ORIGINAL ARTICLE

Austral Entomology WILFY

Oviposition strategies and interactions among invasive and native fruit flies (Diptera: Tephritidae) on guava (*Psidium quajava* L.)

Jamile Camara Aquino | Alexandre Santos Araújo | Fábio Luis Galvão-Silva | Antonio Souza do Nascimento | lara Sordi Joachim-Bravo |

Correspondence

lara Sordi Joachim-Bravo, Universidade Federal da Bahia, Instituto de Biologia, Salvador, BA 40170-115, Brazil.

Email: iarajoachimbravo@gmail.com

Funding information

Bahia Research Foundation (FAPESB)

Abstract

Oviposition and agonistic behaviour are important traits for understanding the pattern of coexistence and choice of host fruit shared between natives and invasive species. This study aimed to evaluate the interspecific interactions and the choice of the oviposition sites among three native species of fruit flies of the genus Anastrepha: Anastrepha obliqua (Macquart), Anastrepha fraterculus (Wiedemann), Anastrepha sororcula Zucchi, and an invasive species, Ceratitis capitata (Wiedemann). The interactions between species were measured by counting the number of eggs laid in semi-ripe and ripe guavas (Psidium guajava L.) in intra and interspecific combinations. Additionally, we compared the absolute frequency of agonistic behaviours in interactions between native and invasive fruit flies. The native species of Anastrepha did not change their preference for the fruit ripening stage, even in face of the invader C. capitata. Anastrepha species and C. capitata preferred to oviposit in semi-ripe fruits, in all experimental scenarios. We also observed that C. capitata avoided interactions with the native species by preferring to oviposit in ripe fruits when in the presence of Anastrepha species. All species reduced the number of laid eggs when in the presence of heterospecific females. Aggression was the most frequent agonistic behaviour in all species combinations, followed by display/stalking and avoidance. Finally, our results showed that aggression behaviour was the most frequent in interactions of Anastrepha species with C. capitata.

KEYWORDS

Anastrepha, Ceratitits capitata, exotic species, heterospecific females, host-choice

INTRODUCTION

In pest species of tephritid fruit flies, oviposition performance is an essential factor in understanding attack patterns in commercial and non-commercial crops (Li et al. 2024). As larvae of polyphagous tephritds do not have much mobility to search for food supply, female host choice is essential to successful offspring development (Birke & Aluja 2018; Dias et al. 2017). The main factors influencing oviposition behaviour in fruit flies are host availability, host species, ripeness and variety,

chemical cues, presence of other fruit flies, either conspecific or heterospecific, and the habitat (or microhabitat) where they are introduced (Liendo et al. 2020; López-Ley et al. 2016; Nufio & Papaj 2004; Petitinga et al. 2021; Silva et al. 2012).

Female tephritids can recognise and avoid ovipositing in fruits infested by heterospecific or conspecific flies (Devescovi et al. 2015; Liendo et al. 2018). According to Devescovi et al. (2015), fruit flies exhibit different infestation patterns, and this does not necessarily affect the coexistence of native and exotic species.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). Austral Entomology published by John Wiley & Sons Australia, Ltd on behalf of Australian Entomological Society.

¹Universidade Federal da Bahia, Instituto de Biologia, Salvador, Brazil

²Escola Superior de Agricultura 'Luiz de Queiroz', Departamento de Entomologia e Acarologia, Universidade de São Paulo, Piracicaba. Brazil

³Universidade Federal de Pelotas, Faculdade de Agronomia 'Eliseu Maciel', Campus Universitário Capão do Leão, Capão do Leão, Brazil

⁴Embrapa Mandioca e Fruticultura, Cruz-das-Almas, Brazil

When the coexistence of both native and exotic fruit flies is not possible, the females may fight by their oviposition site, exhibiting aggressive behaviour (Benelli et al. 2014; Kay & Clarke 2023). As few studies assess competitiveness between native and exotic species in laboratory conditions, the information about aggressive traits in fruit flies is limited. *Bactrocera* spp., commonly known as the most aggressive Tephritidae (Benelli et al. 2014; Duyck et al. 2006; Kay & Clarke 2023), display aggression against heterospecific females, as a way of defending oviposition sites (Ekesi et al. 2009). This aggressive behaviour eventually can lead to the displacement of other species by the larval nutritional source consumption or female defence behaviour (Benelli et al. 2014; Duyck et al. 2006).

The genus Anastrepha comprises the most important pests from fruit crops in Brazil and are originally from the Americas (Norrbom et al. 1999). It includes Anastrepha obliqua (Macquart), distributed from Mexico to Uruquay (Norrbom 2022a), Anastrepha fraterculus (Wiedemann), a cryptic species complex, occurring from Mexico to Argentina (Norrbom 2022b), and Anastrepha sororcula Zucchi, widely distributed in South America (Norrbom et al. 1999). The highly polyphagous and invasive Ceratitits capitata (Wiedemann), originally from the Mediterranean and widely distributed worldwide, has become one of the main pests of fruit crops in Brazil since it was detected for the first time in 1901 (Ihering 1901). All these species are commonly associated with economically important fruits production, such as mango, guava and citrus (Zucchi & Moraes 2025).

After the introduction of *C. capitata* in several regions, such as Central and South America, many *Anastrepha* species gradually decreased in abundance or changed the use of resources (Duyck et al. 2004). Despite some evidence that *C. capitata* can share the same niche with *Anastrepha* spp. (Liendo et al. 2018), other evidence suggests that native species are displaced by *C. capitata* (De-Sá 2006; Silva et al. 2021).

There is a possible asynchrony between the native species *A. fraterculus* and the invasive *C. capitata*, based on the degree of ripeness of the fruit and host preference can favour the coexistence of both species, in a scenario where the first one was already established (Liendo et al. 2018). Further information on how *Anastrepha* spp. and *C. capitata* interact is needed to understand their distribution.

In this study, we evaluated if *Anastrepha* oviposition choice for ripeness stage is affected by the presence of other *Anastrepha* species or *C. capitata* in guava [*Psidium guajava* L. (Myrtaceae)]. We used as model three pest species of *Anastrepha* from Brazil: *A. obliqua*, *A. fraterculus* and *A. sororcula*, and the invasive *C. capitata*. We measured the number of eggs laid by females in pairwise combinations between each species for semi-ripe and unripe guava. Regarding agonistic interactions, we

provided a detailed description and compared the frequency of aggression, avoidance and display/stalking behaviours in each combination.

MATERIAL AND METHODS

Fly sampling and population maintenance

The population of A. fraterculus used in the experiments was collected in Bento Gonçalves, Rio Grande do Sul (29°10′15″S, 51°31′8″W) from infested guavas. The specimens of A. obliqua were collected in Cruz das Almas, Bahia (12°40'12" S, 39°6'7" W) from infested guavas, and the individuals of A. sororcula were collected in Parnamirim, Rio Grande do Norte (5°54′56″ S, 35°15′46″ W). The Anastrepha species lineages used in the experiments had been maintained under laboratory conditions for 5 years. Specimens of C. capitata were derived from a laboratory colony established over 20 years ago, originally collected from infested fruits of Terminalia catappa L. in Itaparica, Bahia (12°53′18′ S, 38°40′43′ W). Laboratoryreared flies were used to standardise age and nutritional status across individuals. Previous studies have shown no evidence that long-term laboratory rearing alters intra- or interspecific competition patterns in tephritid species (Duyck et al. 2007; Liendo et al. 2016).

All specimens used in the experiments were maintained under laboratory conditions at the Technological Center of Agriculture of Bahia (CETAB - Salvador) and the Laboratory of Behavioural Ecology of Insects (LECI), Institute of Biology of Federal University of Bahia (UFBA). The cages were kept under controlled conditions of temperature (25 \pm 5°C), relative humidity (70 \pm 10%), and a photoperiod of 12 h:12 h (light/dark). The adults were maintained on a yeast extract dried diet (Bionis YE MF®, Biorigin), with approximately 63% protein and sugar content at a ratio of 1:3, and water (Silva-Neto et al. 2012). Immature Anastrepha species were reared in their preferred hosts: mangoes (Mangifera indica L.), Tommy Atkins variety for A. obliqua, and quavas (Paluma variety) for A. fraterculus and A. sororcula, following the methodology described by Silva et al. (2021). The immatures of C. capitata were maintained on artificial diets with yeast extract (Silva-Neto et al. 2012).

Preparation of fruits for the experiment

The fruit chosen as host for all experiments was the guava, Paluma variety, as it is a common host for all species investigated (Zucchi & Moraes 2025), is off economic importance in Brazil (Silva et al. 2010) and is available in markets throughout the year. The fruits were purchased in the market from the same supplier. They were washed with soap and water and stored in a refrigerator

until use. Fruits of similar size, around 6 cm in diameter and weighing approximately 190 g, were used for the experiments.

In the oviposition preference tests and filming of behaviours, semi-ripe (tip green and still firm) and ripe guavas (yellowish and less firm but not very soft) were used, following the classification of Azzolini et al. (2004) and Silva et al. (2010). This protocol was based on similar studies on the classification of mango ripening of the Tommy Atkins variety (Mouco 2004; Santos et al. 2008).

Oviposition preference tests

Oviposition by flies in the following combinations were tested: AF (A. fraterculus + A. fraterculus), AF + AO (A. fraterculus + A. obliqua), AF + AS (A. fraterculus + A. sororcula), AF + CC (A. fraterculus + C. capitata), AO obliqua), obliqua + A. $\mathsf{AO} + \mathsf{AF}$ (A. obliqua + A. fraterculus), AO + AS (A. obliqua + A. sororcula), AO + CC (A. obliqua + C. capitata), AS (A. sororcula + A. sororcula), AS + AF (A. sororcula + A. fraterculus), AS + AO (A. sororcula + A. obliqua), AS + CC (A. sororcula + C. capitata), CC (C. capitata + C. capitata), CC + AF (C. capitata + A. fraterculus), CC + AO (C. capitata + A. obliqua), CC + AS (C. capitata + A. sororcula).

Tests were carried out in acrylic cages $(49 \times 45 \times 49 \text{ cm})$. Semi-ripe and ripe guavas were placed in opposite sides of the cages and exposed to mature females (age: \sim 15 days) for 24 h (placed and removed at 8:00 AM). The flies were supplied with water and diet. Twenty couples were placed in each cage. In experiments with individuals of the same species (control), 20 pairs of the same species were placed in each cage, and in experiments using combinations between the species, two by two, 10 pairs of each species were placed in each cage to maintain the proportion of individuals. Ten replicates were performed for each preference test, which a replicate was a cage. One exception was the combination of A. sororcula versus C. capitata, in which there were five replicates due to the lack of A. sororcula specimens.

The number of eggs of each species, in each combination, were counted under a stereomicroscope and were identified based on their morphological characteristics described in the literature (Figueiredo et al. 2011; Roriz et al. 2015; Selivon & Perondini 1998, 1999, 2023). In controls, the eggs of each cage were divided by two to standardise the number of eggs per female of each species in each cage.

Agonistic interactions

Agonistic interaction experiments were performed with A. fraterculus, A. obliqua and C. capitata. There were not

enough specimens of A. sororcula to carry out the combinations with this species. Agonistic interactions were evaluated through filming to classify the types and frequencies of agonistic interactions between females of the same species and different species exposed to the same oviposition site. These experiments were performed and adapted according to the methodology standardised by Silva et al. (2021). The design was made by placing six females of each species combined two by two in an acrylic cage (49 \times 45 \times 49 cm) for the experimental treatments and 12 females for the control treatments (species alone), in the following combinations: A. fraterculus versus A. obliqua; A. fraterculus versus C. capitata; A. obliqua versus C. capitata; A. fraterculus versus A. fraterculus; A. obliqua versus A. obliqua; C. capitata versus C. capitata. Each cage into which the females were placed contained two guava fruits (semi-ripe and ripe). Each female was painted with a different non-toxic colour on the scutum. In previous studies, this colour marking did not influence the behaviour of flies (Benelli et al. 2012). The flies in each cage were filmed for an hour during the morning for further analysis and quantification of behaviours. The observed agonistic interactions were classified as avoidance, aggression or display/stalking (Table 2), and only the behaviours that occurred in fruits were counted since, in frugivorous species of Tephritidae, interactions between females usually occur on the host fruits (Benelli et al. 2015). The behaviours observed in the semi-ripe and ripe fruits within the same cage were counted together. The behavioural units analysed were based on the studies of Pritchard (1969), Benelli et al. (2014) and Benelli (2015).

Fly behaviour was filmed with two Geovision-GV-BX 220D-3.2 M cameras with variable focus lenses at 30 frames/s, positioned on both sides of the cage, with artificial lighting of 1700 lx and relative humidity of 57%. Images were captured using Eagle Vision Pro version 4, and videos were saved in AVI format using Geo Vision 800. Video recordings enable more detailed and complete observations of the number of rapid and subtle movements associated with aggression (Briceño et al. 1999). Ten replicates (replicate = cage) were performed for each treatment.

Statistical analysis

Data from oviposition choice tests and agonistic interactions were analysed using a generalised linear model (GLM), assuming a negative binomial or Poisson distribution. The quality of the model was verified using the halfnormal plot from the hnp package (Moral et al. 2017). Pairwise comparisons were made using Tukey's test, with Bonferroni corrections. All analyses considered a significance level of 5% and were conducted in R (https://www. r-project.org/), using the packages MASS (Ripley et al. 2013) and multcompView (Graves et al. 2015).

RESULTS

Oviposition preference tests

The presence of other species had a significant effect on oviposition for each species in cross-species combinations (Table 1). Fruit ripening significantly influenced the oviposition of all species except *C. capitata* (Table 1). The interaction between these two factors was significant only for *A. fraterculus* and *C. capitata* (Table 1).

All species studied showed a noted preference for semi-ripe fruits with conspecific females, except for *A. fraterculus*, which oviposited a similar number of eggs in ripe or semi-ripe fruits in tests with conspecific females (Figure 1). In tests with heterospecific females, there was no change in the original oviposition preference in any of the native species when placed with heterospecific females, except for *A. fraterculus*, which preferred to lay eggs in semi-ripe fruits (Figure 1a–c). Only the invasive species, *C. capitata*, changed its oviposition preference. Unlike native *Anastrepha* species, *C. capitata* preferred ripe guavas when in the presence of *A. fraterculus*, *A. obliqua* and *A. sororcula* rather than semi-ripe guavas (Figure 1d).

In all *Anastrepha* species, we observed fewer eggs in the semi-ripe fruits when females were in the presence of another species (Figure 1d). In *A. fraterculus*, fewer eggs were laid in semi-ripe guava when in the presence of *C. capitata* (Figure 1a). In *A. obliqua*, this reduction was detected when females were placed together with *A. sororcula* (Figure 1b); and in *A. sororcula* when they were in the presence of other *Anastrepha* species. When paired with *Anastrepha*, *C. capitata* (Figure 1c), switched its preference, from semi-ripe fruit to ripe fruits (Figure 1d).

Agonistic interactions

The types of behaviours observed during interactions between the species of fruit flies are shown in Table 2. The behaviours were divided into three types: (1) no interaction between the flies (avoidance), (2) interaction, but without any aggression between them (display and/or stalking), (3) interaction with aggression, resulting or not in the exclusion of any of them (aggression). These

analyses were based on and adapted from the studies of Pritchard (1969) and Benelli et al. (2014, 2015).

No difference in fly behaviours was observed in conspecific groups of A. fraterculus (Figure 2a) or in combinations of A. fraterculus + A. obliqua (Table 3; Figure 2d). In conspecific groups of A. obliqua, aggression was the most frequent behaviour, followed by display/stalking and avoidance (Table 3; Figure 2b). In conspecific groups of C. capitata, the number of aggression and display interactions was significantly higher than avoidance (Table 3; Figure 2c). Aggressive interactions were more frequent than avoidance in combinations of A. obliqua and C. capitata (Figure 2f), but no differences were observed between avoidance and display, as well as between display and aggression (Table 3; Figure 2f). In the experiments with A. fraterculus and C. capitata, aggression was more frequent than avoidance and display, but no difference was observed between avoidance and display (Figure 2e).

DISCUSSION

Hierarchy can be a significant factor in interspecific interactions. Even when a species demonstrates greater efficiency in exploiting a particular environment, its occupancy may be restricted in the presence of another species, leading to total or partial displacement. However, interaction can also result in stable coexistence—niche partitioning—when species manage to occupy segments of the environment that are not utilised by competing species (Reitz & Trumble 2002; Duyck et al. 2004, 2006, 2008; Devescovi et al. 2015).

Our results showed that *Anastrepha* species (native) prefer to oviposit in semi-ripe fruit regardless of the presence of other species, whether congeneric or not. The native species also did not avoid niche overlap with the invasive species (David et al. 2017; Masselière et al. 2017), given the maintenance of oviposition preference in semi-ripe guavas by all species of *Anastrepha* used in our study, corroborating previous studies that show the preference of *Anastrepha* species for the fruit still in the early ripening stage (De Oliveira et al. 2015; Diaz-Fleischer & Aluja 2003; Fontellas-Brandalha & Zucoloto 2004).

TABLE 1 Results of the generalised linear model (GLM), assuming Poisson distribution or negative binomial, where the data obtained experiments oviposition choice were analysed.

	A. fraterculus			A. obliqua			A. sororcula			C. capitata		
Factor	df	F	<i>p</i> -value	df	F	p-value	df	F	<i>p</i> -value	df	χ²	<i>p</i> -value
Combination	3	53.484	>0.001	3	18.917	>0.001	3	19.503	0.0004	3	125.14	>0.001
Ripening	1	205.871	>0.001	1	86.771	>0.001	1	14.484	0.0002	1	0.11	0.740
Combination: ripening	3	52.909	>0.001	3	9.148	0.027	3	0.206	0.8915	3	542.10	>0.001

Note: Combinations between species and fruit ripening were modelled as explanatory variables, while the number of eggs was considered a response variable. The significance of the model was verified using chi-square or F test ($\alpha = 5\%$).

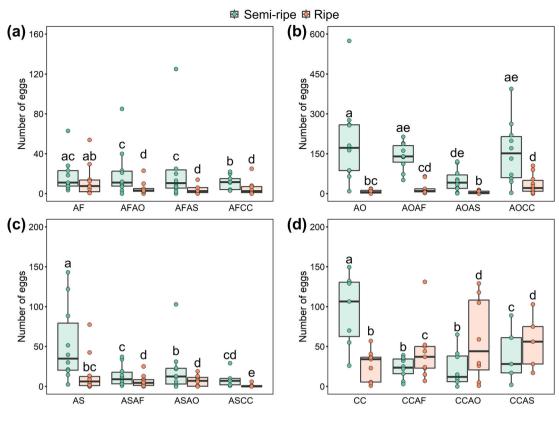


FIGURE 1 Number of eggs laid by females of A. fraterculus (a), A. obliqua (b), A. sororcula (c), and C. capitata (d) in intraspecific and interspecific competition scenarios in semi-ripe and ripe guava. The treatments shown in the graph are AF (A. fraterculus + A. fraterculus), AF + AO (A. fraterculus) + A. obliqua), AF + AS (A. fraterculus + A. sororcula), AF + CC (A. fraterculus + C. capitata), AO (A. obliqua + A. obliqua), AO + AF (A. obliqua + A. fraterculus), AO + AS (A. obliqua + A. sororcula), AO + CC (A. obliqua + C. capitata), AS (A. sororcula + A. sororcula), AS + AF (A. sororcula + A. fraterculus), AS + AO (A. sororcula + A. obliqua), AS + CC (A. sororcula + C. capitata), CC (C. capitata + C. capitata), CC + AF (C. capitata + A. fraterculus), CC + AO (C. capitata + A. obliqua), CC + AS (C. capitata + A. sororcula). The data were analysed using a generalised linear model (GLM), assuming Poisson or negative binomial distribution, and the significance of the model was verified using chi-square or F test. Comparisons between treatments were made using a Tukey test ($\alpha = 5\%$). Different letters on the top of boxes means statistics differences.

Petitinga et al. (2021) detected a competitive displacement of A. fraterculus by A. obliqua when both species co-occurred in the same fruit, whether mango or guava. Similarly, Silva et al. (2021) showed that the native species, A. obliqua, suffered a partial niche displacement in the presence of the invader C. capitata when both competed for the mango at different ripening stages. In the present study, the native species were not displaced by the invader in their preferred host, the semi-ripe guava.

Contrary to Anastrepha species, our results showed that C. capitata changed its preference for fruit ripening and laid more eggs in the ripe guavas when sharing the fruits with another species.

Some studies presume that the oviposition preference of the female is associated with the fruit type or ripening stage that provides better development for the offspring (Birke & Aluja 2018; Costa et al. 2011; Joachim-Bravo et al. 2001; Joachim-Bravo & Silva-Neto 2004; Ruiz et al. 2015; Sarwar et al. 2013). Previous findings have shown that Ceratitis capitata develops; faster than Anastrepha species (Bolzan et al. 2017; Duyck & Quilici 2002; Galvão-Silva et al. 2024), which may explain why the

native one does not change the preference for semi-ripe fruits, once it would provide their offspring better conditions and food resources. In addition, oviposition in less suitable hosts can occur when the more generalist species are not able to chemically distinguish different fruits as well as the specialist species (Aluja & Mangan 2008; Bernays 2001) or to avoid competition (Akol et al. 2013; Liendo et al. 2018). The present findings on C. capitata align with the latter factor regarding interspecific interactions, as this generalist and invasive species has demonstrated the ability to modify its selectivity across different ripening stages. This observation concurs with Williamson (1996), who proposed that invasive species exhibit a broader range of suitable oviposition sites when in the presence of other species.

Despite not changing their oviposition preference, in the present study, Anastrepha species tended to decrease oviposition in the presence of other species. This behaviour followed a specific order: A. obliqua reduced the number of eggs in the presence of A. sororcula; A. fraterculus reduced the oviposition in the presence of C. capitata; and A. sororcula reduced the number of eggs

TABLE 2 Description of agonistic behaviours performed by female fruit flies (*A. fraterculus, A. obliqua* and *C. capitata*) in intraspecific and interspecific competition.

Category/ account	Behaviour	Description				
Avoidance	Avoidance/Escape	The female approaches the opponent, which was already in the fruit, often facing each other, and then the second to arrive at the oviposition site moves away.				
	Avoidance after a failed fight	After the occurrence of one of the aggressive behaviours described below in the table, which does not result in the expulsion of one of the females, the fly that attempted to fight, moves to another location.				
	Avoiding those who are threatening	The female turns away from the opponent threatening her (threat position on display).				
Aggression	Opens her wings and pushes with her head	The female spreads her wings as a threat and pushes the opponent with her head (she can push the other's head or ovipositor).				
	Wing \times Wing (AxA)	The female flaps her wing on the opponent's wing.				
	Wing \times Head (AxC)	The female flaps her wing on the opponent's head.				
	Wings \times Trunk (AxT)	The female flaps her wings on the opponent's chest.				
	Beating with the ovipositor	The female positions herself facing the opponent, poses a threat, and throws her ovipositor over her chest against the opponent.				
	Pushes with head and wing	The female pushes with her head and wing (hitting) the opponent.				
	$Head \times Head (CxC)$	The female touches or pushes her head on the opponent's head.				
	Head \times Trunk (CxT)	The female pushes her opponent's chest with her head.				
	Flies toward the opponent	The female flies toward the opponent.				
	Leans the front leg against the head of the other	The female touches the front leg to the opponent's head.				
	Expulsion	The female expels the opponent through some behaviour described above.				
Display/ stalking	Stalking	The female approaches the fleeing opponent, possibly to perform a display and/or aggressive behaviour.				
	Flapping the wings	When meeting the opponent, the female flaps her wings and flaps its wings and walks to one side and the other simultaneously, like a crab. This behaviour was also described by Pritchard (1969) and may be followed by the 'Movement of attack without touching', described by the same author.				
	Attack movement without touching	The female makes an attack movement (e.g., throwing her head forward) without touching the opponent.				
	Threat position	The female faces the opponent and spreads her wings perpendicular to the oviposition site (host), lifting the ovipositor.				
	Head rotations	The female locates herself facing the opponent and performs rotational movements with her head.				

laid in the presence of *A. fraterculus* and *A. obliqua*. Petitinga et al. (2021) observed the same reduction in oviposition when assessing two native species (*A. fraterculus* and *A. obliqua*) in guava and mango, and similar results were described by Silva et al. (2021) which investigated the interaction between *C. capitata* and *A. obliqua*.

The competition for oviposition sites occurs when adults influence each other, altering the occurrence of oviposition behaviour (Davis et al. 2011). This can happen when individuals directly harm one another through agonistic interactions (Denno et al. 1995; Shelly 1999) or indirectly inhibit the oviposition of other females by marking fruits with a deterrent pheromone (Nufio & Papaj 2004). Our study found that agonistic interactions of the display/ stalking and aggression types were the most common in interactions between native species and/or between native and invasive species, which were demonstrated by

females at similar intensity in all tested combinations. Such results corroborate the hypothesis proposed by Christenson & Foote (1960) that species interact and defend the occupied territory more through aggression than avoidance.

In Tephritidae, the highest frequency of agonistic behaviours occurs among males, as females expend significant energy on oviposition (Aliniazee 1974). Consequently, females adopt behavioural strategies to secure a unique oviposition site, increasing the likelihood of successful egg development by reducing larval competition for food (Aliniazee 1974; Dukas et al. 2001). One such strategy involves the deposition of pheromones after oviposition, signalling an occupied site (Edmunds et al. 2010). However, females also compete for oviposition sites by displaying agonistic behaviours toward other females (display/stalking and aggression types,

2025, 3, Downloaded from https://onlinelibitary.wilej.com/doi/10.1111/aen.70017 by Capes, Wiley Online Library on [28/07/2025]. See the Terms and Conditions (https://onlinelibrary.wilej.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

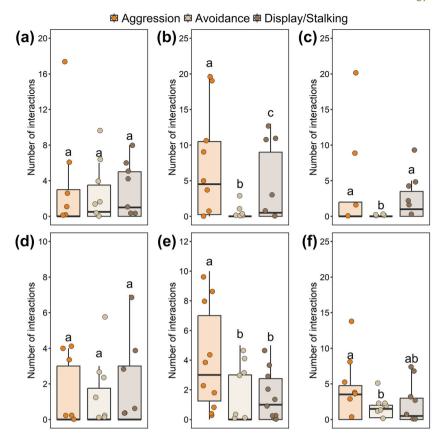


FIGURE 2 Number of intra and interspecific agonistic interactions among females' fruit flies in quava. (a) Conspecific A. fraterculus; (b) conspecific A. obliqua; (c) conspecific C. capitata; (d) A. fraterculus + A. obliqua; (e) A. fraterculus + C. capitata; (f) A. obliqua + C. capitata. Data were analysed using a generalised linear model (GLM), assuming Poisson or negative binomial distribution, and the significance of the model was verified using a chisquare ($\alpha = 5$ %). Pairwise comparisons were made using a Tukey test ($\alpha = 5$ %). Different letters on the top of boxes mean statistical differences between behaviour types in the same combination.

TABLE 3 Results of the generalised linear model (GLM), assuming Poisson or negative binomial distribution, in which the data of agonistic interactions was analysed.

Combination	df	χ^2	<i>p</i> -value
A. fraterculus $+$ A. fraterculus	2	0.883	0.643
A. obliqua $+$ A. obliqua	2	70.300	>0.001
C. capitata $+$ C. capitata	2	47.454	>0.001
A. fraterculus $+$ A. obliqua	2	0.906	0.635
A. f raterculus $+$ C. c apitata	2	15.777	>0.001
A. obliqua $+$ C. capitata	2	11.161	0.003

Note: Combinations between species was modelled as explanatory variables, while the number agonistic interactions were considered a response variable. The significance of the model was verified using a chi-square ($\alpha = 5\%$).

Table 2), often resembling those observed in males (Benelli et al. 2014).

Evidence of agonistic interactions among adults leading to species displacement has been documented. One example is the study by Camargo et al. (1996), in which A. obliqua (native species) displaced C. capitata (invasive species) from mango in 60.4% of encounters. This displacement may have occurred due to A. obliqua being

larger than C. capitata, as body size influences competition success (Denno et al. 1995). Alternatively, mango may serve as a preferred host for A. obliqua (Weens Jr. et al. 2015), conferring a competitive advantage over the invasive species. In another instance, the invasive species (Bactrocera invadens) outcompeted the native species (Ceratitis cosyra) (Ekesi et al. 2009). In the referenced study, fewer individuals of C. cosyra landed and oviposited on mango in the presence of B. invadens.

In our study, display/stalking and aggression behaviours occurred more frequently when females were searching for oviposition sites (Aquino J., personal observation). Thus, once in the fruit, either the two ended up ovipositing and sharing the same resource (Benelli et al. 2015; Dukas et al. 2001; Kravitz & dela Paz Fernandez 2015) or the female who arrived later left the fruit, avoiding competition (Benelli et al. 2015; Dukas et al. 2001). Another personal observation (Aquino J.), which corroborates Dukas et al. (2001), is that females, even when encountering another nearby female on-site, preferred to continue this process, as ovipositing is probably more advantageous than expending energy on fights. Probably, in Tephritidae, host marking with deterrent pheromones (HMPs) after oviposition, which serves to

20521738, 2025, 3, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/aen.70017 by Capes, Wiley Online Library on [2807/2025], See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

inhibit further oviposition by other females (Nufio & Papaj 2001), is likely a more effective strategy for maximising the success of competing species, as it allows them to avoid conflicts and conserve energy for oviposition (Aliniazee 1974; Dukas et al. 2001). Additionally, pheromone marking may function not only to deter individuals of the same species but also to repel other species (Edmunds et al. 2010). In contrast, species that do not employ host marking via pheromones exhibit much more intense interactions among females (Shelly 1999). Thus, in these species, female interference may primarily occur through chemical signals, with active site defence (involving physical displays or direct contact) being less frequent (Fletcher & Prokopy 1991).

In the scientific literature, there is extensive evidence of competition between different species, particularly between invasive and native species, with the former often successfully displacing the latter (David et al. 2017; Davis 2003, 2009; Devescovi et al. 2015; Duyck et al. 2004, 2006; Ekesi et al. 2009).

Following the introduction of C. capitata in various regions, such as Central and South America, many species within Anastrepha gradually declined in abundance or altered their host utilisation patterns (Duyck et al. 2007; White et al. 2000).

In Brazil, studies analysing the Tephritidae fauna across different regions demonstrate that the comparative abundance relationship between C. capitata and Anastrepha species is influenced by factors such as geographic location, study periods, proximity to forested areas, and the predominant fruit crops in the studied regions. In guava orchards across different areas of the country, most studies conducted in the early 2000s reported a predominance of Anastrepha species over C. capitata (Aguiar-Menezes et al. 2008; Azevedo et al. 2010; Bonfim et al. 2007; De Souza et al. 2020; Dutra et al. 2009; Garcia & Lara 2006). Collections near forest fragments (Monteiro et al. 2018; Rabelo 2010; Uramoto et al. 2008) and mixed orchards also showed a predominance of Anastrepha species (Santos et al. 2011; Silva et al. 2021). Conversely, in coffee orchards, C. capitata was the dominant species (Nascimento et al. 2023; Souza-Filho et al. 2023; Uramoto et al. 2023). However, long-term monitoring in commercial orchards of the São Francisco Valley (Bahia/Pernambuco), the largest irrigated fruit production hub in Brazil, has revealed significant shifts in the relative dominance of these species over time (Nascimento et al. 2023). Data from 1989 to 1997 indicated that Anastrepha species and C. capitata accounted for approximately 75% and 25% of collected flies, respectively (Haji & Miranda 2000). More recent trap monitoring indicates that 99% of the collected flies belong to C. capitata (Paranhos et al. 2023). Supporting these findings, an infestation surveys of fruits from six different species in the São Francisco Valley region, conducted in 2018, demonstrated a significant predominance of C. capitata emergence over Anastrepha species (Paranhos et al. 2023).

These trends highlight the importance of expanding long-term faunistic analyses across different regions of Brazil to better understand the potential displacement of Anastrepha species by C. capitata in the field. Experiments such as ours can contribute to clarifying potential interactive behaviours between these species when competing for the same oviposition sites and may reveal emerging ecological trends.

In summary, our findings indicate that Anastrepha species exhibit a preference for ovipositing in semi-ripe guavas, maintaining this preference regardless of the presence of conspecifics or C. capitata, suggesting that they do not actively avoid niche overlap with the invasive species. Conversely, C. capitata demonstrates greater flexibility in its oviposition preference, potentially shifting its choice to mitigate competition with native fruit fly species (Liendo et al. 2018; Silva et al. 2021; Dias et al. 2023). The plasticity exhibited by C. capitata may confer a competitive advantage, reinforcing its invasive potential. All species predominantly defend oviposition sites through aggression and stalking behaviours. Additionally, in Anastrepha species, interspecific interactions resulted in a reduction in oviposition on their preferred fruit, likely due to agonistic encounters and possibly the deposition of deterrent pheromones, a characteristic trait of this taxonomic group.

ACKNOWLEDGMENTS

We thank Bahia Research Foundation (FAPESB) for the financial support granted to the first author. The Article Processing Charge for the publication of this research was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) (ROR identifier: 00x0ma614).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Fábio Luis Galvão-Silva https://orcid.org/0000-0001-6049-4565 *Iara Sordi Joachim-Bravo* https://orcid.org/0000-0003-

1466-8573

REFERENCES

Aguiar-Menezes, E.L., Souza, S.A.S., Lima-Filho, M., Barros, H.C., Ferrara, F.A.A. & Menezes, E.B. (2008) Análise faunística de moscasdas-frutas (Diptera: Tephritidae) nas regiões norte e noroeste do Estado do Rio de Janeiro. Neotropical Entomology, 37(1), 8-14. Available from: https://doi.org/10.1590/S1519-566X2008000100002

Akol, A.M., Masembe, C., Isabirye, B.E., Kukiriza, C.K. & Rwomushana, I. (2013) Oviposition preference and offspring performance in phytophagous fruit flies (Diptera: Tephritidae): the African invader,

- —Austral Entomology—WII FY 9 of 11
- Bactrocera invadens. International Research Journal of Horticulture, 1(1), 1–14. Available from: https://doi.org/10.12966/irjh.05.01.2013
- Aliniazee, M.T. (1974) The western cherry fruit fly, *Rhagoletis indifferens* (Diptera: Tephritidae): 2. Aggressive behavior. *The Canadian Entomologist*, 106(11), 1201–1204. Available from: https://doi.org/10.4039/Ent1061201-11
- Aluja, M. & Mangan, R.L. (2008) Fruit fly (Diptera: Tephritidae) host status determination: critical conceptual, methodological, and regulatory considerations. *Annual Review of Entomology*, 53(1), 473–502. Available from: https://doi.org/10.1146/annurev.ento.53.103106.
- Azevedo, F.R., Guimarães, J.A., Simplício, A.F. & Santos, H.R. (2010) Análise faunística e flutuação populacional de moscas-das-frutas (Diptera: Tephritidae) em pomares comerciais de goiaba na região do cariri cearense. *Arquivos Do Instituto Biológico*, 77(1), 33–41. Available from: https://doi.org/10.1590/1808-1657v77p0332010
- Azzolini, M., Jacomino, A.P. & Spoto, M.H.F. (2004) Estádios de maturação e qualidade pós-colheita de goiabas 'Pedro Sato'. *Revista Brasileira de Fruticultura*, 26(1), 29–31. Available from: https://doi.org/10.1590/S0100-29452004000100009
- Benelli, G. (2015) Aggression in Tephritidae flies: where, when, why? Future directions for research in integrated Pest management. *Insects*, 6, 38–53.
- Benelli, G., Canale, A., Bonsignori, G., Ragni, G., Stefanini, C. & Raspi, A. (2012) Male wing vibration in the mating behavior of the olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). *Journal of Insect Behavior*, 25, 590–603. Available from: https://doi.org/10.1007/s10905-012-9325-9
- Benelli, G., Daane, K.M., Canale, A., Niu, C.Y., Messing, R.H. & Vargas, R.I. (2014) Sexual communication and related behaviors in Tephritidae: current knowledge and potential applications for integrated pest management. *Journal of Pest Science*, 87(3), 385–405. Available from: https://doi.org/10.1007/s10340-014-0577-3
- Benelli, G., Desneux, N., Romano, D., Conte, G., Messing, R.H. & Canale, A. (2015) Contest experience enhances aggressive behaviour in a fly: when losers learn to win. *Scientific Reports*, 5(1), 9347. Available from: https://doi.org/10.1038/srep09347
- Bernays, E.A. (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. *Annual Review of Entomology*, 46, 703–727. Available from: https://doi.org/10.1146/annurev.ento.46.1.703
- Birke, A. & Aluja, M. (2018) Do mothers really know best? Complexities in testing the preference performance hypothesis in polyphagous frugivorous fruit flies. *Bulletin of Entomological Research*, 108(5), 674–684. Available from: https://doi.org/10.1017/S0007485317001213
- Bolzan, A., Nava, D.E., Smaniotto, G., Valgas, R.A. & Garcia, F.R. (2017)
 Development of *Anastrepha grandis* (Diptera: Tephritidae) under
 constant temperatures and field validation of a laboratory model
 for temperature requirements. *Crop Protection*, 100, 38–44. Available from: https://doi.org/10.1016/j.cropro.2017.06.001
- Bonfim, D.A., Uchôa-Fernandes, M.A. & Bragança, M.A.L. (2007) Biodiversidade de moscas-das-frutas (Diptera, Tephritoidea) em matas nativas e pomares domésticos de dois municípios do Estado do Tocantins, Brasil. *Revista Brasileira de Entomologia*, 51, 217–223.
- Briceño, R.D., Ramos, D. & Eberhard, W.G. (1999) Aggressive behavior in medflies (*Ceratitits capitata*) and its modification by mass rearing (Diptera: Tephritidae). *Journal of the Kansas Entomological Society*, 72, 17–27.
- Camargo, C.A., Odell, E. & Jiron, L.F. (1996) Interspecific interactions and host preference of *Anastrepha obliqua* and *Ceratitis capita*, two pests of mango in Central America. *Florida Entomologist*, 79, 266–268.
- Christenson, L.D. & Foote, R.H. (1960) Biology of fruit flies. *Annual Review of Entomology*, 5(1), 171–192. Available from: https://doi.org/10.1146/annurey.en.05.010160.001131
- Costa, A.M., Amorim, F.O., Anjos-Duarte, C.S. & Joachim-Bravo, I.S. (2011) Influence of different tropical fruits on biological and behavioral aspects of the Mediterranean fruit fly *Ceratitits capitata*

- (Wiedemann) (Diptera, Tephritidae). Revista Brasileira de Entomologia, 55, 355–360.
- David, P., Thébault, E., Anneville, O., Duyck, P.F., Chapuis, E. & Loeuille, N. (2017) Impacts of invasive species on food webs: a review of empirical data. Advances in Ecological Research, 56, 1–60.
- Davis, M.A. (2003) Biotic globalization: does competition from introduced species threaten biodiversity? *Bioscience*, 53(5), 481–489. Available from: https://doi.org/10.1641/0006-3568(2003)053[0481:BGDCFI]2. 0.CO:2
- Davis, M.A. (2009) *Invasion biology*. New York: Oxford University Press Inc.
- Davis, J.M., Nufio, C. & Papaj, D.R. (2011) Resource quality or competition: why increase resource acceptance in the presence of conspecifics? *Behavioral Ecology*, 22(4), 730–737. Available from: https://doi.org/ 10.1093/beheco/arr042
- De Oliveira, F.Q., Junior, A.L.B., Costa, M.D.L.Z., Batista, J.D.L., Costa, K.Z. & Walder, J.M.M. (2015) Infestation of guava by *Anastrepha fraterculus* (Diptera: Tephritidae): preferred ripening stages and influence of fruit peel coloration. *Turkish Journal of Agriculture and Forestry*, 39, 1–9.
- De Souza, P.R.B., Crispim, B.A. & Canesin, A. (2020) Faunistic analysis of fruit flies (Diptera: Tephritidae) in a guava orchard and semideciduous forest fragment in central-west region of Brazil. *Revista Chilena de Entomología*, 46, 31–39.
- Denno, R.F., McClure, M.S. & Ott, J.R. (1995) Interspecific interactions in phytophagous insects: competition reexamined and resurrected. *Annual Review of Entomology*, 40(1), 297–331. Available from: https://doi.org/10.1146/annurev.en.40.010195.001501
- De-Sá R. F. 2006 Bioecologia de moscas-das-frutas (Diptera: Tephritidae) e dispersão de machos estéreis de *Ceratitits capitata* (Wied.) em pomares comerciais de manga (*Mangifera indica* L.) na região sudoeste da Bahia. Universidade Estadual do Sudoeste da Bahia
- Devescovi, F., Liendo, M.C., Bachmann, G.E., Bouvet, J.P., Milla, F.H., Vera, M.T., et al. (2015) Fruit infestation patterns by *Anastrepha fraterculus* and *Ceratitits capitata* reveal that cross-recognition does not lead to complete avoidance of interspecific competition in nature. *Agricultural and Forest Entomology*, 17(3), 325–335. Available from: https://doi.org/10.1111/afe.12111
- Dias, V.S., Joachim-Bravo, I.S. & Paranhos, B.A.J. (2023) Comportamento das Moscas-das-Frutas. In: Zucchi, R.A., Malavasi, A., Adaime, R. & Nava, D.E. (Eds.) Moscas-das-frutas no Brasil: conhecimento básico e aplicado. Piracicaba: FEALQ, pp. 227–259.
- Dias, N.P., Nava, D.E., Garcia, M.S., Silva, F.F. & Valgas, R.A. (2017) Oviposition of fruit flies (Diptera: Tephritidae) and its relation with the pericarp of citrus fruits. *Brazilian Journal of Biology*, 78(3), 443–448. Available from: https://doi.org/10.1590/1519-6984.167661
- Diaz-Fleischer, F. & Aluja, M. (2003) Clutch size in frugivorous insects as a function of host firmness: the case of the tephritid fly *Anastrepha ludens*. *Ecological Entomology*, 28, 268–277.
- Dukas, R., Prokopy, R.J. & Duan, J.J. (2001) Effects of larval competition on survival and growth in Mediterranean fruit flies. *Ecological Entomology*, 26(6), 587–593. Available from: https://doi.org/10.1046/j. 1365-2311.2001.00359.x
- Dutra, V.S., Santos, M.S., Souza-Filho, Z.A., Araujo, E.L. & Silva, J.G. (2009) Faunistic analysis of *Anastrepha* spp. (Diptera: Tephritidae) on a guava orchard under organic management in the municipality of Una, Bahia, Brazil. *Neotropical Entomology*, 38, 133–138.
- Duyck, P.F., David, P. & Quilici, S. (2004) A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). *Ecological Entomology*, 29(5), 511–520. Available from: https://doi.org/10.1111/j.0307-6946.2004.00638.x
- Duyck, P.F., David, P., Junod, G., Brunel, C., Dupont, R. & Quilici, S. (2006) Importance of competition mechanisms in successive invasions by polyphagous tephritids in La Reunion. *Ecology*, 87(7), 1770–1780. Available from: https://doi.org/10.1890/0012-9658(2006)87[1770: IOCMIS]2.0.CO;2
- Duyck, P.F., David, P. & Quilici, S. (2007) Can more K-selected species be better invaders? A case study of fruit flies in La Reunion. *Diversity and Distributions*, 13, 535–543.

- Duyck, P.F., David, P., Pavoine, S. & Quilici, S. (2008) Can host-range allow niche differentiation of invasive polyphagous fruit flies (Diptera: Tephritidae) in La Réunion? *Ecological Entomology*, 33(4), 439–452. Available from: https://doi.org/10.1111/j.1365-2311.2008.00989.x
- Duyck, P.F. & Quilici, S. (2002) Survival and development of different life stages of three *Ceratitis* spp. (Diptera: Tephritidae) reared at five constant temperatures. *Bulletin of Entomological Research*, 92(6), 461–469. Available from: https://doi.org/10.1079/BER2002188
- Edmunds, A.J.F., Aluja, M., Diaz-Fleischer, F., Patriane, B. & Hagmanna, L. (2010) Host marking pheromone (HMP) in the Mexican fruit fly *Anastrepha ludens. From Chemical Research to Industrial Applications*, 64, 37–42
- Ekesi S Billah MK Nderitu PW Lux SA Rwomushana I 2009 Evidence for competitive displacement of the mango fruit fly, *Ceratitis cosyra* by the invasive fruit fly, *Bactrocera invadens* (Diptera: Tephritidae) on mango and mechanisms contributing to the displacement *Journal of Economic Entomology* 102 981 991d
- Figueiredo, J.V.A., Perondini, A.L.P., Ruggiro, E.M., Prezotto, L.F. & Selivon, D. (2011) External eggshell morphology of *Anastrepha* fruit flies (Diptera: Tephritidae). *Acta Zoologica*, 94(2), 125–133. Available from: https://doi.org/10.1111/j.1463-6395.2011.00533.x
- Fletcher, B.S. & Prokopy, R.J. (1991) Host location and oviposition in tephritid fruit flies. In: Bailey, W.J. & Ridsdill-Smith, J. (Eds.) *Reproductive behavior of insects: individuals and populations*. New York: Chapman & Hall, pp. 139–171.
- Fontellas-Brandalha, T.M.L. & Zucoloto, F.S. (2004) Selection of oviposition sites by wild *Anastrepha obliqua* (Macquart) (Diptera: Tephritidae) based on the nutritional composition. *Neotropical Entomology*, 33(5), 557–562. Available from: https://doi.org/10.1590/S1519-566X2004000500003
- Galvão-Silva, F.L., Araújo, A.S., Dias, V.S., Nascimento, A.S. & Joachim-Bravo, I.S. (2024) Responses of two *Anastrepha* species' immature stages infesting preferential hosts to different temperature exposures. *Neotropical Entomology*, 53, 342–350.
- Garcia, F.R.M. & Lara, D.B. (2006) Análise faunística e flutuação populacional de moscas-das-frutas (Diptera, Tephritidae) em pomar cítrico no município de Dionísio Cerqueira, Santa Catarina. *Biotemas*, 19, 65–70.
- Graves, S, Piepho, HP & Selzer, ML. 2015. Package 'multcompView': visualizations of paired comparisons. Available from: https://cran.stat. unipd.it/web/packages/multcompView/multcompView.pdf [Accessed 29 October 2024]
- Haji, F.N.P. & Miranda, I.G. (2000) Pernambuco. In: Malavasi, A. & Zucchi, R.A. (Eds.) Moscas-das-Frutas de importância econômica no Brasil. Conhecimento básico e aplicado. Ribeirão Preto: Holos, pp. 229–233.
- Ihering, H. (1901) Laranjas bichadas. Revista Agrícola, 6, 179–181.
- Joachim-Bravo, I.S., Fernandes, O.A., Bortoli, S.A. & Zucoloto, F.S. (2001) Oviposition preference hierarchy in *Ceratitits capitata* (Diptera: Tephritidade): influence of female age and experience. *Iheringia, Série Zoologia*, 91, 93–100.
- Joachim-Bravo, İ.S. & Silva-Neto, A.M. (2004) Aceitação e preferência de frutos para oviposição em duas populações de *Ceratitits capitata* (Diptera, Tephritidae). *Iheringia, Série Zoologia*, 94(2), 171–176. Available from: https://doi.org/10.1590/S0073-47212004000200009
- Kay, B.J. & Clarke, A.R. (2023) Female–female aggression in *Bactrocera tryoni* (Diptera: Tephritidae) and the influence of fruit quality on combat intensity. *Austral Entomology*, 62(4), 517–525. Available from: https://doi.org/10.1111/aen.12668
- Kravitz, E.A. & dela Paz Fernandez, M. (2015) Aggression in *drosophila*. *Behavioral Neuroscience American Psychological Association*, 129, 549–563.
- Li, X.L., Li, D.D., Cai, X.Y., Cheng, D.F. & Lu, Y.Y. (2024) Reproductive behavior of fruit flies: courtship, mating, and oviposition. *Pest Management Science*, 80(3), 935–952. Available from: https://doi.org/10.1002/ps.7816
- Liendo, M.C., Devescovi, F., Boca, T., Cladera, J.L., Vera, M.T. & Segura, D.F. (2016) Patterns of resource distribution among conspecific larvae in two fruit fly species: *Anastrepha fraterculus* and

- Ceratitis capitata (Diptera: Tephritidae). Agricultural and Forest Entomology, 18(4), 349–356. Available from: https://doi.org/10.1111/afe. 12166
- Liendo, M.C., Parreno, M.A., Cladera, J.L., Vera, M.T. & Segura, D.F. (2018)
 Coexistence between two fruit fly species is supported by the different strength of intra- and interspecific competition. *Ecological Entomology*, 43(3), 294–303. Available from: https://doi.org/10. 1111/een.12501
- Liendo, M.C., Parreño, M.A., Pietrek, A.G., Bouvet, J.P., Milla, F.H., Vera, M.T., et al. (2020) Infestation of fruit by conspecific and heterospecific females deters oviposition in two Tephritidae fruit fly species. *Journal of Applied Entomology*, 144(8), 701–709. Available from: https://doi.org/10.1111/jen.12791
- López-Ley, J.U., Toledo, J., Malo, E.A., Gomez, J., Santiesteban, A. & Rojas, J.C. (2016) Carambola cultivar, fruit ripeness, and damage by conspecific larvae influence the host-related behaviors of *Anastrepha obliqua* (Diptera: Tephritidae). *Journal of Economic Entomology*, 109(1), 154–160. Available from: https://doi.org/10.1093/jee/tov280
- Masselière, M.C., Ravigné, V., Facon, B., Lefeuvre, P., Masso, F., Quilici, S., et al. (2017) Changes in phytophagous insect host ranges following the invasion of their community: long-term data for fruit flies. *Ecology and Evolution*, 7, 5181–5190.
- Monteiro, L.B., Tomba, J.A.S., Nishimura, G., Monteiro, R.S., Foelkel, E. & Lavigne, C. (2018) Faunistic analyses of fruit fly species (Diptera: Tephritidae) in orchards surrounded by Atlantic Forest fragments in the metropolitan region of Curitiba, Paraná state, Brazil. *Brazilian Journal of Biology*, 79, 395–403.
- Moral, R.A., Hinde, J. & Demétrio, G.B.C. (2017) Half-normal plots and overdispersed models in R: the hnp package. *Journal of Statistical Software*, 81, 1–23
- Mouco APC. (2004) Cultivo da Mangueira. Juazeiro: Embrapa Semi-Arido.
 Nascimento, A.S., Castellani, M.A., Roriz, A.K.P., Souza, J.S., Sá, R.F., Aguiar, W.M.M., et al. (2023) Moscas-das-frutas, suas plantas hospedeiras e parasitoides no estado da Bahia. In: Zucchi, R.A., Malavasi, A., Adaime, R. & Nava, D.E. (Eds.) Moscas-das-frutas no Brasil: conhecimento básico e aplicado. Piracicaba: FEALQ, pp. 87–101.
- Norrbom, A.L. (2022a) Anastrepha obliqua (west Indian fruit fly). CABI International.
- Norrbom, A.L. (2022b) Anastrepha fraterculus (south American fruit fly). CABI International.
- Norrbom, A.L., Carroll, L.E., Thompson, F.C., White, I. & Freidberg, A. (1999) Systematic database of names. In: Thompson, F.C. (Ed.) Fruit fly expert identification system and systematic information database. Leiden: Myia, pp. 65–251.
- Nufio, C.R. & Papaj, D.R. (2001) Host marking behavior in phytophagous insects and parasitoids. *Entomologia Experimentalis et Applicata*, 99(3), 273–293. Available from: https://doi.org/10.1046/j.1570-7458. 2001.00827.x
- Nufio, C.R. & Papaj, D.R. (2004) Host-marking behavior as a quantitative signal of competition in the walnut fly *Rhagoletis juglandis*. *Ecologi*cal Entomology, 29, 336–344.
- Paranhos, B.A.J., Souza, F.A., Pacheco, M.G., Virgínio, J.F. & Joachim-Bravo, I.S. (2023) Moscas-das-frutas, suas plantas hospedeiras e parasitoides no estado de Pernambuco. In: Zucchi, R.A., Malavasi, A., Adaime, R. & Nava, D.E. (Eds.) *Moscas-das-frutas no Brasil: conhecimento básico e aplicado*. FEALQ: Piracicaba, pp. 249–257.
- Petitinga, C.S.C.D., Roriz, A.K.P. & Joachim-Bravo, I.S. (2021) Competitive strategies between Anastrepha fraterculus and Anastrepha obliqua (Diptera: Tephritidae) regulating the use of host fruits. Journal of Applied Entomology, 145(6), 612–620. Available from: https://doi. org/10.1111/jen.12875
- Pritchard, G. (1969) The ecology of a natural population of Queensland fruit fly, *Dacus tryoni*. The distribution of eggs and its relation to behaviour. *Australian Journal of Zoology*, 17, 293–311.
- Rabelo, L.R.S. (2010) Monitoramento de moscas-das-frutas (Diptera, Tephritidae) em cinco municípios no estado de Goiás. Universidade Federal de Goiás.

- Reitz, S.R. & Trumble, J.T. (2002) Competitive displacement among insects and arachnids. Annual Review of Entomology, 47, 435-465. Available from: https://doi.org/10.1146/annurev.ento.47.091201. 145227
- Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A., Firth, D., et al. (2013) Package 'mass', Vol. 538. Cran R, pp. 113-120.
- Roriz, A.K.P., Cruz, M.A., Joachim-Bravo, I.S., Selivon, D. & Nascimento, A.S. (2015) Controle para o estabelecimento de colônias de Anastrepha obliqua e A. fraterculus (Diptera: Tephritidae) com base em características morfológicas externas. Boletim de Pesquisa e Desenvolvimento - Embrapa Mandioca e Fruticultura, 64, 1-21.
- Ruiz, M.J., Juarez, M.L., Alzogaray, R.A., Arrighi, F., Arroyo, L., Gastaminza, G., et al. (2015) Oviposition behaviour and larval development of Anastrepha fraterculus from Argentina in citrus. Entomologia Experimentalis et Applicata, 157, 198-213.
- Santos, M.S., Navack, K.I., Araujo, E.L. & Silva, J.G. (2011) Análise faunística e flutuação populacional de moscas-das-frutas (Diptera: Tephritidae) em Belmonte, Bahia. Revista Caatinga, 24, 86-93.
- Santos, D.B., Pereira, M.E.C., Vieira, E.L. & Lima, M.A.C. (2008) Caracterização físico-química dos estádios de maturação da manga 'Tommy Atkins' produzida no município de Iaçu-BA. Magistra, 20, 342-348.
- Sarwar, M., Hamed, M., Rasool, B., Yousaf, M. & Hussain, M. (2013) Host preference and performance of fruit flies Bactrocera zonata (Saunders) and Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) for various fruits and vegetables. International Journal of Scientific Research in Environmental Sciences, 1(8), 188–194. Available from: https://doi.org/10.12983/ijsres-2013-p188-194
- Selivon, D. & Perondini, A.L.P. (1998) Eggshell morphology in two cryptic species of the Anastrepha fraterculus Complex (Diptera: Tephritidae). Annals of the Entomological Society of America, 91(4), 473-478. Available from: https://doi.org/10.1093/aesa/91.4.473
- Selivon, D. & Perondini, A.L.P. (1999) Description of Anastrepha sororcula and A. Serpentina (Diptera: Tephritidae) eggs. Florida Entomologist, 82(2), 347-353. Available from: https://doi.org/10.2307/ 3496588
- Selivon, D. & Perondini, A.L.P. (2023) A arquitetura dos ovos das moscasdas-frutas: aspectos estruturais e funcionais. In: Zucchi, R.A., Malavasi, A., Adaime, R. & Nava, D.E. (Eds.) Moscas-das-frutas no Brasil: conhecimento básico e aplicado. Piracicaba: FEALQ, pp. 129–142.
- Shelly, T.E. (1999) Defense of oviposition sites by female oriental fruit flies (Diptera: Tephritidae). Florida Entomologist, 82(2), 339-346. Available from: https://doi.org/10.2307/3496587
- Silva, M.A., Bezerra-Silva, G.C.D. & Mastrangelo, T. (2012) The host marking pheromone application on the management of fruit flies - a review. Brazilian Archives of Biology and Technology, 55(6), 835–842. Available from: https://doi.org/10.1590/S1516-89132012000600005
- Silva, A.L., Mendes, A.M.S., Oliveira, A.R., Paranhos, B.A.J., Santos, C.A.F., Silva, D.J., et al. (2010) A cultura da goiaba. Brasilia: Embrapa.

- Silva, D.R.B., Roriz, A.K.P., Petitinga, C.S.C.A., Lima, Nascimento, A.S. & Joachim-Bravo, I.S. (2021) Competitive interactions and partial displacement of Anastrepha obliqua by Ceratitits capitata in the occupation of host mangoes (Mangifera indica). Agricultural and Forest Entomology, 23, 70-78. Available from: https:// doi.org/10.1111/afe.12406
- Silva-Neto, A.M., Santos, T.R.O., Dias, V.S., Joachim-Bravo, I.S., Benevides, L.J., Benevides, C.M.J., et al. (2012) Mass-rearing of Mediterranean fruit fly using low-cost yeast products produced in Brazil. Scientia Aaricola, 69, 364-369.
- Souza-Filho, M., Raga, A., Sousa, E.M. & Zucchi, R.A. (2023) Moscas-dasfrutas, suas plantas hospedeiras e parasitoides no estado de São Paulo. In: Zucchi, R.A., Malavasi, A., Adaime, R. & Nava, D.E. (Eds.) Moscas-das-frutas no Brasil: conhecimento básico e aplicado. Piracicaba: FEALQ, pp. 357-377.
- Uramoto, K., Martins, D.S., Araujo, M.R. & Fornazier, M.J. (2023) Moscasdas-frutas, suas plantas hospedeiras e parasitoides no estado do Espírito Santo. In: Zucchi, R.A., Malavasi, A., Adaime, R. & Nava, D.E. (Eds.) Moscas-das-frutas no Brasil: conhecimento básico e aplicado. Piracicaba: FEALQ, pp. 115-135.
- Uramoto, K., Martins, D.S. & Zucchi, A.R. (2008) Fruit flies (Diptera, Tephritidae) and their associations with native host plants in a remnant area of the highly endangered Atlantic rain forest in the state of Espírito Santo, Brazil. Bulletin of Entomological Research, 98, 457-466.
- White, I., De Meyer, M. & Stonehouse, J. (2000) A review of native and introduced fruit flies (Diptera, Tephritidae) in the Indian Ocean islands of Mauritius, Reunion, and Seychelles. In: Proceedings of Indian Ocean commission, regional fruit fly symposium. Flicen Flac: Indian Ocean Commission/European Union, pp. 15-21.
- Williamson, M. (1996) Biological invasions. New York: Chapman & Hall. Zucchi, RA & Moraes, RCB. 2025. Fruit flies in Brazil - Anastrepha species their host plants and parasitoids. Available from: https://www.lea. esalq.usp.br/Anastrepha [Accessed 29 October 2024].

How to cite this article: Aguino, J.C., Araújo, A.S., Galvão-Silva, F.L., do Nascimento, A.S. & Joachim-Bravo, I.S. (2025) Oviposition strategies and interactions among invasive and native fruit flies (Diptera: Tephritidae) on guava (Psidium quajava L.). Austral Entomology, 64(3), e70017. Available from: https://doi.org/10.1111/aen.70017