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Agriculture plays an essential role in Brazil, especially in the production of beans
(Phaseolus vulgaris), an important source of plant protein. In this study, a convolutional
neural network (CNN) model was developed to classify the nutritional status of the bean

plant focusing on nitrogen (N) content, using RGB images. The experiment was conducted
at USP, in Pirassununga, with five nitrogen fertilization treatments and 30 bean plant pots.
Weekly images of the leaves were captured starting from 30 days after emergence (DAE).
The images were processed and used to train and test different CNN configurations. The
results indicated that larger sets of images and smaller blocks (10x10 pixels) increased
accuracy, especially at 37 DAE. It is concluded that the proposed model is effective for
nutritional monitoring, providing an efficient alternative to traditional leaf analysis.

INTRODUCTION

Agriculture is essential for the economic and social
development of Brazil, having a direct impact on the Gross
Domestic Product (GDP) and various production chains
(Caligaris et al., 2022). However, for this sector to develop
sustainably, it is crucial that agricultural practices are
carried out responsibly and efficiently, maximizing the use
of natural resources while respecting the ecological limits
of the systems. Beans (Phaseolus vulgaris) play an
important role both in the economy and in the nutrition of
Brazilians, being one of the main sources of plant protein in
the national diet (Silva et al., 2014; Oliveira & Wander,
2023). According to FAOSTAT (2019), Brazil is the second
largest producer of beans in the world (CONAB, 2023).

To ensure high levels of productivity in bean
cultivation, it is essential to carry out adequate nutritional
management that meets the specific requirements of the
plant. Among the nutrients, nitrogen (N) stands out as
essential for the growth of the bean plant, as it participates
in the formation of chlorophyll, which is responsible for the
green coloring of the leaves and the healthy development of
the plant (Zhou et al., 2023).
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Nitrogen deficiency can be observed by the
yellowing of the older leaves, which transfer the nutrient to
the younger leaves due to the high mobility of N within the
plant (Javornik et al., 2023; Woo et al., 2019). Therefore,
precise application of nitrogen fertilization is essential to
avoid both excess and deficiency of N, conditions that can
compromise productivity (Kraeski et al., 2021).

Traditionally, the diagnosis of the nutritional status
of plants is carried out through leaf analyses, methods that,
although effective, have limitations in terms of cost, time,
and applicability (Cheng et al., 2017). In response to these
limitations, non-destructive methods based on deep learning
technologies, such as convolutional neural networks
(CNNs), have been gaining prominence. When trained with
large volumes of data, CNNs are capable of efficiently
learning and identifying complex patterns in images. In
agriculture, these networks are useful for extracting features
from leaves, allowing for indirect inferences about pigment
content and, consequently, about the nutritional status of
plants (Liu et al., 2021).

The objective of this study was to develop and
evaluate a convolutional neural network (CNN) model to
classify the nutritional status of the common bean
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(Phaseolus vulgaris) focusing on nitrogen content, using
RGB images captured from 30 days after emergence
(DAE), when the symptoms of nitrogen deficiency became
visible. The assessment aimed to identify the architecture
and the acquisition period that maximized accuracy in
nutritional classification, offering a faster, more
economical, and efficient approach for nutritional
monitoring in precision agriculture.

MATERIAL AND METHODS

The experiment was conducted at the Faculty of
Animal Science and Food Engineering (FZEA/USP), in
Pirassununga, SP, at an altitude of approximately 627 m,
with geographic coordinates of 21°57'27" south latitude and
47°28'13" west longitude, in a greenhouse equipped with a
pad-fan system for temperature control. This system
humidifies and cools the environment, allowing for
temperature  optimization according to the crop's
requirements.

The bean seedlings (Phaseolus vulgaris L., cultivar
BRSMG mother-of-pearl) were cultivated in pots to allow
for precise control of the applied nutrient quantities. Due to
the high mobility of nitrogen in the soil, the application was
divided into two stages: one third of the dose was
administered at planting, and the remainder was applied 20
days after germination. Irrigation was carried out daily to
avoid any influence of water deficit on the plants.

The experiment included five treatments (0, 50, 100,
150, and 200% of the recommended nitrogen dose) and six
repetitions, totaling 30 pots with 15 dm?® of soil each. The
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FIGURE 1. Size of the cutouts with each status of N.
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choice of these treatments aimed to evaluate the impact of
different nitrogen doses, from complete absence (0%) to an
excessive level (200%), in order to understand the response
of the common bean both under deficiency and excess
conditions of N. This variation in doses allowed for the
investigation of the effects of nitrogen on the growth,
development, and productivity of the plants, considering
that the common bean is sensitive to fluctuations in
this macronutrient.

The images of the leaves were captured with a
Fujifilm Finepix S4500 camera, with a 30x optical zoom,
mounted on a tripod positioned 80 cm from the pots, in a
natural light environment to simulate field conditions. Each
pot was photographed to create a large database, with
acquisitions starting at 30 DAE, when the first signs of
nitrogen deficiency become visible on the leaves. The
images were obtained weekly, over four weeks (30, 37, 44,
and 51 DAE), during the morning, between 10 a.m. and
12 p.m.

The images were processed at the Laboratory of
Machines and Precision Agriculture (LAMAP) with the
support of the Laboratory of Robotics and Automation in
Biosystems Engineering (RAEB) at the University of Sao
Paulo (Universidade de Sdo Paulo - USP). A script
developed in Matlab® R2021a was used to automatically
crop the images into dimensions of 10x10, 40x40, 60x20,
and 80x80 pixels, Figure 1, based on previous studies
indicating that the size of pixel blocks affects the accuracy
of convolutional neural network models (Chen & Tsou,
2022) in recognizing visual patterns in leaves.

Percentage of N

100 150 200

After defining the dataset, a script was created in Matlab® software to train models using CNN architectures. Table 1
shows the main configurations of the architecture of the model based on the convolutional neural network that was used to

classify the level of fertilization.
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TABLE 1. Architecture of the model based on the convolutional neural network used to classify the fertilizer application dosages.

Layers

Settings

2D Convolutional
Batch Normalization
2D MaxPooling
2D Convolutional
Batch Normalization
2D MaxPooling
2D Convolutional
Batch Normalization
2D Convolutional
Batch Normalization

Fully Connected

256 kernels with size 5x5
Default
Size pooling = 2x2
128 kernels with size 3x7
Default
Size pooling = 2x2
128 kernels with size 7x3
Default
32 kernels with size 3x3
Default
Activated by softmax

To introduce non-linearity to the network and
enhance its ability to identify complex patterns, the ReLU
(Rectified Linear Unit) activation function was used, widely
adopted in deep learning models for its effectiveness in
mitigating the vanishing gradient problem and its
operational simplicity (Taye, 2023). Of the generated data
blocks, 60% were allocated for training, 20% for
validation, and 20% for testing. Ten trainings were
conducted with 20 epochs for each combination of week
and block size, in order to identify the best classifier based
on test accuracy.

From the final network models, confusion matrices
were built for each week and each block dimension, totaling
16 matrices. Multiple cycles of CNN architecture
optimization were executed to determine the ideal
configuration of the parameters, aiming to maximize the
classifier's performance.

The performance of the models was evaluated at the
end of each cycle using metrics derived from the confusion
matrices, such as accuracy, precision, recall, and f1-score,
as well as the Kappa index and error, as described in the
equations presented in Table 2.

TABLE 2. Formulas of the metrics involved in the confusion matrix.

Metrics Formula Description
Accuracy (VP + VN) / Total Analyzes the overall effectiveness of the model.
Precision VP / (VP + FP) Proportion of true positives among all predicted
positives.
Recall VP / (VP +FN) Efficiency of a model of positive samples.
F1-Score (2 x precision x recall) / (precision + recall) Harmonic mean between precision and

Cc C
n, z X — Z YioXei
i=1

Kappa Index K=—= .
2
n, - Z XioXe;
i=1
Accuracy (Correct / Total) x 100
Error 1 - Accuracy

sensitivity.

Evaluates the agreement between the observed
and expected ratings of a classifier.

Proportion of correct predictions relative to the
total predictions.

Proportion of incorrect predictions in relation to
the total number of predictions.

VP: true positive; VN: true negative; FP: false positive; FN: false negative.

Figure 2 presents a flowchart that synthesizes the methodology adopted, allowing for a clear visualization of the
procedures carried out and the main stages of the study. This resource facilitates the understanding of the flow of activities, from
data collection to analysis and evaluation of results, highlighting the critical phases for the nutritional classification of plants

based on the processed images.
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FIGURE 2. Graphic summary of the methodology used in the study.

For the convolutional neural network model, the
options listed in Table 3 were considered to train the deep
learning neural network, and it includes the
hyperparameters since they are responsible for defining
how the model will be trained and, consequently, how it will
be able to perform the task for which it was designed
(Bengio, 2012).

TABLE 3. Training options used in the convolutional model.

Number of epochs 10
Size of the minilote 8
Option for data shuffling every-epoch

Positive scaling of the initial learning rate 0.0001

RESULTS AND DISCUSSION

Tables 2 and 3 shows the influence of the database
size on the accuracy of the trained CNN. By comparing the
number of images in Table 2 with the accuracy levels
achieved in Table 4 for different blocks (10x10, 40x40,
60x20, and 80x80 pixels) and growth stages (30, 37, 44, and
51 DAE), there is a trend that an increase in the number of

images results in better accuracy rates in CNN-based
classification.

At 30 DAE, for example, accuracy increased from
78.3% with 2995 images to 81.4% with 2937 images in a
block size of 60x20, demonstrating a positive correlation
between the number of images and accuracy. At 37 DAE, a
similar increase is noted: accuracy rose from 78.2% with
2457 images to 82.8% with 4252 images in a 10x10 block,
highlighting the importance of data volume in improving
accuracy. This trend reinforces that larger datasets are
essential for the efficient training of CNN models, allowing
for optimal accuracy levels in agricultural image analysis.

This effect is corroborated by Rezaei et al. (2024),
who showed in their study on deep neural networks for
disease recognition in barley that data augmentation
improves performance, especially in lower-capacity
networks, such as the ResNet.

Safaee et al. (2024) also observed that the number of
samples significantly impacts the accuracy of soil property
predictions in different deep learning models. Such studies
confirm that the amount of data is a critical factor for
maximizing accuracy in nutritional classification and other
agricultural tasks using CNNs.

TABLE 4. Number of images applied in the CNN for each combination.

Images
DAE 10x10 40x40 60x20 80x80
30 2995 1042 2937 2195
37 4252 3372 2748 2457
44 2638 3009 3218 1687
51 2818 3250 2708 1457
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TABLE 5. Accuracy results and Kappa Index for each combination.

Accuracy (%) Kappa Index
DAE 10x10 40x40 60x20 80x80 10x10 40x40 60x20 80x80
30 78.3 70.3 81.4 80.4 0.756942 0.62524a 0.766442 0.751748
37 82.8 78.8 79.4 78.2 0.7530% 0.72984a 0.740942 0.72354a
44 71.0 73.3 78.9 69.4 0.6376% 0.661942 0.730142 0.61224a
51 73.0 80.4 70.7 66.3 0.661242 0.75214a 0.632748 0.661842

Legend: The Kappa coefficients followed by the same uppercase letter do not differ in the column by the Z test at 5% probability; the Kappa
coefficients followed by the same lowercase letter do not differ in the row by the Z test at 5% probability.

Table 5 presents the accuracy and Kappa index
obtained from the confusion matrices for different
combinations of block sizes and days after emergence.
Based on the results, the growth stage of the plants (30, 37,
44, and 51 DAE) was not a determining factor for the
performance of the classifier, as all classifiers demonstrated
consistency and reliability across the stages, as evidenced
by the Kappa Index.

When analyzing the block sizes (10x10, 40x40,
60x20, and 80x80 pixels), it was observed that all were
suitable for creating an efficient classifier. However, 10x10
pixel blocks with 37 DAE stood out for having the highest
accuracy, followed by 60x20 pixel blocks with 30 DAE and
40x40 pixel blocks with 51 DAE. The 60x20 pixel block
size performed well in two combinations, especially at 44
DAE. Although the data from 37 DAE recorded the highest
accuracy, they revealed inconsistencies when predicting
different classes of nitrogen status, while the model with
data from 30 DAE showed more consistent performance at
the 100% nitrogen level.

Considering the training time, computational
demand, and the representativeness of the images, the
blocks of 10x10 and 60x20 pixels were selected as the most
suitable. The 10x10 pixel block allowed for a larger number
of samples, increasing the variability and robustness of the
model, while the 60x20 pixel block offered a better balance
between  capturing contextual information and
computational feasibility. Furthermore, the choice of these
sizes was based on accuracy results and Kappa Index, which
indicated more consistent performance in these cases.
Although larger blocks like 80x80 pixels retain more image
details, they reduce the total number of samples available
for training, which can negatively impact the model’s
generalization. Thus, sizes 10x10 and 60x20 were
prioritized for providing a more advantageous relationship
between accuracy, computational efficiency, and practical
applicability in the nutritional analysis of crops.

Traditionally, the nutritional status of plants is
assessed through foliar laboratory analyses, methods that,
although reliable, are costly and time-consuming, in
addition to requiring physical sample collections. The
CNN-based approach emerges as a non-destructive
alternative, allowing large-scale and real-time monitoring.
However, its effectiveness can be influenced by factors such
as image quality, lighting variations, and dataset diversity.
Future comparisons could directly quantify the performance
of CNNss in relation to laboratory analyses, evaluating not
only accuracy but also cost-effectiveness and feasibility for
field use.

The reliability of the results is reflected in the
substantial Kappa index for all analyzed periods. Recent
studies in the area support the use of neural networks in

precision agriculture: Supreetha et al. (2024) demonstrated
their effectiveness in identifying nutritional deficiencies in
rice; Ghazal et al. (2024) analyzed nitrogen stress in corn;
Urfan et al. (2024) developed the DL-CRoP platform for
identifying species and nutritional states; and Regazzo et al.
(2024) used neural networks to predict the nutritional state
in strawberries. These studies validate the results of this
work, confirming the effectiveness of CNNs for nutritional
diagnosis in agriculture, highlighting images as a reliable
diagnostic tool.

Although the results demonstrated the effectiveness
of CNNs in classifying the nutritional status of common
beans, some practical challenges must be considered for
their application in real field conditions. The model's
sensitivity to variations in lighting and noise present in the
images can impact classification accuracy, especially in
uncontrolled environments. In the present study, the images
were obtained under natural light in a greenhouse, partially
reducing these effects. However, to enhance the
applicability of the approach, color normalization
techniques, data augmentation, and lighting calibration can
be incorporated in future studies to mitigate these challenges.
Previous works indicate that the implementation of these
strategies improves the robustness of CNNs for analyzing
agricultural images, allowing greater generalization of
models in different scenarios (Nam & Lee, 2024).

CONCLUSIONS

According to the objectives of this study, it was
demonstrated that the nitrogen nutritional status in bean
leaves can be accurately identified using RGB images and
classifiers based on convolutional neural networks (deep
learning). The results indicated that the development period
(30, 37, 44, and 51 DAE) was not a determining factor for
the classifiers' performance, as all achieved substantial
classification according to the Kappa Index. Additionally,
all tested block sizes (10x10, 40x40, 60x20, and 80x80
pixels) were found to be suitable for developing an
efficient classifier.

Only the limitations related to processing speed and
computational demand were identified as potential
challenges for real-time applications in the field, which may
restrict the use of classifiers with larger block sizes. These
results reinforce the feasibility of the proposed approach for
practical applications in the nutritional diagnosis of
bean crops.
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