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It has been recently demonstrated that the electromagnetic beam shape coefficients g, (X = TM or TE)
which encode the structure of structured light beams may be expressed in terms of scalar, more specifically
acoustical, beam shape coefficients. Because the technique used to obtain the relevant expressions relied on
the properties of what is known as the finite series method, the aforementioned expressions were different,
depending on whether (n — m) is even or odd. For a reason discussed in the bulk of the paper, it became

obvious that the expressions obtained for different parities of (n — m) could be unified. Proceeding to such
an unification, the expressions previously published were not only unified, but furthermore simplified, then
allowing for an easier and less time-consuming numerical implementation.

1. Introduction

In some light scattering theories dealing with the case when the illu-
minating beam is a structured beam, such as the analytical Generalized
Lorenz-Mie theory (GLMT), e.g. [1,2], or the semi-analytical Extended
Boundary Condition Method (EBCM), e.g. [3-5], both being T-matrix
methods [6,7], the illuminating beam is encoded in a set of coefficients
known as Beam Shape Coefficients (BSCs) allowing one to express it in
terms of an expansion over Vector Spherical Wave Functions (VSWFs).
Exhaustive entries to the corresponding literature is available from
recent review papers [8,9], and references therein.

There exists an arsenal of different methods to evaluate the BSCs,
including the original quadrature method, e.g. [10,11], the localized
approximations, e.g. [12,13] and references therein dating back to [14,
15], including a variant known as the integral localized approximation,
e.g. [16] dating back to [17], the finite series technique, e.g. [18,
19] and references therein dating back to [20,21], the angular spec-
trum decomposition [22-27], and the recently introduced R-quadrature
method [28-30].

Another way of evaluating electromagnetic BSCs is the consequence
of a study devoted to acoustical fields scatterings in which acoustical
BSCs, similar to electromagnetic BSCs, have been introduced. The
arsenal used for electromagnetic BSCs can be adapted to the case of
acoustical BSCs, including the use of localized approximations [31-34]
and of finite series [35]. But, furthermore, this provides a new method
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to the evaluation of electromagnetic BSCs by expressing them in terms
of acoustical BSCs, such as expounded in [36]. In this method, two
different sets of electromagnetic BSCs denoted ngTM and g,':TE are
expressed in terms of one single set of acoustical BSCs denoted g’
(with n from 1 to co, m from (—n) to (+n), T M standing for “Transverse
Magnetic” and T E standing for “Transverse Electric). This means that,
if we neglect the computational time required to express the electro-
magnetic BSCs in terms of acoustical BSCs, the computational time
required to compute the electromagnetic BSCs is divided roughly by
a factor of 2.

Therefore the conversion time required to convert the acoustical
BSCs to electromagnetic BSCs is an important factor which should
be optimized. Independently of the present line of research in which
electromagnetic fields are expressed in terms of one single vector
potential (let us call it the VP1 approach), there exist another approach
in which the electromagnetic fields are expressed in terms of two vector
potentials (let us call it the VP2 approach), e.g. [37]. In investigating
the relationship between the VP1 and the VP2 approaches, it has
been observed that the expressions used to convert the BSCs in the
VP1 approach could be drastically simplified. Furthermore, the VP1
approach provides two different kinds of expressions depending on
whether (n — m) is even or odd. An element of the simplified scheme
is that these expressions, which are different depending on the parity
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of (n — m), could be unified. As a result, the coding of the expressions
will be easier.

The aim of this paper is then to provide new, unified and simplified,
expressions to deal with the VP1 approach. The paper is organized as
follows. Section 2 recalls the original expressions of the VP1 approach.
Section 3 deals with the unification and simplification process and
results. Section 4 discusses a possible alternative approach. Section 5
is a summary. Section 6 is a conclusion.

2. Original VP1 expressions
2.1. Transverse electric BSCs

In the VP1 approach [36], the electromagnetic TE-BSCs are found
to read as:

kv a0

m m+1 |m+1| m—1 \m 1] _

Sire = 3,0 p'm‘<o> Lg% 7 10) — g3 7" IO)], (1~ m) even (1)
ky 1

e = 5 @

Z”HO P‘m‘(cose)
[ dcos ]9:"/2

(g Tz 10) + (m + DalmH10)]
g3 1 10) ~ (m — D)), (1~ m) odd

in which y,, is an acoustical field strength, H, is a magnetic field
strength, k is the wavenumber of the electromagnetic fields in the
medium in which they propagate, y is the magnetic permeability of
this medium, P}"(cos ) are associated Legendre functions using Hob-
son’s convention [38], 7(cos #) and z'(cos §) are generalized Legendre
functions reading as:

. 0 dP)"(cos ) 3
7,'(cos 0) = Qs )
P (cos 0)
a™(cos ) = L— “4)
n sin 6

and a prime denotes a derivative with respect to the argument.
2.2. Transverse magnetic BSCs

In the VP1 approach [36], the electromagnetic TM-BSCs are found
to read as:

oy 40 @ @ (1)
g" =@O" -T —nT
nTM 2(2}1 4 I)EOP‘ml(O) n—1,m n+l,m n—1,m (5)
(1)
—(n+ l)Tn+I m) (n —m) even
in which:
Tn(rln) =(m- 1)P|m+1|(0)gm+1 —(m+ l)PV!m_ll(o)ngzl 6)
TS5 = [Im(m+ DP"™10) + /"1 0)]gr! )
+[m(m — DPI"=1(0) + /Im=1(0))g™m !
and:
oy 9 @ @ M
gm = (V _ -V —nV _
nTM 2(2n + l)EOTlml(O) n—1,m n+1l,m n—1,m (8)
- (n+ l)Vn(l)l m) (n—m) odd
in which:
Vi) = m=22m 0! — m+ 22" O)g)! 9
2 2 1 1 1
Vo = 1o 4 m+ 2 0) — 20180 ao

+[(m* —m+2)7)" 10 — 71" M 0)1g) !

in which o is the angular frequency of the waves and E, is an electric
field strength. The introduction of w is an opportunity to specify that
the time-dependence used is of the form exp(iwr).

Journal of Quantitative Spectroscopy and Radiative Transfer 340 (2025) 109451
3. Unified and simplified expressions
3.1. TE-BSCs, (n — m) even

We deal with Eq. (1). In this equation, we have:

dP"(cos®) dP™(cos0) dcoso

ml gy = Zin -
o @) 6 dcos®  df (1)
Iml |m]
_ —Sinedpn (COSQ) :_mdpn (/4)
dcos6 du
But we have, e.g. [38], tome 1, p.102, with a typo corrected:
(M)
W - 1) = V1= @2P" () + mu P (u) (12)
and, see [39], Egs. (15)-(91), (15)-(92):
d P ()

W =1 G = rm—m+ DV~ PP (W) = mu Py () (13)
that is to say:

pl!
o - (” L VTZWPI )+ im0 a4

'm‘(ﬂ)
W - I)T —n+ mD(n = Iml + DV = @2 P () = Iml w PV ()

(15)
From Eq. (11), we obtain:

dp)"
I"(0) = —[T(")h;:,,/z (16)
which, using Egs. (14)-(15), becomes:
"(0) = —(n + |m|)(n — |m| + HP"1(0) = PI"*'(0) a7
from which we have:
) = —(n+ Im+ 1D(n — |m + 1] + DPI™I=1(0) (18)
Tr\,mfl|(0) — P’!lmlel(o) (19)

We then have to consider three different cases, as follows.
(i) EM BSCs with m > 0, so that |m| = m, |[m+1| = m+ 1 and
|m—1| = m—1, so that Egs. (18)-(19) become:

£mH(0) = —(n+ m + 1)(n — m) P (0) (20)
«Im=110) = P"(0) (21)
which, once inserted in Eq. (1), leads to:

—kys
&re = o H S(n+m+ D(n—mg™ + g, (n— m) even (22)

(ii) EM BSCs with m = 0. From Eq. (18), we have:

[ 1(0)],z0 = [71711(0)],z0 = 7, (0) = —n(n + 1)PY(0) 23)
so that Eq. (1) becomes:
—ky
gS,TE = 2uH, A n(n + Dig, 4 — &, 41, (n—m) even (24)

(iii) EM BSCs with m < 0, i.e. with |m|
lm—1| = |m| + 1.
We start again from Eq. (1). But, from Egs. (18)—(19), we have:

= -m, m+1| = |m| - 1,

mO) = —(n+ |m+ 1))(n — |m + 1] + DPI™1=1(0) (25)
—(n+ |m| = D(n = |m| +2)PI"=2(0)
- D(n+m+2)P"=2(0)

—(n—m

T}mel|(0) — P,|lmfl\+l(0) — PJMHZ(O) (26)
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Inserting Egs. (25)—(26) into Eq. (1) leads to:
ky 40 1
m o _ 27
&nTE T 24H, P"(0) @7

X[=g"!(n—m—1)(n + m+2)P"2(0) -

g B o),

(n — m) even

Next, we evaluate the ratios P,"!%(0)/P"(0) and P\"**(0)/ P! (0)
using, e.g. Eq.(5.6) in [2]:

—_ DN
Plm0) = (- stz M= DY S en (28)
2n=lmb/2 2=l
leading to:
|m|-2
P, 0 —_
w0 _ 1 29)
Pnlml(O) m+m+2)(n—m—1)
|m|+2
P, 0
T() =—(n—|mDn+|m| +1) (30)
PO
Inserting Egs. (29)—(30) into Eq. (27) leads to:
k
&y = 5o Sl g Gkl + D) (=) even (31)
3.2. TE-BSCs, (n — m) odd
We start from Eq. (2). But we have:
|m| |m|
dP, "' (cos ) dP, '(cosf) do
Gfn tC080), 4L COsT) 2
d cos lo=r/2 do dcosb?]g /2 (32)
|m| .
dP, ' (cos ) m
= —[T]gzﬂ/z = —T,ll 10), (n — m) odd

We now deal with r,gl'”i”(O) which are involved in Eq. (2). For this,
we have:

dr)"(cos)  —1 dr)"(cos)

Iml(cos 0) = = 33
R e ey BT 33)
-1l d dP" (cos) = d2P" (cos 0)
T sin0do do Tsin0 de?
But the associated Legendre functions satisfy the equation:
1 d dP)(cos 6) m2
_— 0 — 1) - P 0)=0 34
sing 20 M 19 ) T+ D sinze] (€08 0) 34
Hence:
|m|
1 d dP,"'(cos0) |m | |
— —(sing—21———~ 1 Pl"l(cos 35
smedo( in 70 )+ [n(n+1) - ) ] (cos®) = (35)

from which we derive:
—cos§ d P (cos 0) | |

d?P)" (cos§) e 1) —

402 snd T JP""'(cos 0) (36)

Inserting Eq. (36) into Eq. (33) leads to:

Iml
s@ dP, '(cos@
cosf dP,'( ) 1 [n(n+1) | |
sin? 0 do

that is to say, using the definition of r;" in Eq. (3):

/1l (cos ) = ]P""‘(cos 0) (37)

/" (cos 6) = C‘“i "”'(coso)+—[n(n+1) ' ' ]P""'(cosO) (38)
Hence:
") = [n(n + 1) - |m|*1PI"(0) (39)

= (0> — |m|* + n)P"(0)
We also have, e.g. Eq. (4):

P (cos 0)

Il () —
= O =175

lo=zj2 = P™(0) (40)
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Taking into account for a change from m to m + 1, we insert Egs.
(32), (39) and (40) into Eq. (3), leading to:

—k Pl
Srre = Spp S T D= I+ 1P +1]—\m_|+lioz @1
(A
2
—8na nm+ 1) —Im=11* = (m _1)]W1(0)

PJ""“(O) from Eq. (17).
We now consider again three different cases.

in which we have used as well r,',""(O) =

(@ m>0,ie |ml=m |m+1=m+1, | m-1=m-1.
Eq. (41) then becomes:

m klI/Ao

&uTE = {gm+1[ (n+1)—(m+ 1> +m+1] (42)
m—l(O)
e e D= - D= tm- Pm+1(0)}
But we have:
nn+ 1) —m+ 12 +m+1=@n+m+1)(n—m) (43)
n(n+1) = (m—= 17> = (m—1) = (n = m+ 1)(n + m) (44)

and, using Eq. (28):

P1(0) -1
v = (45)
P,;"‘*'l ©) m+mn+m+1)
Inserting Egs. (43)-(45) into Eq. (42) then leads to:
—k
g = 2,412?0 [g7% 0+ m+ D)(n — m) + g"'], (n— m) odd (46)

which agrees with Eq. (22), therefore unifying the expressions for the
TE-BSCs, whatever the parity of (n — m), for the case m > 0.

i) m=0

Eq. (41) then readily becomes:

0 —ky
Sure = 2, M0+ D&

g,4) (n—m) odd 47)

which agrees with Eq. (24), therefore unifying the expressions for the
TE-BSCs, whatever the parity of (n — m), for the case m = 0.

(i) m <0, i.e |m| = —m, |m+1] = |m| =1, |m— 1] = |m| + 1.
Eq. (41) becomes:
ku/ P"0)
Eorp = AO{gm+1[n<n+ D)= (Im| = 1 = |m| + um (48)

—gy 1 I+ 1) = (Im| + 1 + |m| + 11}
But we have:

n(n+1) = (Im| = 1)? = |m| + 1 = n(n+ 1) — |m| (Im| — 1) (49)
(n+|mD@n — |m| + 1)

nn+ D)= (m|+ D>+ |m|+1 = n(n+1) = |m| (Im| + 1) (50)
(n—|m)(n+|m[+1)

and also, using Eq. (28), we have:

PO _ -1 5n
P Q) (e ImD0n— [m] + 1)
Inserting Egs. (49)—(51) into Eq. (48), we obtain:
k
&y = o HLE! = I+ I+ DY, = my0dd (52)

which agrees with Eq. (31), therefore unifying the expressions for the
TE-BSCs, whatever the parity of (n — m), for the case m < 0.
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3.3. TM-BSCs, (n — m) even

We start from Egs. (5)-(7). But we have, from Eq. (39):
mE0) = (n? — |m 1) + n) P=11(0) (53)

Inserting Eq. (53) into Eq. (7), we obtain:
TS5 = [m(m+ 1)+ (0 = |m+ 1> + m] /"1 0)g%! (54
+im(m = 1) + (% = [m = 11> + m1 P 0)g7!

Inserting Egs. (6) and (54) into Eq. (5), and rearranging, the BSCs

g;'fT , may be rewritten as:
i
= ———A0 o (55)
' 22n + 1)E,P™(0)
X[Fmtlg;"ﬁlA +Fle llA +F’1+11g:.n:11A +Fle lA]

in which:
F™ U= [m? + m = nm +n® = |m + 1121P" 1 (0) (56)
Fl = [m? = m+nm+n? = |m— 1121P!" ' (0) 57)
F'l = [=m® = 2m —nm = 2n— 1 = n* + |m + 121" (0) (58)
F'l = [=m® + 2m+ nm =20 — 1 = n® + |m — 121" (0) (59)

We now consider again three different cases.

@) m>0, i.e._ m+1=m+1,|m-1=m-1.

The terms F/ immediately reduce to:
Fl =+ 1)(n—m—1)P"1(0) (60)
Frl=(n+ D+ m—1)P"10) (61)
F™ b = —n(n+m+2)P"1(0) (62)
Frol = —n(n—m+2)P"1(0) (63)

Inserting Egs. (60)-(63) into Eq. (55), and changing |m| to m, leads
to:

m oy 40
= — 64
BnrM = 200+ 1)E,PI(0) 64
xX[(n+ 1)(n—m— 1)P'"+1(0)g;"+11A

+(n+ Dn+m—1)P" (0"

m+1 m+1
—n(n+m+2)P7 (O)gn+1 "

—n(n—m+2)Pr L O)gr! 1

nlA

Eq. (64) contains four ratios of associated Legendre functions which
are evaluated using Eq. (28), leading to:

P':TII(O) =(n-m) (65)
P(0)

BEO 6
Pm(0) n+m-—1

P':Ti](O) =—(m+m+1) 67)
Pm(0)

P10
Z:J(é)) - m ©8)

Inserting Egs. (65)—(68) into Eq. (64), and rearranging, then leads
to:
L = 5 69)

202n+ 1)E,
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x{nl(n+m+ )(n+m+ Z)g”’:llA Sl A]

m+1
+(n+ D[ = m = 1(n—mgi! — gl )
(i) m=0 A
From Egs. (56)—(59), the terms Fif immediately reduce to:
Fl =@ - 1P (0) (70)
= - 1P (0) (71)
FHl = —n(n+2)P* (0) (72)
Fl = —n(n+2)P* (0) (73)

We also have to deal with a few ratios of associated Legendre
functions, namely, using Eq. (28):

P+|1 )
-1 (74)
PO(0)

£ (n+1) (75)

=—(n+

o

Inserting Egs. (70)—(75) into Eq. (55), we obtain:
0 oy 49
= 1 76
armt = 3aay g Y 2
X[(n=1D(gp_y 4+ 8" )+ 1+ g, 4+ 8t )]
(iii) m < 0, i.e. |m| =—m, [m+1] = |m| =1, |m=1] = |m| + 1.
Egs. (56)-(59) then lead to:

F™ U= (n+ D(n+ [ml = DP"™0) 77)

F™l = (n+ D(n = |m] = HP™(0) 78)

F™1 = —n(n - |m| +2)P"'(0) 79)

Fl = —n(n + |m] +2) P! 0) (80)

Inserting Egs. (77)—(80) into Eq. (55) leads to:
oy 40
m o 1
&M = 20n+ DE, ®1)
|m| 1
n 1 © +1
X[(n+ Dn+|ml - 1)——— | ‘ —_—g
m 0) i
+(n+ 1) —|m -1) mﬂ( )
n n—|m - g"
|m\(0) n— lA
|m|— 1(
_ _ n+1 m+1
n(n = |m| +2) Plmlo) n+1,A
|m|+1
_ n+1 m—1
n(n + [m| +2) Py SrHia

The associated Legendre functions ratios then read as, according to
Egs. (65)-(68):
P (0)
S = (= |m]) 82)
P(0)
|m|—1
PO

pMoy  n+im -1 83)

|m|+1
Pt ©

S ==+ ml + 1) (84
P (0)

Pl
n+1 ( ) - 1 (85)
r!m‘(o) n—|m|+2
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Inserting Egs. (82)—(85) into Eq. (81) leads to:

. ioy 4
_ _fowa 86
&TM = 220+ DE, 0)
X{n[(n -+ |m| + D+ Im| + g7} | — gl ]

+(n+ Dl = |m| = D(n = Imhg)!  — g 1)

3.4. TM-BSCs, (n—m) odd

We start from Egs. (8)—(10). We next have:

! !
(o5 0) = d‘rnlm‘(cos 0) _ -1 d‘rnlm‘(cos 0) 87)
n dcos@ sin do
Using Eq. (37), Eq. (87) becomes:
-1 d 0
ré"'"'(cos 0) = =5np 46 { cos 20 |m|(cos 0)
m[? (88)
— 1)— ——1P!"(cos 6
+ sinO[n(n +1) sin20] > M(cos )}
which is next evaluated to:
1 ,1+4cos?0
T'/l,‘ml(COSg) = ﬁ mr}]""(cos 9)
2
— cosp[ MM _nn+ 1)]Pl’"'(cos 6)
sin* 0 sin?
CoS 0 |
989 0)— — 1
sin T (cost) sin0 Ln(n+ 1)
2
_Im i cos 0)) 89
.2 n
sin” 0
from which we deduce:
1m(0) = [|m]? — n(n + 1) + 117/"1(0) (90)
Inserting Eq. (90) into Eq. (10), we obtain:
V® = [m(m+ 1) = [m+ 1> + n(n + 1) + 1" 0)g"4! (91)

+im(m = 1) = |m =11 + n(n + 1) + 111" 0!
Using Egs. (9) and Eq. (91), and rearranging, Eq. (8) becomes:

W (92)
22n + 1)Eyz/™(0)
X{[m(m + 1) — nm —

m —_
Enrm =

m+ 12 +nn+1)+ 1]r""+"(0)g;"+11A

+Im(m = 1)+ nm = |m =12 + n(n+ 1) + 112" 0)gm

Im+ 117 + nn + 1) + 11271 0)gm!

—[m(m +2) + nm— il A

= [m(m =2) = nm = |m = 1> + n(n+ 1) + 1127 O)gm ! )

We now have again to consider different cases as follows.
ADm>0,ie. |m+1l|l=m+1, | m-—1=m-1.
Eq. (92) simplifies to:

m o _ iy 40
BarM = 200+ 1)Eyer(0) ©3)
X[(n+ D(n = myz™ 1 O)gr! |+ (n+ Din+myey O]
—n(n+m+ Dt gt —ntn—m+ D Og)! ]
We next use Egs. (17) and (28), implying:
_1\(n+m+1)/2 "
(0 = P (0) = ¢ t) — it 94
201=m=D/2(2=)!
and leading to:
r;,"(O) =@=m=D
o)
n—1 - 1 (96)

(0) n+m
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m+l
n+1 ( ) _ 2) (97)
r'"(O) =—(n+m+
(0) 1
n+1
) Th-m+1 ©8)
Inserting Egs. (95)-(98) into Eq. (93) leads to:
m _ iy 4
Burd = 22+ DE, ©9)

x{n[(n+m+D(n+m+ z)g;";‘A gl A]

m+1 ]}

+(n+ Dl(n—m—1)(n—mg" IA—gn lA

which identifies with Eq. (69), unifying the expressions for the TM-
BSCs, whatever the parity of (n — m).

(ii) m = 0.

Eq. (92) becomes:

oy 40

m 1
v = 3 g, V) (100)
X[(gnl—l,A + g;—ll,A)T;—l(O) (gn+1 At gn+1 A)Tr}+1(0)]
But, from Egs. (95) and (97), we have:
i (0
n—1
—1 101
00 (n=1) (101)
1
7,0
=—(n+2 102
200) (n+2) (102)
which, when inserted into Eq. (100) leads to:
ioy
Surm = 20n +/;(;E n(n+1) (103)

X [(n = 1)(g,_ 1At 1A)+(n+2)(gnl+1,A+gr7-:l,A)]

which is exactly Eq. (76), i.e. leading again to the unification with the
case (n — m) even.

(iii) m<O0,ie. |ml=-m, | m+1|=|m| -1, | m-1|=|m| + 1.
Eq. (92) leads to:
ioy
Sl = a104)
: 202n + 1)Eyz™(0)
X[(n+ D + Iy~ gt
+(n+ 1) — |mpya " gl
—n(n—|m| + l)rrllr_tll ! ;"_:'IIA
—n(n+|m| + I)T,lﬁllﬂ ;"+11A]

Next, from Egs. (95)-(98), we have:

\m|+1( )
—|m| =(n—Im|-1) (105)
©
\ml 1
O] _
S B T (106)
|m|(0) n+ |m|
\m|+l(
Sl Tk iml +2) (107)
\ml 1
T O (108)
'|""|(0) n—|m|l+1
Then, inserting Egs. (105)-(108) into Eq. (104), we obtain:
m_ lowy
BurM = 20+ DE, (109)
x{nl(n+ |m| + 1)(n + |m| +2)g)} A gl

+(n+ DI = |m] = D(n = |mgl!, = g™ 1)

which exactly identifies with Eq. (86), i.e. leading again to the unifica-
tion with the case (n — m) even.
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4. A possible alternative approach

The approach discussed in [36] and in the present paper has been
motivated by the finite series technique, e.g. [18,19] and references
therein dating back to [20,21]. As a consequence, the cases (n — m)
even and (n — m) odd have been considered separately, and the angle
0 in the expressions of the BSCs has been set to z/2. An alternative
method is to take advantage of the fact that the BSCs are constant
complex numbers, and therefore actually do not depend on 6. This
means that the dependences of BSCs with respect to 6 are apparent.
To draw the consequences of this fact, let us consider Eq.(40) of [36]
rewritten below:

m_ kwao 1
EnrE 2uHy plml(cos )

x{g" 1 [zl™*(cos ) + (m + 1) cos /™! (cos 0)]

- g;";‘ [z!m"(cos ) — (m — 1) cos 0™ (cos 0)]}

(110)

The fact that g 'rE does not actually depend on 6 implies that the
ratios written below are complex numbers:

2™ (cos 0) + (m + 1) cos Gzt,llmJrl l(cos 0)

T, =-=2 (11D
+ |m]
P, " (cos 6)
|m—1] o |m—1]
T = T, (cos @) — (m — 1) cos O, (cos 6) 112)
P (cos )

Using Egs. (12) and (13), we obtain:
d P (cos 0) €08 0

m 5 B'(cos0) = P (cos 9) (113)
dP™(cos 0)
o Z’Sg P"(c0s0) = —(n + m)(n — m+ )P""L(cos8)  (114)

Recalling the definition of the generalized Legendre functions
7/"(cos 0) and z'(cos 6), Egs. (113) and (114) may be rewritten as:

7,'(cos §) — mcos Oz (cos ) = P:'“ (cos 0) (115)

77(cos ) + mcos Oz (cos 0) = —(n + m)(n — m + l)P,:"_1 (cos 0) (116)

From Eq. (115), we may express r,‘,'"ill(cos 0) and, from Eq. (116),
we may express r,lqm“‘(cos ), leading to:

7" !(cos 8) — (m — 1) cos 8™} (cos ) = P™(cos ) (117)
T:'Jrl (cos 0) + (m + 1) cos 97[;"+l (cos )
=—(n+m+ 1)(n—m)P,"(cos §) (118)
For m > 0, we therefore simply obtain:
M+ (cos @) + (m + 1) cos Oz (cos 0)
T. = " n =— (n— 119
I Pricos ) m+m+Dm-m) (119)
7" 1(cos @) — (m — 1) cos 8z (cos 0
=0 (cos 0) — ( ) n ):1 (120)
P"(cos 0)

which do not depend on 6 as it should, and agree with Eq. (22)
For m =0, Egs. (111) and (112) become:
71(cos ) + cos 0! (cos 6)
T,=T_=-"= ¢ (121)
PY(cos 6)

while Eq. (118) become:

7} (cos 0) + cos O (cos §) = —n(n + 1)P’(cos 0) (122)
so that Eq. (121) leads to:
T,=T_=-nn+1) (123)

which, again does not depend on 0, as it should, and agrees with
Eq. (24).
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Finally, for m < 0, Egs. (111) and (112) become:

r,l,ml_l (cos ) — (Jm| — 1) cos 975,','"'_1 (cos 0)

T, = (124)
P,!ml (cos 6)
- 2"+ cos 0) + (Im| + 1) cos 8™ (cos ) (125)
P (cos 0)
From Egs. (117) and (118), we then obtain:
T, =1 (126)

T_=—-(n+|m|+ 1)(n—|m|) 127)

which do not depend on 6, again as it should, and agree with Eq. (31).

However, Egs. (22), (24) and (31) were valid for (n — m) even. The
equations obtained above in the present section do not depend on the
parity of (n — m). This implies that the expressions for (n — m) even
or odd have been unified, in a way different from the one used in
Section 3. A similar approach may be used in principle for the TM-BSCs
but dealing with Eq.(50) of [36], which depends on both r and 0, is far
more complicated than dealing with Eq.(40) of [36], as it can be seen
below where it is repeated for convenience:

2EOZ puw gm n(n+1)J"( ) P (cos 0)

SnTM (128)

Yao Z pw dJn( )

iwue
—2sin 0P|'“ 1|(cos t9)g"’_1

+ cos 91"'“” I(cos t9)g"’+1 + cos Grll'”_l I(cos t9)g"’_1

sin ¢9P,|l’"+1|(cos S)g;':fl

+—(m+1)Pl'"+”(cos9)g'"+' SiIllﬁ(m DR (cos 0)gr, '

k
J"( ) cos 01"’”’”(005 6‘)g"’Jrl —2cos 91',‘['"_“(003 G)gZ’XI

- S_(m + l)le'H‘(COS l9)gm'H s'[116(m _ 1)P'|lm_”(COS g)g:’rf;l

|m+1]| |m—1]|
dr, cos 6 d cos 6
— sin 9—( ) gt _ singTin “C08%) ( )g'"_]
do mA do mA
+ —(m + 2P (cos 0 + ,L(m — 1?PI"(cos )g™ 1}
sin 0 n &

5. Summary and discussion

It is certainly convenient to summarize in this section the results
which have been obtained in the present paper. They read as:

—ky
8nrE = 2#;00 [ +m+ 1)(n - m)g:,"XI +gr'l,m>0 (129)
ky
e = ZMI;"n(H Dig) , =g 4L m=0 (130)
ky _
gy = 2”;‘;’ (g + g (= Im)(n + |m] + D], m < 0 (131)
m oy 40
- 132
M = 20n 1 DE, (132)
x{n[(n+m+ )(n+m+ 2)g’":11A Sl n
1
+(m+ Din—m-— 1)(n—m)g;":r1’A [l 1A]}, m>0
0 oW 40
= Va0 1 133
&M = 2an+ nE" T (133)
X[ =gy, 4+ 8,1 )+ n+2) g, 4 +8H DL m=0
m oy 0
= 134
&M = 20n+ DE, (134)
x{nl(n+ |m] + 1)(n + m| +2)g"7]! . —gml
+(n+ Dl(n = |m| = D(n = mhgy , =g 1), m<0
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To use these equations, we must furthermore remember that the
electromagnetic BSCs are defined for n > 0, although the case n = 0
is valid for acoustical fields, e.g. Eqs.(4), (5) and (10) in [36]. Also, it
is interesting to remark that Egs. (129)-(131) on one hand, and Egs.
(132)-(134) on the other hand, can be merged and then read as, with
m > 0:

ky _
o= —ZM}’}‘; (25" + g2 — myn + m + 1)) (135)
o __TloWy =l gD
M = 2on+ )E, {nlg, 1 4 —&ia (Arm+Dn+m+2)]
+(n+ D=0 = g = m = 1) — m)) (136)

To better appreciate the improvements obtained in the present
paper, let us compare the old and the new equations allowing one to
express the electromagnetic BSCs in terms of the scalar BSCs, omitting
the case m = 0 which does not lead to significant improvements. Then,
the original Transverse Electric BSCs gy are provided by Eq. (1) for
(n — m) even where they are expressed using special functions, namely
the generalized Legendre functions z"(cos 6). For (n — m) odd, original
expressions of the BSCs g, pp are given by Eq. (2) where they are
expressed using again special functions, namely the derivative of the
Legendre functions z/"(cos §) and the Legendre functions z"(cos §). All
these complicated expressions are simplified and unified to a simple
equation, namely Eq. (135) for both (n —m) even and odd, furthermore
without using any special functions.

Similarly, the original Transverse Magnetic BSCs g, are provided
by Egs. (5)-(7) for (n — m) even where they are expressed using
special functions, namely associated Legendre functions P"(cos ) and
the derivative of the Legendre functions z"(cos#). For (n — m) odd,
original expressions of the BSCs g;’fT  are given by Egs. (8)-(10) where
they are expressed using again special functions, namely the Legendre
functions 7)"(cos #) and their second derivatives. All these complicated
expressions are simplified and unified as well to a simple equation,
namely Eq. (136) for both (n — m) even and odd, furthermore without
using any special functions.

It is then obvious that the modifications of the original expressions
provided in the present paper lead to a drastic simplification of the
original expressions, furthermore dramatically simplifying their coding.

6. Conclusion

This paper presents a drastic simplification of equations previ-
ously published expressing electromagnetic BSCs in terms of acoustical
BSCs [36], in which the equations were different depending on the
parity of (n — m) in which n is a partial wave order and m is an
azimuthal order. One important element of the simplification is due
to the fact that it has been possible to unify the different expressions
corresponding to different parities of (n — m). Furthermore, it has
been possible to get rid of the many special functions and derivatives
involved in the original expressions.

Furthermore, while the formulation discussed in the present paper
relies on a VP1 approach (in which electromagnetic fields depend on
one kind of potential vector), there also exist another approach, named
the VP2 approach, in which the electromagnetic fields are expressed in
terms of two kinds of potential vectors. We shall explain elsewhere that
a successful relationship between the VP1 and VP2 approaches is only
possible using the simplified relationships established in the present

paper.
CRediT authorship contribution statement

Gérard Gouesbet: Writing — original draft, Formal analysis, Con-
ceptualization. Jianqi Shen: Writing — review & editing, Formal anal-
ysis, Conceptualization. Leonardo A. Ambrosio: Writing — review &
editing, Funding acquisition, Formal analysis, Conceptualization.

Journal of Quantitative Spectroscopy and Radiative Transfer 340 (2025) 109451
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The research was partially supported by the National Council for
Scientific and Technological Development (CNPq) (406949/2021-2,
309201/2021-7).

Data availability

No data was used for the research described in the article.

References

[1] Gouesbet G, Maheu B, Gréhan G. Light scattering from a sphere arbitrarily
located in a Gaussian beam, using a Bromwich formulation. J Opt Soc Amer
A 1988;5,9:1427-43.

[2] Gouesbet G, Gréhan G. Generalized Lorenz-Mie theories. 3rd edition. Springer;
2023.

[3] Mishchenko MI. Electromagnetic scattering by particles and particle groups, An
introduction. Cambridge, UK: Cambridge University Press; 2014.

[4] Mackowski DW, Mishchenko MI. Direct simulation of multiple scattering
by discrete random media illuminated by Gaussian beams. Phys Rev A
2011;83:013804.

[5] Wang J, Chen A, Han Y, Briard P. Light scattering from an optically anisotropic
particle illuminated by an arbitrary shaped beam. J Quant Spectrosc Radiat
Transfer 2015;167:135-44.

[6] Gouesbet G, Lock JA. On the electromagnetic scattering of arbitrary shaped
beams by arbitrary shaped particles : A review. J Quant Spectrosc Radiat Transfer
2015;162:31-49.

[7] Gouesbet G. T-matrix formulation and generalized Lorenz-Mie theories in
spherical coordinates. Opt Commun 2010;283, 4:517-21.

[8] Gouesbet G. T-matrix methods for electromagnetic structured beams: A com-
mented reference database for the period 2014-2018. J Quant Spectrosc Radiat
Transfer 2019;230:247-81.

[9] Gouesbet G. T-matrix methods for electromagnetic structured beams: A com-
mented reference database for the period 2019-2023. J Quant Spectrosc Radiat
Transfer 2024;322:109015.

[10] Gouesbet G, Letellier C, Ren KF, Gréhan G. Discussion of two quadrature methods
of evaluating beam shape coefficients in generalized Lorenz-Mie theory. Appl Opt
1996;35,9:1537-42.

[11] Gouesbet G, Ambrosio LA, Lock JA. On an infinite number of quadratures to
evaluate beam shape coefficients in generalized Lorenz-Mie theory and extended
boundary condition method for structured EM fields. J Quant Spectrosc Radiat
Transfer 2020;242:196779.

[12] Valdivia NL, Votto LFM, Gouesbet G, Wang J, Ambrosio LA. Bessel-Gauss beams
in the generalized Lorenz-Mie theory using three remodeling techniques. J Quant
Spectrosc Radiat Transfer 2020;256:107292.

[13] Votto LFM, Ambrosio LA, Gouesbet G. Evaluation of beam shape coefficients
of paraxial Laguerre-Gauss beam freely propagating by using three remodeling
methods. J Quant Spectrosc Radiat Transfer 2019;239:106618.

[14] Gouesbet G, Gréhan G, Maheu B. On the generalized Lorenz-Mie theory :
first attempt to design a localized approximation to the computation of the
coefficients gr'. J Opt (Paris) 1989;20,1:31-43.

[15] Gouesbet G, Gréhan G, Maheu B. Localized interpretation to compute all the
coefficients g” in the generalized Lorenz-Mie theory. J Opt Soc Amer A 1990;7,
6:998-1007.

[16] Ambrosio LA, Wang J, Gouesbet G. On the validity of the integral localized
approximation for Bessel beams and associated radiation pressure forces. Appl
Opt 2017;56, 19:5377-87.

[17] Ren KF, Gouesbet G, Gréhan G. Integral localized approximation in generalized
Lorenz-Mie theory. Appl Opt 1998;37,19:4218-25.

[18] Gouesbet G, Shen J, Ambrosio LA. Eliminating blowing-ups and evanescent waves
when using the finite series technique in evaluating beam shape coefficients
for some T-matrix approaches with the example of Gaussian beams. J Quant
Spectrosc Radative Transf 2025;330(109212).

[19] Votto LFM, Gouesbet G, Ambrosio LA. A framework for the finite series method
of the generalized Lorenz-Mie theory and its application to freely propagating
Laguerre-Gaussian beams. J Quant Spectrosc Radiat Transfer 2023;309:108706.

[20] Gouesbet G, Gréhan G, Maheu B. Expressions to compute the coefficients
g in the generalized Lorenz-Mie theory, using finite series. J Opt (Paris)
1988;19,1:35-48.


http://refhub.elsevier.com/S0022-4073(25)00113-X/sb1
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb1
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb1
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb1
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb1
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb2
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb2
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb2
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb3
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb3
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb3
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb4
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb4
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb4
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb4
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb4
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb5
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb5
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb5
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb5
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb5
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb6
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb6
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb6
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb6
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb6
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb7
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb7
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb7
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb8
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb8
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb8
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb8
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb8
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb9
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb9
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb9
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb9
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb9
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb10
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb10
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb10
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb10
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb10
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb11
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb11
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb11
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb11
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb11
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb11
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb11
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb12
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb12
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb12
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb12
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb12
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb13
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb13
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb13
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb13
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb13
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb14
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb14
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb14
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb14
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb14
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb15
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb15
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb15
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb15
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb15
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb16
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb16
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb16
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb16
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb16
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb17
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb17
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb17
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb18
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb18
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb18
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb18
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb18
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb18
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb18
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb19
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb19
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb19
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb19
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb19
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb20
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb20
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb20
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb20
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb20

G. Gouesbet et al.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Gouesbet G, Gréhan G, Maheu B. Computations of the g, coefficients in
the generalized Lorenz-Mie theory using three different methods. Appl Opt
1988;27,23:4874-83.

Khaled EEM, Hill SC, Barber PW. Scattered and internal intensity of a sphere
illuminated with a Gaussian beam. IEEE Trans Antennas and Propagation
1993;41,3:295-303.

Gouesbet G, Lock JA, Han Y, Wang J. Efficient computation of arbitrary beam
scattering on a sphere: Comments and rebuttal, with a review on the angular
spectrum decomposition. J Quant Spectrosc Radiat Transfer 2021;276:107913.
Doicu A, Wriedt T. Computation of the beam shape coefficients in the generalized
Lorenz-Mie theory by using the translational addition theorem for spherical
vector wave functions. Appl Opt 1997;36,13:2971-8.

Shen J, Liu J, Liu Z, Yu H. Angular spectrum decomposition method and the
quadrature method in the generalized Lorenz-Mie theory for evaluating the beam
shape coefficients of TEMO01* doughnut beam. Opt Commun 2022;515:128224.
Shen J, Wang Y, Yu H, Ambrosio LA, Gouesbet G. Angular spectrum represen-
tation of the Bessel-Gauss beam and its approximation: A comparison with the
localized approximation. J Quant Spectrosc Radiat Transfer 2022;284:108167.
Shen J, Liu J, Wang Y, Liu Z, Yu H. Cylindrical wave spectrum decomposition
method for evaluating the expansion coefficients of the shaped beam in spherical
coordinates. J Quant Spectrosc Radiat Transfer 2022;283:108138.

Shen J, Yu H. Radial quadrature method for evaluating the beam shape
coefficients in spherical coordinates. J Quant Spectrosc Radiat Transfer
2023;305:108627.

Lin J, Zhong S, Shen J. Equivalence between radial quadrature and finite
series for spherical wave expansion of Bessel beams. J Opt Soc Amer A
2023;40(6):1201-7.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Journal of Quantitative Spectroscopy and Radiative Transfer 340 (2025) 109451

Tang S, Shen J, Gouesbet G, Ambrosio LA. On radial quadrature method applied
to spherical wave expansion of Gaussian beams. J Quant Spectrosc Radiat
Transfer 2025;332(109290).

Gouesbet G, Ambrosio LA. Rigorous justification of a localized approxi-
mation to encode on-axis Gaussian acoustical waves. J Acoust Soc Am
2023;154(2):1062-72.

Gouesbet G, Ambrosio LA. Description of acoustical Gaussian beams from
the electromagnetic Davis scheme of approximations and the on-axis localized
approximation. J Acoust Soc Am 2024;155(2):1583-92.

Ambrosio LA, Gouesbet G. A localized approximation approach for the calcula-
tion of beam shape coefficients of acoustic and ultrasonic Bessel beams. Acta
Acust 2024;8(26):1-13.

Gouesbet G, Ambrosio LA. Rigorous justification of a localized approximation to
encode off-axis Gaussian acoustical beams. J Acoust Soc Am 2024;156(1).
Ambrosio LA, Gouesbet G. Finite series approach for the calculation of beam
shape coefficients in ultrasonic and other acoustic scattering. J Sound Vib
2024;585:118461.

Gouesbet G, Ambrosio LA, Shen J. On a relationship between acoustical (more
generally scalar) beam shape coefficients and electromagnetic beam shape
coefficients of some T-matrix theories for structured beams. J Quant Spectrosc
Radiat Transfer 2025;333(109329).

Shen J, Zhong S, Lin J. Formulation of beam shape coefficients based on
spherical expansion of the scalar function. J Quant Spectrosc Radiat Transfer
2023;309:108705.

Robin L. Fonctions sphériques de Legendre et fonctions sphéroidales, vol. 1, 2,
3, Gauthier-Villars, Paris; 1957.

Arfken, Weber, Harris. Mathematical Methods for Physicists. 7th ed.. Elsevier
Science Publishing; 2012.


http://refhub.elsevier.com/S0022-4073(25)00113-X/sb21
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb21
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb21
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb21
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb21
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb22
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb22
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb22
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb22
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb22
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb23
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb23
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb23
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb23
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb23
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb24
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb24
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb24
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb24
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb24
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb25
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb25
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb25
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb25
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb25
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb26
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb26
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb26
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb26
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb26
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb27
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb27
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb27
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb27
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb27
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb28
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb28
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb28
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb28
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb28
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb29
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb29
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb29
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb29
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb29
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb30
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb30
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb30
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb30
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb30
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb31
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb31
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb31
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb31
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb31
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb32
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb32
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb32
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb32
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb32
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb33
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb33
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb33
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb33
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb33
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb34
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb34
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb34
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb35
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb35
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb35
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb35
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb35
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb36
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb36
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb36
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb36
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb36
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb36
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb36
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb37
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb37
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb37
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb37
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb37
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb38
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb38
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb38
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb39
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb39
http://refhub.elsevier.com/S0022-4073(25)00113-X/sb39

	New relationships relating acoustical and electromagnetic beam shape coefficients
	Introduction
	Original VP1 expressions
	Transverse electric BSCs
	Transverse magnetic BSCs

	Unified and simplified expressions
	TE-BSCs, (n-m) even
	TE-BSCs, (n-m) odd
	TM-BSCs, (n-m) even
	TM-BSCs, (n-m) odd

	A possible alternative approach
	Summary and discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


