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ABSTRACT 

Agriculture plays an essential role in Brazil, especially in the production of beans 
(Phaseolus vulgaris), an important source of plant protein. In this study, a convolutional 
neural network (CNN) model was developed to classify the nutritional status of the bean 
plant focusing on nitrogen (N) content, using RGB images. The experiment was conducted 
at USP, in Pirassununga, with five nitrogen fertilization treatments and 30 bean plant pots. 
Weekly images of the leaves were captured starting from 30 days after emergence (DAE). 
The images were processed and used to train and test different CNN configurations. The 
results indicated that larger sets of images and smaller blocks (10x10 pixels) increased 
accuracy, especially at 37 DAE. It is concluded that the proposed model is effective for 
nutritional monitoring, providing an efficient alternative to traditional leaf analysis. 

 
 
INTRODUCTION 

Agriculture is essential for the economic and social 
development of Brazil, having a direct impact on the Gross 
Domestic Product (GDP) and various production chains 
(Caligaris et al., 2022). However, for this sector to develop 
sustainably, it is crucial that agricultural practices are 
carried out responsibly and efficiently, maximizing the use 
of natural resources while respecting the ecological limits 
of the systems. Beans (Phaseolus vulgaris) play an 
important role both in the economy and in the nutrition of 
Brazilians, being one of the main sources of plant protein in 
the national diet (Silva et al., 2014; Oliveira & Wander, 
2023). According to FAOSTAT (2019), Brazil is the second 
largest producer of beans in the world (CONAB, 2023). 

To ensure high levels of productivity in bean 
cultivation, it is essential to carry out adequate nutritional 
management that meets the specific requirements of the 
plant. Among the nutrients, nitrogen (N) stands out as 
essential for the growth of the bean plant, as it participates 
in the formation of chlorophyll, which is responsible for the 
green coloring of the leaves and the healthy development of 
the plant (Zhou et al., 2023).  

Nitrogen deficiency can be observed by the 
yellowing of the older leaves, which transfer the nutrient to 
the younger leaves due to the high mobility of N within the 
plant (Javornik et al., 2023; Woo et al., 2019). Therefore, 
precise application of nitrogen fertilization is essential to 
avoid both excess and deficiency of N, conditions that can 
compromise productivity (Kraeski et al., 2021). 

Traditionally, the diagnosis of the nutritional status 
of plants is carried out through leaf analyses, methods that, 
although effective, have limitations in terms of cost, time, 
and applicability (Cheng et al., 2017). In response to these 
limitations, non-destructive methods based on deep learning 
technologies, such as convolutional neural networks 
(CNNs), have been gaining prominence. When trained with 
large volumes of data, CNNs are capable of efficiently 
learning and identifying complex patterns in images. In 
agriculture, these networks are useful for extracting features 
from leaves, allowing for indirect inferences about pigment 
content and, consequently, about the nutritional status of 
plants (Liu et al., 2021). 

The objective of this study was to develop and 
evaluate a convolutional neural network (CNN) model to 
classify the nutritional status of the common bean 
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(Phaseolus vulgaris) focusing on nitrogen content, using 
RGB images captured from 30 days after emergence 
(DAE), when the symptoms of nitrogen deficiency became 
visible. The assessment aimed to identify the architecture 
and the acquisition period that maximized accuracy in 
nutritional classification, offering a faster, more 
economical, and efficient approach for nutritional 
monitoring in precision agriculture. 
 
MATERIAL AND METHODS 

The experiment was conducted at the Faculty of 
Animal Science and Food Engineering (FZEA/USP), in 
Pirassununga, SP, at an altitude of approximately 627 m, 
with geographic coordinates of 21°57'27'' south latitude and 
47°28'13'' west longitude, in a greenhouse equipped with a 
pad-fan system for temperature control. This system 
humidifies and cools the environment, allowing for 
temperature optimization according to the crop's 
requirements. 

The bean seedlings (Phaseolus vulgaris L., cultivar 
BRSMG mother-of-pearl) were cultivated in pots to allow 
for precise control of the applied nutrient quantities. Due to 
the high mobility of nitrogen in the soil, the application was 
divided into two stages: one third of the dose was 
administered at planting, and the remainder was applied 20 
days after germination. Irrigation was carried out daily to 
avoid any influence of water deficit on the plants. 

The experiment included five treatments (0, 50, 100, 
150, and 200% of the recommended nitrogen dose) and six 
repetitions, totaling 30 pots with 15 dm³ of soil each. The 

choice of these treatments aimed to evaluate the impact of 
different nitrogen doses, from complete absence (0%) to an 
excessive level (200%), in order to understand the response 
of the common bean both under deficiency and excess 
conditions of N. This variation in doses allowed for the 
investigation of the effects of nitrogen on the growth, 
development, and productivity of the plants, considering 
that the common bean is sensitive to fluctuations in            
this macronutrient. 

The images of the leaves were captured with a 
Fujifilm Finepix S4500 camera, with a 30x optical zoom, 
mounted on a tripod positioned 80 cm from the pots, in a 
natural light environment to simulate field conditions. Each 
pot was photographed to create a large database, with 
acquisitions starting at 30 DAE, when the first signs of 
nitrogen deficiency become visible on the leaves. The 
images were obtained weekly, over four weeks (30, 37, 44, 
and 51 DAE), during the morning, between 10 a.m. and      
12 p.m. 

The images were processed at the Laboratory of 
Machines and Precision Agriculture (LAMAP) with the 
support of the Laboratory of Robotics and Automation in 
Biosystems Engineering (RAEB) at the University of São 
Paulo (Universidade de São Paulo - USP). A script 
developed in Matlab® R2021a was used to automatically 
crop the images into dimensions of 10x10, 40x40, 60x20, 
and 80x80 pixels, Figure 1, based on previous studies 
indicating that the size of pixel blocks affects the accuracy 
of convolutional neural network models (Chen & Tsou, 
2022) in recognizing visual patterns in leaves.

 
 

 

FIGURE 1. Size of the cutouts with each status of N. 
 

After defining the dataset, a script was created in Matlab® software to train models using CNN architectures. Table 1 
shows the main configurations of the architecture of the model based on the convolutional neural network that was used to 
classify the level of fertilization. 
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TABLE 1. Architecture of the model based on the convolutional neural network used to classify the fertilizer application dosages. 

Layers Settings 

2D Convolutional 256 kernels with size 5x5 

Batch Normalization Default 

2D MaxPooling Size pooling = 2x2 

2D Convolutional 128 kernels with size 3x7 

Batch Normalization Default 

2D MaxPooling Size pooling = 2x2 

2D Convolutional 128 kernels with size 7x3 

Batch Normalization Default 

2D Convolutional 32 kernels with size 3x3 

Batch Normalization Default 

Fully Connected Activated by softmax 

 
To introduce non-linearity to the network and 

enhance its ability to identify complex patterns, the ReLU 
(Rectified Linear Unit) activation function was used, widely 
adopted in deep learning models for its effectiveness in 
mitigating the vanishing gradient problem and its 
operational simplicity (Taye, 2023). Of the generated data 
blocks, 60% were allocated for training, 20% for 
validation, and 20% for testing. Ten trainings were 
conducted with 20 epochs for each combination of week 
and block size, in order to identify the best classifier based 
on test accuracy. 

From the final network models, confusion matrices 
were built for each week and each block dimension, totaling 
16 matrices. Multiple cycles of CNN architecture 
optimization were executed to determine the ideal 
configuration of the parameters, aiming to maximize the 
classifier's performance. 

The performance of the models was evaluated at the 
end of each cycle using metrics derived from the confusion 
matrices, such as accuracy, precision, recall, and f1-score, 
as well as the Kappa index and error, as described in the 
equations presented in Table 2.

 
TABLE 2. Formulas of the metrics involved in the confusion matrix. 

Metrics Formula Description 

Accuracy (VP + VN) / Total Analyzes the overall effectiveness of the model. 

Precision VP / (VP + FP) 
Proportion of true positives among all predicted 

positives. 

Recall VP / (VP + FN) Efficiency of a model of positive samples. 

F1-Score (2 x precision x recall) / (precision + recall) 
Harmonic mean between precision and 

sensitivity. 

Kappa Index 

 

 

Evaluates the agreement between the observed 
and expected ratings of a classifier. 

Accuracy (Correct / Total) x 100 Proportion of correct predictions relative to the 
total predictions. 

Error 1 - Accuracy Proportion of incorrect predictions in relation to 
the total number of predictions. 

VP: true positive; VN: true negative; FP: false positive; FN: false negative. 
 
Figure 2 presents a flowchart that synthesizes the methodology adopted, allowing for a clear visualization of the 

procedures carried out and the main stages of the study. This resource facilitates the understanding of the flow of activities, from 
data collection to analysis and evaluation of results, highlighting the critical phases for the nutritional classification of plants 
based on the processed images. 
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FIGURE 2. Graphic summary of the methodology used in the study. 
 
For the convolutional neural network model, the 

options listed in Table 3 were considered to train the deep 
learning neural network, and it includes the 
hyperparameters since they are responsible for defining 
how the model will be trained and, consequently, how it will 
be able to perform the task for which it was designed 
(Bengio, 2012). 

 
TABLE 3. Training options used in the convolutional model. 

Number of epochs 10 

Size of the minilote 8 

Option for data shuffling every-epoch 

Positive scaling of the initial learning rate 0.0001 
 
RESULTS AND DISCUSSION 

Tables 2 and 3 shows the influence of the database 
size on the accuracy of the trained CNN. By comparing the 
number of images in Table 2 with the accuracy levels 
achieved in Table 4 for different blocks (10x10, 40x40, 
60x20, and 80x80 pixels) and growth stages (30, 37, 44, and 
51 DAE), there is a trend that an increase in the number of 

images results in better accuracy rates in CNN-based 
classification. 

At 30 DAE, for example, accuracy increased from 
78.3% with 2995 images to 81.4% with 2937 images in a 
block size of 60x20, demonstrating a positive correlation 
between the number of images and accuracy. At 37 DAE, a 
similar increase is noted: accuracy rose from 78.2% with 
2457 images to 82.8% with 4252 images in a 10x10 block, 
highlighting the importance of data volume in improving 
accuracy. This trend reinforces that larger datasets are 
essential for the efficient training of CNN models, allowing 
for optimal accuracy levels in agricultural image analysis. 

This effect is corroborated by Rezaei et al. (2024), 
who showed in their study on deep neural networks for 
disease recognition in barley that data augmentation 
improves performance, especially in lower-capacity 
networks, such as the ResNet.  

Safaee et al. (2024) also observed that the number of 
samples significantly impacts the accuracy of soil property 
predictions in different deep learning models. Such studies 
confirm that the amount of data is a critical factor for 
maximizing accuracy in nutritional classification and other 
agricultural tasks using CNNs.

 
TABLE 4. Number of images applied in the CNN for each combination. 

  Images 

DAE 10x10 40x40 60x20 80x80 

30 2995 1042 2937 2195 

37 4252 3372 2748 2457 

44 2638 3009 3218 1687 

51 2818 3250 2708 1457 
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TABLE 5. Accuracy results and Kappa Index for each combination. 

 Accuracy (%) Kappa Index 
DAE 10x10 40x40 60x20 80x80 10x10 40x40 60x20 80x80 

30 78.3 70.3 81.4 80.4 0.7569Aa 0.6252Aa 0.7664Aa 0.7517Aa 
37 82.8 78.8 79.4 78.2 0.7530Aa 0.7298Aa 0.7409Aa 0.7235Aa 
44 71.0 73.3 78.9 69.4 0.6376Aa 0.6619Aa 0.7301Aa 0.6122Aa 
51 73.0 80.4 70.7 66.3 0.6612Aa 0.7521Aa 0.6327Aa 0.6618Aa 

Legend: The Kappa coefficients followed by the same uppercase letter do not differ in the column by the Z test at 5% probability; the Kappa 
coefficients followed by the same lowercase letter do not differ in the row by the Z test at 5% probability. 
 

Table 5 presents the accuracy and Kappa index 
obtained from the confusion matrices for different 
combinations of block sizes and days after emergence. 
Based on the results, the growth stage of the plants (30, 37, 
44, and 51 DAE) was not a determining factor for the 
performance of the classifier, as all classifiers demonstrated 
consistency and reliability across the stages, as evidenced 
by the Kappa Index. 

When analyzing the block sizes (10x10, 40x40, 
60x20, and 80x80 pixels), it was observed that all were 
suitable for creating an efficient classifier. However, 10x10 
pixel blocks with 37 DAE stood out for having the highest 
accuracy, followed by 60x20 pixel blocks with 30 DAE and 
40x40 pixel blocks with 51 DAE. The 60x20 pixel block 
size performed well in two combinations, especially at 44 
DAE. Although the data from 37 DAE recorded the highest 
accuracy, they revealed inconsistencies when predicting 
different classes of nitrogen status, while the model with 
data from 30 DAE showed more consistent performance at 
the 100% nitrogen level. 

Considering the training time, computational 
demand, and the representativeness of the images, the 
blocks of 10x10 and 60x20 pixels were selected as the most 
suitable. The 10x10 pixel block allowed for a larger number 
of samples, increasing the variability and robustness of the 
model, while the 60x20 pixel block offered a better balance 
between capturing contextual information and 
computational feasibility. Furthermore, the choice of these 
sizes was based on accuracy results and Kappa Index, which 
indicated more consistent performance in these cases. 
Although larger blocks like 80x80 pixels retain more image 
details, they reduce the total number of samples available 
for training, which can negatively impact the model’s 
generalization. Thus, sizes 10x10 and 60x20 were 
prioritized for providing a more advantageous relationship 
between accuracy, computational efficiency, and practical 
applicability in the nutritional analysis of crops. 

Traditionally, the nutritional status of plants is 
assessed through foliar laboratory analyses, methods that, 
although reliable, are costly and time-consuming, in 
addition to requiring physical sample collections. The 
CNN-based approach emerges as a non-destructive 
alternative, allowing large-scale and real-time monitoring. 
However, its effectiveness can be influenced by factors such 
as image quality, lighting variations, and dataset diversity. 
Future comparisons could directly quantify the performance 
of CNNs in relation to laboratory analyses, evaluating not 
only accuracy but also cost-effectiveness and feasibility for 
field use.  

The reliability of the results is reflected in the 
substantial Kappa index for all analyzed periods. Recent 
studies in the area support the use of neural networks in 

precision agriculture: Supreetha et al. (2024) demonstrated 
their effectiveness in identifying nutritional deficiencies in 
rice; Ghazal et al. (2024) analyzed nitrogen stress in corn; 
Urfan et al. (2024) developed the DL-CRoP platform for 
identifying species and nutritional states; and Regazzo et al. 
(2024) used neural networks to predict the nutritional state 
in strawberries. These studies validate the results of this 
work, confirming the effectiveness of CNNs for nutritional 
diagnosis in agriculture, highlighting images as a reliable 
diagnostic tool. 

Although the results demonstrated the effectiveness 
of CNNs in classifying the nutritional status of common 
beans, some practical challenges must be considered for 
their application in real field conditions. The model's 
sensitivity to variations in lighting and noise present in the 
images can impact classification accuracy, especially in 
uncontrolled environments. In the present study, the images 
were obtained under natural light in a greenhouse, partially 
reducing these effects. However, to enhance the 
applicability of the approach, color normalization 
techniques, data augmentation, and lighting calibration can 
be incorporated in future studies to mitigate these challenges. 
Previous works indicate that the implementation of these 
strategies improves the robustness of CNNs for analyzing 
agricultural images, allowing greater generalization of 
models in different scenarios (Nam & Lee, 2024). 

CONCLUSIONS 

According to the objectives of this study, it was 
demonstrated that the nitrogen nutritional status in bean 
leaves can be accurately identified using RGB images and 
classifiers based on convolutional neural networks (deep 
learning). The results indicated that the development period 
(30, 37, 44, and 51 DAE) was not a determining factor for 
the classifiers' performance, as all achieved substantial 
classification according to the Kappa Index. Additionally, 
all tested block sizes (10x10, 40x40, 60x20, and 80x80 
pixels) were found to be suitable for developing an   
efficient classifier.  

Only the limitations related to processing speed and 
computational demand were identified as potential 
challenges for real-time applications in the field, which may 
restrict the use of classifiers with larger block sizes. These 
results reinforce the feasibility of the proposed approach for 
practical applications in the nutritional diagnosis of         
bean crops. 
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