation of tetracycline (TC) in aqueous and ethanolic solutions using a commercial $Ti_{0.7}Ru_{0.3}O_2$ anode [2]. After 30 minutes, electrocatalysis alone removed 98.6% (water) and 92.5% (ethanol) of the TC. Ozonation yielded lower removals of 61.2% (water) and 67.5% (ethanol), a difference linked to the generation of less reactive radicals in the ethanolic medium. Remarkably, the combined electrocatalytic ozonation process demonstrated a strong synergistic effect, achieving \sim 99% degradation in both solvents in only 10 minutes. Calculations of energy consumption and synergy indices confirmed that this synergy was more pronounced in ethanol, leading to a more efficient and rapid treatment.

Acknowledgments:

This study was financed in part by the São Paulo Research Foundation (FAPESP), Brazil – Process numbers: 2022/12895-1, 2024/13723-5, 2024/12716-5 and 2022/15337-0.

References:

[1] Y. Amangelsin, Y. Semenova, M. Dadar, M. Aljofan, G. Bjørklund.. Antibiotics. 12, 3, 440 (2023)

[2] V. Krstić, B. Pešovski.. Hydrometallurgy. 185, 71-75 (2019)