
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. 
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party 
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​​/​c​r​e​a​​t​i​v​e​c​o​​m​m​o​n​​s​.​o​r​g​​/​l​i​c​e​​n​s​
e​s​/​b​​y​-​n​c​​-​n​d​/​4​.​0​/.

do Nascimento et al. Discover Soil            (2025) 2:93 
https://doi.org/10.1007/s44378-025-00116-6

*Correspondence:
Ícaro Vasconcelos do Nascimento
icaro_agro@hotmail.com
1Department of Soil Sciences, 
Federal University of Ceará, Av. 
Mister Hull, 2977,  
Fortaleza 60.021-970, CE, Brazil
2Federal Institute of Education, 
Science and Technology of Piauí, 
PI 142-Km 02, Pio IX 64660-000, 
PI, Brasil
3Federal Institute of Education, 
Science and Technology of Piauí, 
PI 247-Km 07, Uruçuí 64860-00, 
PI, Brasil

Frequency domain reflectometry and Hydrus-
1D for parameterizing the van Genuchten 
equation in a sandy entisol
Ícaro Vasconcelos do Nascimento1* , Alexandre dos Santos Queiroz1, Lucas de Sousa Oliveira1,  
João Marcos Rodrigues dos Santos1, Tiago da Costa Dantas Moniz1, Raimundo Nonato de Assis Júnior1,  
Helon Hébano de Freitas Sousa1, José Carlos de Araújo1, Carlos Tadeu dos Santos Dias1, Cillas Pollicarto da Silva2, 
Márcio Godofredo Rocha Lobato3 and Jaedson Cláudio Anunciato Mota1

Discover Soil

Abstract  This study hypothesized that estimating van Genuchten equation 
parameters using Hydrus-1D, with matric potential data (from tensiometry) and 
moisture data (from gravimetry and FDR probe), yields soil-water retention curves 
(SWRC) more consistent with field conditions compared to laboratory methods. The 
objective was to obtain and compare van Genuchten parameters from Hydrus-1D and 
laboratory methods. For this, an instantaneous profile experiment was conducted in 
Fortaleza/CE, Brazil, using four plots (1.5 × 2.0 × 0.5 m) in a loamy sand Entisol. Each plot 
had an FDR probe access tube (Diviner 2000) and tensiometers (Hg manometer) at 
depths of 0.2 and 0.4 m. For gravimetric determinations, soil samples were collected 
at 0.20 and 0.40 m depths concomitantly with tensiometer and FDR readings, and 
the mass-based water content was converted into volumetric water content using 
bulk density. When the variation in soil moisture over time reached a threshold 
drainage rate of ∂θ/∂t = 0.01 cm³ cm⁻³ d⁻¹, disturbed and undisturbed samples were 
collected for lab analysis of bulk density, particle density, porosity, and SWRC, fitted to 
the van Genuchten model (m = 1 − [1/n]). Hydrus-1D estimated four van Genuchten 
parameters, followed by ANOVA, MANOVA, PCA, and cluster analysis in SAS. Model 
performance was assessed via efficiency coefficient and RMSE. Results showed that 
inverse modeling with Hydrus-1D using gravimetry and FDR data yields SWRC better 
representing field conditions, with FDR probes proving practical and effective for SWRC 
estimation.

Highlights  Hydrus-1D with gravimetry and FDR produced SWRCs consistent with 
field-derived curves.

FDR probes matched gravimetry performance while reducing labor and time 
requirements.

Tensiometry captured wet-range dynamics but was less accurate than gravimetry and 
FDR.

Laboratory-derived curves showed the weakest agreement with field dynamics.
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1  Introduction
Given the strong correlation between water management and crop yield, understand-
ing the soil-water retention relationship is of paramount importance in agriculture, as 
it informs strategies designed to maximize crop yields while minimizing environmental 
impacts [1, 2]. Moreover, the increasing global demand for food necessitates the devel-
opment of techniques that enhance water use efficiency in production systems, particu-
larly in marginal soils such as sandy soils.

These soils, which have been incorporated into production systems out of necessity, 
typically exhibit clay contents lower than 15%, low water retention capacities, limited 
natural fertility, and are widely distributed globally [3–6]. These challenges are especially 
critical in sandy soils, where rapid drainage and limited water-holding capacity hinder 
irrigation efficiency. Recent studies have reinforced the importance of improved meth-
ods for characterizing SWRCs in sandy soils [6–9].

Understanding soil moisture is critical for effective water management in agriculture. 
The gravimetric method, a direct technique, is the most widely used approach for mea-
suring soil moisture; it quantifies the water present in a given mass of soil (or a spe-
cific volume, provided that soil density is known) [10]. Alternatively, soil moisture can 
be determined indirectly through dielectric techniques such as Time Domain Reflec-
tometry (TDR) and Frequency Domain Reflectometry (FDR). TDR estimates soil water 
content from the travel time of an electromagnetic pulse along a waveguide, whereas 
FDR probes infer it from the soil’s apparent dielectric permittivity at a fixed frequency, 
detected through changes in the capacitance of an oscillator circuit [11]. FDR devices, 
which typically consist of a capacitor coupled with an oscillator circuit and a data logger, 
are generally more portable and practical for routine field use [12, 13].

There exists a direct relationship between matric potential (Ψm) and volumetric mois-
ture content (θ), whereby drier soils exhibit more negative Ψm values. This relationship 
is crucial in studies of soil–water retention and can be mathematically expressed as θ = 
f(Ψm) [14, 15]. The graphical representation of this function is known as the soil–water 
retention curve (SWRC), which facilitates the evaluation of both available and current 
water contents in the soil, as well as other essential variables for effective irrigation man-
agement [16].

Numerous methods exist for obtaining SWRC, both in the field and the laboratory. 
A commonly employed technique involves the use of Richards’ porous plate apparatus, 
in which the difference between the sample mass before and after the procedure corre-
sponds to the mass of water in equilibrium with the applied pressure [17].

Given the operational and instrumental challenges associated with determining cer-
tain soil hydraulic parameters, such as the SWRC, alternative methodologies have gar-
nered significant attention. One such alternative is inverse modeling [18]. Hydrus-1D 
[19] exemplifies an inverse modeling approach that estimates soil hydraulic parame-
ters, including the parameters of the van Genuchten (1980) equation [20], and thus the 

ANOVA, MANOVA, PCA, and cluster analysis confirmed FDR–gravimetry equivalence.
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SWRC. Through an iterative process, the model seeks the optimal solution to Richards’ 
equation, which governs water movement in soils.

The SWRC modeled using Hydrus-1D more accurately represents the soil’s hydraulic 
behavior under field conditions compared to laboratory-derived curves [18]. By incorpo-
rating temporal matric potential data into the model, it was concluded that Hydrus-1D 
reliably estimates the parameters of the van Genuchten equation and, consequently, the 
soil water potential [21]. Similarly [22], estimated the van Genuchten parameters using 
gravimetrically obtained moisture data, determined that regardless of soil texture, the 
SWRC generated by Hydrus-1D aligns more closely with field conditions than those 
derived in the laboratory.

This study hypothesizes that parameterizing the van Genuchten equation through 
inverse modeling with Hydrus-1D, using temporal variations of matric potential (ten-
siometry) and soil moisture (gravimetry and FDR probe), yields SWRCs that better rep-
resent field conditions than laboratory-derived curves. In particular, FDR probes are 
expected to perform as effectively as gravimetry, while offering practical advantages of 
faster acquisition and reduced labor. Therefore, the objective of this study was to obtain 
the parameters of the van Genuchten model using Hydrus-1D with temporal data on 
matric potential (from tensiometry) and moisture (from both gravimetry and FDR 
probe), alongside laboratory measurements.

2  Materials and methods
2.1  Fieldwork

The experiment was conducted at the Federal University of Ceará (UFC), Pici campus, 
in Fortaleza/CE, Brazil (546517.24 E, 9586013.83 S - UTM 24 S), in an Entisol of the tex-
tural classes loamy sand and sand (Table 1).

The instantaneous profile method was used in four experimental plots with dimen-
sions of 1.5 m x 2.0 m (3.0 m2) and a drain at 0.5 m depth. The volume of soil was delim-
ited on the sides by masonry walls to avoid lateral subsurface flows [23]. An access tube 
for the FDR probe was installed in each experimental plot, and, around the tube, at a 0.3 
m distance, tensiometers with a mercury manometer were installed at 0.20 and 0.40 m 
depths (Fig. 1).

Calibration curves for the FDR probe (Diviner 2000) were developed from paired 
measurements of soil moisture and relative frequency, encompassing the full range of 
water contents observed in the experiment. Soil samples for calibration were collected 
with a screw auger at the same depths monitored in the field. Gravimetric water con-
tents were determined from these samples and subsequently converted into volumetric 
water contents using bulk density values, which were then used to establish the calibra-
tion relationship. The average calibration equations for the 0.20 and 0.40 m depths were, 
respectively, θ = 0.5451FR3.2274 (r² = 0.9912) and θ = 0.6107FR4.8545 (r² = 0.9919).

Although tensiometers cannot measure approximately 1 bar, in this study, they were 
used within the wet range of the SWRC (saturation to field capacity), where their 

Table 1  Average particle-size of experimental plots
Layer (m) Sand (%) Silt (%) Clay (%) Textural class
0–0.25 84.1 ± 1.5 8.4 ± 2.4 7.5 ± 3.1 Loamy sand
0.25–0.50 90.7 ± 3.7 6.9 ± 3.3 2.4 ± 0.5 Sand
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accuracy is adequate and consistent with the objectives of irrigation-oriented modeling. 
Tensiometer readings were converted into matric potential (Ψm) using Eq. (1).

Ψ m = −12.6hHg + hr + z,� (1)

where hHg is the height of the Hg column (m), hr is the height of the Hg level in the con-
tainer with respect to the soil surface (m), and z is the depth of installation considering 
the center of the tensiometer porous cup (m).

After installing the access tube and tensiometers, each soil column was moistened to 
ensure saturation. Once the saturation was reached, a plastic tarpaulin was placed on the 
experimental plot to avoid water flow through the surface, either by evaporation or by 
infiltration. The time zero (t = 0) of water redistribution in the profile was considered to 
be the moment when the water depth was completely drained from the soil surface.

Concomitantly with the readings of the FDR probe and tensiometers, a soil sample 
was collected with a screw auger, at each depth mentioned above, with the collection 
point at a distance of 0.15 to 0.20 m from the tensiometers. In these samples, the mois-
ture content was quantified by the gravimetric method, as follows: each wet sample was 
weighed and then dried in an oven at a temperature of 105 °C until reaching constant 
weight. After the process, the samples were weighed again, and the mass difference cor-
responded to the gravimetric moisture [24].

After the readings with the FDR probe (to obtain volumetric moisture, θ) and tensiom-
eters (to obtain matric potential, Ψm) at t = 0, measurements were taken at 0.17, 0.5, 1, 
2, 3, 4, 5, 6, and 7 h, and thereafter every 24 h, until drainage practically ceased. This con-
dition was defined as the point at which the rate of moisture variation with time (∂θ/∂t), 
calculated from gravimetric data, reached a threshold drainage rate of 0.01 cm³ cm⁻³ d⁻¹, 
following the criteria adopted in previous inverse modeling studies [18, 21].

Bulk density, which was measured in four replicates, each close to each access tube/
tensiometers, was obtained using the Uhland sampler and metal cylinders with dimen-
sions of 0.05 m height and 0.05 m diameter. Volumetric moisture was calculated as the 
product of gravimetric moisture by bulk density.

2.2  Laboratory determinations

2.2.1  Bulk density

Bulk density was determined from undisturbed cores dried at 105 °C until constant mass 
[25], which is usually achieved after approximately 24 h, and was calculated as the ratio 
of the mass of solids to the total volume of soil.

Fig. 1  Aerial view of the experimental plots in field
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2.2.2  Particle density

Particle density was obtained by the volumetric flask method, whose principle is to 
determine the volume of alcohol used to complete a 50-mL volumetric flask containing 
20 g of oven-dried fine earth [26].

2.2.3  Total porosity

Total porosity was calculated considering bulk density and particle density according to 
Eq. (2)

P = 1 − (ρ b/ρ p),� (2)

where P is the total porosity in m3 m− 3, ρp and ρb are particles and bulk densities (kg 
m− 3), respectively.

2.2.4  Soil–water retention curve

The soil–water retention curve was determined in undisturbed samples, considering 
the saturation water content as equal to total porosity. At low tensions (2, 4, 6, 8, and 
10 kPa), equilibrium between applied pressure and soil moisture was obtained using a 
Haines’ funnel, whereas for higher tensions (33, 100, 700, and 1500 kPa) it was estab-
lished with a Richards’ porous plate apparatus [27]. In the porous plate system, samples 
were kept under applied pressure until water drainage through the outlet ceased. The 
equilibration time was therefore variable depending on the tension, with longer periods 
required at higher pressures, particularly at 1500 kPa.

2.3  Procedures for obtaining van Genuchten equation parameters

The data obtained in the laboratory were fitted with the program SWRC (Soil-Water 
Retention Curve) [28], considering the model proposed by [20], Eq. 3. The model was 
fitted by following the Newton-Raphson iterative method, with dependence between m 
and n [29].

θ = θ r + θ s − θ r

[1 + (α |Ψ m|n)]m
,� (3)

where θ corresponds to the water content (m3 m− 3), θr and θs is, respectively, the resid-
ual and saturation water contents (m3 m− 3), Ψm is the soil water matric potential (m), α 
is a scaling factor of Ψm (m− 1), and m and n are fitting parameters of the model related to 
the shape.

The second procedure was the inverse modeling with data of matric potentials 
obtained by tensiometry and moisture (volumetric - θ) obtained by FDR probe and gra-
vimetry. Among the numerous models available to describe SWRC, the model of van 
Genuchten [29] was used because this equation fits well with the data of a wide variety 
of soils [30]. With the data of matric potential and moisture over time in the instan-
taneous profile experiment, Hydrus-1D was used to obtain four parameters of the van 
Genuchten equation (θs, θr, α, and n), and the matric potentials and moisture were fitted 
for each reading time by inverse modeling. The dependence between the parameters m 
and n, i.e., m = 1 - (1/n) [29] was considered.

In the Hydrus-1D model scenario, the profile of the specimen was divided into two 
layers, according to the granulometric analysis data and 101 nodes (Fig. 2). Each node is 
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a subdivision of the profile and is the target of one iteration, that is, of one data optimi-
zation cycle, and appears in green in Fig. 2. Two observation points were considered: 0.2 
and 0.4 m, which corresponded to the depths of installation of the tensiometers, readings 
with the FDR probe, or the sampling depths to obtain moisture content by gravimetry.

The initial values attributed to the hydraulic parameters were θr = 0.1 m³ m⁻³, θs = 
0.35 m³ m⁻³, α = 1 m⁻¹, n = 1.5, K0 = 0.001 m h⁻¹, and l = 0.5 at both depths. These val-
ues were chosen as plausible estimates based on typical ranges reported for sandy soils 
in previous studies and served only as starting points for the inverse optimization pro-
cess in Hydrus-1D [18, 21, 22]. The tortuosity parameter (l) was fixed at 0.5, as recom-
mended by [20] in the Mualem–van Genuchten model, which is a common assumption 
in Hydrus-1D applications.

At the soil surface, a zero-flux boundary condition was imposed since a plastic cover 
eliminated evaporation during drainage. At the lower boundary (0.5 m), a free-drainage 
condition was defined, corresponding to the drain installed at that depth, which allowed 
gravitational water flow without impedance. The initial condition of each depth was set 
with a matric potential of − 0.01 m (practically saturated) for modeling with tensiometry 
data, whereas in cases using moisture data, the initial condition was set as the moisture 
at saturation. These assumptions defined the conceptualization of the model and directly 
influenced the calibration of the soil hydraulic parameters.

The hydraulic parameters were obtained by minimizing the objective function, defined 
as the sum of the squares of the deviations between observed and simulated values [31]. 
The objective function was minimized using the Levenberg-Marquardt method [32].

2.4  Statistical data analysis

In the statistical analysis of the data, the methods for obtaining the parameters of the 
van Genuchten equation, which correspond to the treatments, were termed as shown in 
Table 2, for both depths.

Fig. 2  Profile of the experimental plots in the Hydrus-1D model scenario, showing observation points at 0.20 and 
0.40 m depths
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The fitted curves of moisture versus time were plotted to compare the field readings 
of gravimetric moisture with the values simulated by Hydrus-1D, considering the four 
procedures for obtaining the parameters of the van Genuchten equation and the two 
depths. The average soil-water retention curves obtained from field data were also plot-
ted for each depth, using the moisture data obtained by gravimetry and matric potential 
data obtained by tensiometry, as well as the average soil-water retention curves consid-
ering the four methods for obtaining the parameters of the van Genuchten equation. 
Therefore, the same range of matric potential adopted in the field (matric potential from 
saturation to field capacity) was considered.

The performance of the model was verified by the following indices: efficiency coef-
ficient – E [33], Eq. 4, and root mean squared error – RMSE, Eq. 5.

E = 1 −
∑n

i=1 (Oi − Pi)2

∑n
i=1 (Oi − Ō)2 ,� (4)

RMSE =
∑n

i=1 (Oi − Pi)2

n − 1
,� (5)

where Oi corresponds to the gravimetric moisture data obtained in the field and Pi corre-
sponds to the moisture data obtained by modeling of soil-water retention curves; n is the 
number of observations, and Ō is the average of the values obtained in the field. Accord-
ing to [34], the Nash-Sutcliffe efficiency coefficient E can vary from negative infinity to 1, 
with the unit being the indication of the greatest similarity between data sets [35]. RMSE 
is used to express the accuracy of the numerical results, showing the error values in the 
same unit as the measurement of the analyzed variable.

Once the normality of residuals, the absence of outliers, and the homogeneity of vari-
ances were verified, an F test (ANOVA) was performed, followed by Tukey’s test at the 
5% significance level to compare mean values of the van Genuchten parameters (θs, θr, 
α, m, n). After this univariate analysis, multivariate approaches were applied to provide a 
more detailed evaluation: multivariate analysis of variance (MANOVA), principal com-
ponent analysis (PCA), and cluster analysis. MANOVA was used to test whether the 
joint vectors of means of the van Genuchten parameters differed among methods, based 
on four alternative statistics: Wilks’ Lambda, Pillai’s Trace, Hotelling–Lawley Trace, and 
Roy’s Greatest Root. Although each statistic is calculated differently, all test the same null 
hypothesis of equality between mean vectors. PCA was then applied to condense the van 
Genuchten parameters into principal components that captured the majority of variance 
among treatments. This dimensionality reduction highlighted the parameters with the 

Table 2  Methods for obtaining the van Genuchten equation parameters and the nomenclature 
adopted
Depth (m) Method Nomenclature
0.20 Laboratory LAB20

Gravimetry – HYDRUS 1D GRAV20
FDR probe – HYDRUS 1D FDR20
Tensiometry – HYDRUS 1D TEN20

0.40 Laboratory LAB40
Gravimetry – HYDRUS 1D GRAV40
FDR probe – HYDRUS 1D FDR40
Tensiometry – HYDRUS 1D TEN40
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highest discriminatory power and facilitated visualization of similarities between meth-
ods. Complementarily, cluster analysis was used to group treatments according to maxi-
mum similarity in their parameter sets. All analyses were conducted on the SAS Studio® 
platform.

3  Results and discussion
Figure 3A and B illustrate the temporal variation of soil moisture across all scenarios 
examined in this study for depths of 0.20 and 0.40 m, respectively. Drainage was con-
sidered negligible (∂θ/∂t = 0.01 cm³ cm⁻³ d⁻¹) after 287 h from the initial measure-
ment. Notably, the moisture-time data simulated by Hydrus-1D in treatments GRAV20, 
FDR20, GRAV40, and FDR40 exhibited strong concordance with field observations, with 
efficiency coefficients (E) ranging from 0.88 to 0.91 and practically null RMSE values. 

Fig. 3  Temporal variation of volumetric moisture at 0.20 m (A) and 0.40 m (B). Observed = Gravimetry (red dots); 
modeled = LAB, GRAV, FDR, TEN. Performance (E; RMSE): 0.20 m—GRAV (0.91; 0.0004), FDR (0.90; 0.0005), TEN (0.55; 
0.0007), LAB (0.46; 0.0024). 0.40 m—GRAV (0.88; 0.0005), FDR (0.90; 0.0004), TEN (0.55; 0.0020), LAB (0.43; 0.0025)
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The efficiency coefficient (E) is a robust parameter for evaluating the performance of 
hydrological models, as it quantifies the similarity between modeled and field-measured 
data [36]. Consequently, the inverse modeling outcomes for these scenarios are consis-
tent with the field’s water dynamics, corroborating previous findings [18, 21, 22]. Gra-
vimetry is a direct method, whereas FDR is indirect; however, when properly calibrated, 
FDR measurements show high concordance with gravimetric values, which explains 
their comparable performance in inverse modeling.

For both depths, the moisture variation predicted via modeling of tensiometry data 
(TEN20 and TEN40) showed lower agreement with field observations, with E = 0.55. 
So, the performance of tensiometry was inferior, since it measures only matric potential 
(Ψm), which must then be converted into water content (θ) through the fitted SWRC, 
introducing an additional source of uncertainty [21]. similarly observed strong resem-
blance between field-measured moisture variations and Hydrus-1D simulations using 
tensiometry data in sandy soils (>80% sand content). Conversely, the lowest performance 
was observed in the laboratory-derived SWRCs, with efficiency coefficients of only 
0.43–0.46, highlighting their limited representativeness of field water dynamics due to 
sampling and boundary condition artifacts.

Table 3 presents the mean values of the van Genuchten parameters for each method 
and depth. Only the curves obtained from inverse modeling with FDR probe data were 
statistically indistinguishable from those derived from gravimetric data, confirming 
that both approaches provide equivalent SWRCs [37, 38]. In contrast, tensiometry- 
and laboratory-derived parameters differed significantly, reflecting their limitations for 
parameterization.

Among the individual parameters, residual water content (θr) was consistently over-
estimated by inverse modeling compared to laboratory data. This bias arises because 
Hydrus-1D was supplied with data from free-drainage experiments that terminate when 
moisture variation becomes negligible (∂θ/∂t = 0.01 cm³ cm⁻³ d⁻¹ in this study), meaning 
that calibration is based only on the wet portion of the SWRC (saturation to field capac-
ity). As noted by [18], such restriction limits the model’s ability to reproduce the dry end 
of the curve and may also influence the estimation of α, m, and n, since these parameters 
are strongly related to curve shape and pore-size distribution [38]. While this limitation 
is inherent to the methodology, it highlights the need for future studies incorporating a 
broader moisture range to improve parameter estimation.

Table 3  Mean values of the van Genuchten (1980) parameters at 0.20 and 0.40 m depths, estimated 
by Hydrus-1D inverse modeling with gravimetry, FDR probe, tensiometry, and laboratory methods
Depth (m) Parameter Method

GRAV FDR TEN LAB
0.20 θr (m³ m−³) 0.086 b 0.082 b 0.124 a 0.077 b

θs (m³ m−³) 0.400 b 0.400 b 0.408 ab 0.428 a
α (m− 1) 4.063 b 3.941 b 5.102 a 4.110 b
m 0.558 b 0.574 b 0.761 a 0.519 b
n 2.284 b 2.349 b 4.235 a 2.093 b

0.40 θr (m³ m−³) 0.128 a 0.138 a 0.100 b 0.034 c
θs (m³ m−³) 0.407 a 0.412 a 0.415 a 0.421 a
α (m− 1) 3.766 b 4.489 ab 5.250 a 5.022 a
m 0.774 a 0.800 a 0.779 a 0.676 b
n 4.502 a 5.000 a 4.532 a 3.130 b

Means followed by the same letter in a row do not differ significantly according to tukey’s test at the 5% significance level
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Conversely, θs was underestimated, consistent with the fact that field saturation rarely 
fills all soil pores [39, 40]. In contrast, laboratory samples showed higher θs values due to 
saturation by capillarity, which fills nearly all pores [41], leading to overestimation com-
pared to field conditions.

Finally, the parameter α, which acts as a scaling factor of Ψm [42], together with m 
and n, which are related to curve shape and pore-size distribution [18, 20, 38], were 
statistically indistinguishable between FDR and gravimetry. This reinforces that both 
approaches adequately describe SWRC geometry and highlights their practical utility for 
irrigation management in sandy soils.

The multivariate contrasts (Table 4) corroborated these findings, since only FDR- and 
gravimetry-based curves presented statistically similar mean vectors. In contrast, tensi-
ometry- and laboratory-based scenarios remained significantly different. Tensiometry-
based modeling relies on an initial estimation of matric potential variation, which must 
then be converted into water content using the modeled SWRC; consequently, the reli-
ability of this approach is critically dependent on the quality of SWRC parameterization.

For laboratory-derived curves, the weaker performance is partly explained by sam-
pling and boundary-condition artifacts. Soil sampling for physical analyses, such as 
SWRC determination, must be carefully planned to ensure field representativeness [43]. 
Nevertheless, even with optimal sampling, laboratory-imposed boundary conditions dif-
fer from those in the field, which can lead to discrepancies in estimated parameters [44]. 
Together, these results highlight the superior reliability of gravimetry- and FDR-based 
inverse modeling under field conditions.

The score matrix for the van Genuchten [20] equation parameters, derived from data 
at both 0.2 and 0.4 m depths and organized along two principal components (PC1 and 
PC2), are provided in Table 5. For PC1, the variables exhibiting the highest discrimina-
tory power were m (0.60), n (0.59), and θr (0.4646), whereas in PC2, the most influential 
variables were θs (0.66), α (0.62), and θr (–0.42). Accordingly, PC1 is characterized by 
curves with high slope and residual moisture (θr), as m and n relate to the SWRC slope; 

Table 4  Multivariate contrasts (MANOVA) for soil water retention curves estimated by different 
methods, based on the joint set of Van Genuchten parameters (θr, θs, α, m, n)
Statistical test Contrasts

GRAV20 vs. 
LAB20

GRAV20 vs. 
FDR20

GRAV20 vs. 
TEN20

LAB20 vs. 
FDR20

LAB20 vs. 
TEN20

FDR20 
vs. 
TEN20

P > F P > F P > F P > F P > F P > F
Wilks’ Lambda < 0.0001 0.4252ns < 0.0001 < 0.0001 < 0.0001 < 0.0001
Pillai’s Trace < 0.0001 0.4252ns < 0.0001 < 0.0001 < 0.0001 < 0.0001
Hotelling-Lawley Trace < 0.0001 0.4252ns < 0.0001 < 0.0001 < 0.0001 < 0.0001
Roy’s Greatest Root < 0.0001 0.4252ns < 0.0001 < 0.0001 < 0.0001 < 0.0001
Statistical test Contrasts

GRAV40 vs. 
LAB40

GRAV40 vs. 
FDR40

GRAV40 vs. 
TEN40

LAB40 vs. 
FDR40

LAB40 vs. 
TEN40

FDR40 
vs. 
TEN40

P > F P > F P > F P > F P > F P > F
Wilks’ Lambda < 0.0001 0.4252ns < 0.0001 < 0.0001 < 0.0001 < 0.0001
Pillai’s Trace < 0.0001 0.4252ns < 0.0001 < 0.0001 < 0.0001 < 0.0001
Hotelling-Lawley Trace < 0.0001 0.4252ns < 0.0001 < 0.0001 < 0.0001 < 0.0001
Roy’s Greatest Root < 0.0001 0.4252ns < 0.0001 < 0.0001 < 0.0001 < 0.0001
Statistics reported: wilks’ Lambda, pillai’s Trace, Hotelling–Lawley Trace, and roy’s greatest root
ns not significant; < 0.0001: Highly significant
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PC2 is defined by curves with high saturation moisture (θs), similar shape (α), and low 
residual moisture (θr). Together, these two components explain 84.86% of the data vari-
ance (Fig. 4).

Treatments FDR40 and GRAV40 exhibit elevated θr values, in contrast to the labora-
tory treatments (LAB20 and LAB40), which display below-average θr values (Fig. 4). [13] 
noted that Hydrus-1D, when supplied with moisture data from free-drainage experi-
ments (terminating when the moisture variation is deemed insignificant, ∂θ/∂t = 0.01 
cm³ cm³ d⁻¹ in this study), struggles to model the driest portion of the curve due to the 
data being confined to saturation and field capacity. Nonetheless, since the wet segment 
of the SWRC is primarily used in irrigation management, the modeled curves remain 
functionally adequate. High θs values were observed in laboratory samples (LAB20 
and LAB40), whereas GRAV40 and FDR40, as well as GRAV20 and FDR20, exhibited 
below-average saturation moisture values. [39] attribute this discrepancy to the field 
condition, where soil pores are rarely completely saturated at the time of experimental 
saturation attempts, unlike the laboratory condition, where capillarity ensures full satu-
ration. [40] reported that field saturation moisture values typically range from 70 to 90% 

Table 5  Matrix of scores for the Van Genuchten (1980) equation parameters, considering the data of 
both depths (0.2 and 0.4 m), in the two principal components selected (PC1 and PC2)
Variables PC1 PC2
θr 0.46 − 0.42
θs − 0.07 0.66
α 0.27 0.62
m 0.60 0.04
n 0.59 0.08
Eigenvalues 2.70 1.54
Variance (%) 53.98 30.88
Cumulative variance (%) 53.98 84.86

Fig. 4  Biplot chart with the two principal components selected
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of soil porosity, thereby corroborating these findings. In the present study, Hydrus-1D 
estimated saturation moisture at 93–97% of porosity for a 0.20 m depth and 97–99% for 
a 0.40 m depth.

For the parameter α, Hydrus-1D modeling yielded low values, particularly for 
GRAV20, FDR20, GRAV40, and FDR40, indicating similar curve shapes among these 
treatments [22, 38]. Parameters m and n displayed higher values in treatments TEN20 
and TEN40, suggesting a more uniform pore distribution and steeper curves. A simi-
lar trend was observed for GRAV40 and FDR40, which also recorded values above the 
mean. These results are consistent with the predominance of macropores in sandy soils, 
where higher n values correspond to steeper SWRCs [18].

The dendrogram depicted in Fig. 5 delineates the primary clusters identified. The first 
cluster consists of FDR40 and GRAV40, the second comprises TEN20 and TEN40, the 
third is formed solely by LAB40, and the fourth group comprises LAB20, FDR20, and 
GRAV20. The dendrogram reveals a clear grouping trend between SWRCs modeled 
with gravimetric data and those modeled with FDR probe data, further confirming their 
equivalence and the divergence of laboratory-based curves. This observation is consis-
tent with the MANOVA results presented in Table 4.

The average field soil-water retention curves for each depth derived from gravimet-
ric moisture data and tensiometry-derived matric potential data are displayed in Fig. 6A 
and B alongside the average curves from the modeling scenarios. Notably, the lowest 
agreement was observed between field and laboratory data, which corresponded to the 
lowest efficiency coefficients (E = 0.4614 for LAB20 and E = 0.4336 for LAB40). This find-
ing reinforces that laboratory-derived curves are less representative of field water redis-
tribution dynamics than those modeled with Hydrus-1D.

Based on the present findings, it is recommended to utilize curves modeled using 
moisture data obtained by either the gravimetric method or the FDR probe. The FDR 
probe offers the additional benefit of operational practicality, as it obviates the need for 

Fig. 5  Dendrogram with the main groups formed
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sample collection and reduces the time required compared to the gravimetric method, 
which typically necessitates approximately 24  h for oven drying to constant weight. 
Although the calibration of the FDR probe may be seen as a potential drawback, its 
accuracy in acquiring soil moisture data is commendable once properly calibrated. How-
ever, potential calibration drift and long-term stability must be considered, particularly 
under variable field conditions. In addition, FDR readings can be influenced by soil salin-
ity, which may affect accuracy in certain environments. These limitations highlight the 
importance of periodic recalibration and further validation under diverse soil condi-
tions. Thus, employing Hydrus-1D with FDR probe-derived moisture data proves to be 
both practical and efficient for obtaining reliable SWRCs.

Although the present findings demonstrate the robustness of FDR-based inverse mod-
eling in sandy Entisols, caution is required when extrapolating them to finer-textured 
soils or soils under saline conditions, where probe calibration and soil–water interac-
tions may differ. FDR probes, while effective once properly calibrated, may be subject to 
calibration drift and sensitivity to soil salinity, which can affect long-term reliability [45]. 
These aspects highlight the importance of further testing across different types of soil 
and climates to validate the broader applicability of this approach.

Fig. 6  Soil–water retention curves at depths of 0.20  m (A) and 0.40  m (B). Gravimetry–Field data (red dots). 
Modeled curves: Laboratory (LAB20, LAB40), Gravimetry–Hydrus-1D (GRAV20, GRAV40), FDR–Hydrus-1D (FDR20, 
FDR40), and Tensiometry–Hydrus-1D (TEN20, TEN40)
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4  Conclusions
Inverse modeling with Hydrus-1D using gravimetric and FDR probe data resulted in 
soil-water retention curves that more accurately reflected field conditions compared to 
laboratory-derived curves.

The FDR probe proved as effective as gravimetry while offering greater practicality, 
reducing labor requirements, and shortening the time needed to obtain SWRCs. This 
reinforces its potential as a reliable tool for irrigation management and other field-based 
hydrological applications.

Although tensiometry was adequate within the wet portion of the SWRC, its predic-
tive capacity was lower than that of gravimetry and FDR, whereas laboratory-derived 
curves showed the lowest agreement with field dynamics.

Therefore, the use of Hydrus-1D combined with FDR probes is recommended as a 
practical and efficient alternative for rapid SWRC estimation in sandy soils. Future stud-
ies should validate these findings in finer-textured soils and under different environmen-
tal conditions, including saline scenarios, to broaden their applicability and to assess the 
long-term stability of FDR probe calibrations.
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