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Abstract. Fairness in machine learning refers to the development of models that
do not systematically disadvantage individuals or groups based on sensitive at-
tributes. One commonly adopted principle is fairness through unawareness,
which holds that models should not explicitly incorporate sensitive attributes
into the decision-making process. However, in some scenarios, such as health-
care, variables like sex and age are essential for accurate diagnoses and prog-
noses. Previous studies have assessed the influence of including or excluding
such information during model training. Nonetheless, they have not consid-
ered Adversarial Debiasing, a classification algorithm specifically designed to
promote equitable results. To address this gap, we propose a comprehensive em-
pirical analysis to investigate the role of sensitive attributes in this algorithm.
We experimentally evaluated Adversarial Debiasing across 20 settings using 23
datasets from varying domains, one predictive performance metric, three group
fairness metrics, and a non-parametric statistical test. Our findings indicate
that classifiers trained without including sensitive information in the input fea-
ture set produce more precise and fairer outcomes.

1. Introduction
In recent years, it has become publicly acknowledged that machine learning models
can make undesirable decisions from a societal perspective [Mavrogiorgos et al. 2024,
Minatel et al. 2023b]. In response, researchers have proposed bias mitigation methods
and adapted the learning process to incorporate fairness notions in order to address this
concern [Minatel et al. 2025b, Minatel et al. 2023c, Zhang et al. 2018, Hardt et al. 2016,
Kamiran and Calders 2012]. These efforts are essential for developing more impartial
models, especially when they are trained on social data, where automated decisions
may contribute to the spread of discrimination, inequality, misinformation, and defama-
tion [Caton and Haas 2024, Barocas et al. 2023, Mehrabi et al. 2021].

One commonly adopted notion in the literature is fairness through unaware-
ness [Grgic-Hlaca et al. 2016], which holds that a model should learn without incorpo-
rating sensitive information about individuals, such as race, gender, or age. This ap-
proach aims to prevent direct discrimination, since using such information may lead to



treating people with common traits adversely. However, avoiding direct discrimination
does not guarantee the elimination of indirect discrimination [Žliobaitė and Custers 2016,
Kamiran et al. 2010], also known as adverse impact, which may arise when model out-
comes consistently disadvantage members of certain subpopulations.

Training models with sensitive attributes is justifiable in certain situations to avoid
or mitigate adverse impacts. A well-known example is healthcare applications, where in-
formation such as age and sex is essential for accurate patient assessment [DSIT 2023].
Another example emerges in the criminal justice domain, where women have a signif-
icantly lower likelihood of recidivism than men [Corbett-Davies et al. 2023]. In such
cases, it is important to consider the legal implications of utilizing these attributes in the
country where the solution will be deployed [Zafar et al. 2017].

In legally regulated contexts, an open question remains as to whether the main
fairness-aware methods proposed in the literature yield more accurate and fairer models
with or without access to sensitive information. One of the most widely recognized al-
gorithms for promoting group fairness (i.e., the principle that individuals from different
sociodemographic groups should receive similar outcomes) in classification tasks is Ad-
versarial Debiasing [Zhang et al. 2018], which employs adversarial learning to produce
outcomes invariant to the subpopulations represented in a given application. This algo-
rithm has demonstrated strong performance in predictive accuracy and fairness metrics,
especially in the healthcare domain [Zheng et al. 2025, Yang et al. 2023].

Previous studies have examined the role of sensitive attributes in building fairer
models and argue that such attributes may be necessary depending on the characteristics
of the data to achieve fair outcomes [Haeri and Zweig 2020, Žliobaitė and Custers 2016].
However, these studies often overlook the potential of fairness-aware algorithms, such
as Adversarial Debiasing, to overcome inherent data limitations in developing more im-
partial classifiers. To the best of our knowledge, the literature still lacks comprehensive
investigations into the influence of including or excluding sensitive attributes from the
input feature set when training classifiers with Adversarial Debiasing.

Motivated by this gap, we present a comprehensive empirical analysis of the role
of sensitive attributes in training classifiers using the Adversarial Debiasing algorithm.
The contributions of this paper are threefold: (i) it investigates the impact of sensitive at-
tributes on a fairness-aware algorithm; (ii) introduces an experimental protocol to evaluate
the outcomes of classifiers trained with and without sensitive attributes; and (iii) conducts
a robust empirical study across 23 datasets from diverse domains, such as healthcare,
finance, and demographics.

Our findings suggest that not providing sensitive information as input to the
decision-making process of classifiers trained employing Adversarial Debiasing leads to
fairer and more accurate outcomes. With this study, we aim to enhance the understand-
ing of the role of sensitive attributes in Adversarial Debiasing—more specifically, their
inclusion in the input feature set—to foster further discussion in this research area and to
support researchers and practitioners in developing fairer machine learning solutions.

2. Related Work
Group fairness analysis evaluates model behavior concerning the different subpopulations
defined by sensitive attributes, also known as protected attributes. The literature typically



categorizes the subpopulations into two groups: privileged and unprivileged. This type of
analysis does not depend on whether the model was trained using these attributes; it only
requires that such information be available during model induction [Barocas et al. 2023,
Mehrabi et al. 2021].

The main fairness notions associated with this type of analysis are demographic
parity, equal opportunity, and equalized odds [Caton and Haas 2024, Hardt et al. 2016,
Dwork et al. 2012]. Achieving these notions requires attaining parity in outcomes be-
tween privileged and unprivileged groups based on the performance metric associated
with each definition. For instance, equal opportunity demands that both groups have the
same recall score. Since achieving perfect parity is often a challenge in practice, we con-
vert these notions into measurable metrics by computing either the difference or the ratio
between the groups’ scores [Barocas et al. 2023].

These metrics help measure the effectiveness of incorporating the notion of fair-
ness through unawareness into the learning process. As previously discussed, specific
legal frameworks support this concept and prohibit the use of sensitive data in auto-
mated decision-making, leading to the development of approaches that exclude such at-
tributes throughout the training process [Zhao et al. 2022]. However, some studies take
the opposite stance and argue that these attributes should be employed during model train-
ing [Haeri and Zweig 2020, Žliobaitė and Custers 2016].

In [Žliobaitė and Custers 2016], the authors contend that sensitive attributes are
necessary for building fairer regression models but should not be used after training—
that is, the sensitive attribute should not serve as input to the model. They also dis-
cuss the regulatory conflict between restrictions on collecting and employing sensitive
data and the fact that such information can lead to fairer regressors. In the same direc-
tion, [Haeri and Zweig 2020] starts from the premise that machines behave differently
from humans and that fairness cannot be guaranteed simply by ignoring sensitive at-
tributes. In certain scenarios, they demonstrate that incorporating these attributes during
training leads to fairer classifiers and propose applying the Kolmogorov-Smirnov test to
identify such cases, which occur when the data distribution varies across the groups.

These publications evaluated traditional classification algorithms, such as Random
Forest or Multi-layer Perceptron, on a minimal set of benchmark datasets. However, they
did not consider Adversarial Debiasing [Zhang et al. 2018], one of the most widely used
fairness-aware algorithms for classification. Other studies have conducted experimental
evaluations that investigated Adversarial Debiasing. One found that cross-validation with
stratification by class and group helps identify hyperparameter values that lead to fairer
classifiers [Minatel et al. 2025a, Minatel et al. 2023a]. Another showed that balancing
the distribution of sensitive attributes is more effective for enabling adversarial learning
to achieve fairness objectives [Beutel et al. 2017].

Our work differs from these studies by providing a robust evaluation of how in-
cluding or excluding sensitive information from the input feature set affects Adversarial
Debiasing, following the methodology detailed in Section 4. We consider over twenty
datasets, along with predictive performance and multiple group fairness measures to as-
sess this fairness-aware algorithm explicitly designed to promote less biased outcomes
across groups.



3. Adversarial Debiasing
Adversarial Debiasing leverages adversarial learning to build fairer classifiers. This clas-
sification algorithm is trained on the tuple (X, Y, Z) to induce the classifier Ŷ = f(X),
where X is the feature matrix, Y represents the ground-truth labels, and Z corresponds
to the protected attributes. As portrayed in Figure 1, the architecture of Adversarial De-
biasing consists of two neural networks: the predictor and the adversary. The predictor
learns to predict Y given X , and its output layer serves as the input to the adversary
network. The adversary then attempts to predict Z, namely the value of the protected
attribute associated with the given instance [Zhang et al. 2018].

Predictor Adversaryŷ ẑx

Figure 1. Simplified architecture of Adversarial Debiasing.

This formulation aims to optimize the predictor’s ability to predict Y while min-
imizing the adversary’s ability to predict Z. In doing so, the classifier learns to produce
outputs invariant to the group associated with the protected attributes. Adversarial De-
biasing can be applied to optimize fairness notions such as demographic parity, equal
opportunity, and equalized odds. The definition presented in this section, illustrated in
Figure 1, describes the Adversarial Debiasing approach for enforcing demographic par-
ity. To apply other fairness definitions, the adversary must receive additional information.
For instance, in the case of equalized odds, the adversary must be given both the predicted
label Ŷ and the actual label Y . Although the adversary accesses the protected attributes
during the training step, the user decides whether or not to include these attributes in X .

4. Methodology
In this section, we present the methodology adopted in this study. We detail the experi-
mental protocol conceived to evaluate the impact of including or excluding sensitive at-
tributes from the input feature set during model training. We also describe the benchmark
datasets, the evaluation metrics, and the rationale behind our experimental design.

4.1. Proposed Experimental Protocol

The primary goal of this study was to assess the effect of including protected attributes Z
in the input feature set X during the training of models using the Adversarial Debiasing
algorithm. For this purpose, we designed a novel experimental protocol, as displayed in
Figure 2. In the initial step, we created two distinct versions of each preprocessed dataset:
one where the protected attributes were retained in the input feature set (Z ⊆ X), and
another where they were excluded (Z ̸⊆ X). Section 4.2 details the datasets and the
protected attributes considered in this investigation.

For each dataset version, we performed a five-fold cross-validation stratified by
both group and class, as suggested by [Minatel et al. 2025a], to reduce evaluation bias.
We opted for five folds due to the limited number of examples in some of the selected
datasets. Additionally, we ensured that the folds used in the versions with and without the
protected attributes from the same original dataset contained the same examples. Within
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Figure 2. Overview of the experimental protocol proposed. First, we generated
two versions of a dataset: one preserving the protected attributes and an-
other excluding them. Next, we applied Adversarial Debiasing with diverse
settings for both versions. Finally, we compared the performance of the
resulting models to assess the impact of protected attributes in inducing
fairer classifiers.

each fold, we trained twenty classifiers using the Adversarial Debiasing algorithm. To ob-
tain these models, we varied the number of training epochs from 50 to 240 in increments
of 10. All other hyperparameters—including the number of hidden units in the classi-
fier, batch size, and adversary loss weight—followed the default settings provided by the
AIF360 Python library1. Although tuning these hyperparameters for each dataset could
improve performance, we kept them fixed across all experiments to ensure a consistent
comparison. This choice also reduces computational costs and promotes reproducibility
by limiting variability in the experimental setup.

After training the models, we evaluated them using predictive performance met-
rics and group fairness measures, as described in Section 4.3. The reported scores cor-
respond to the average across the five iterations of the cross-validation procedure. We
compared the mean results between classifiers built with and without the inclusion of
protected attributes. Finally, we applied the Wilcoxon signed-rank test, a non-parametric
method for comparing paired samples, to assess whether the observed differences were
statistically significant.

We implemented the source code in Python employing the following libraries:
Pandas (dataset loading and data manipulation), Scikit-learn (cross-validation and pre-
dictive performance metrics), AIF360 (Adversarial Debiasing and group fairness met-
rics), and SciPy (Wilcoxon signed-rank test). The complete source code is avail-
able in the following public repository: https://github.com/diegominatel/
assessing-role-sensitive-attributes.

4.2. Datasets with Sensitive Attributes
We selected 23 benchmark datasets from various domains commonly used for fairness
evaluation in the machine learning research community. Table 1 summarizes their main
characteristics, including the number of instances (#I), the number of attributes (#A),
the protected attribute (#PA), the unprivileged group (#UG), the proportion of instances
belonging to the positive class (#PPC), and the proportion of instances belonging to the
unprivileged group (#PUG).

1Documentation available at https://aif360.readthedocs.io/en/stable/modules/
generated/aif360.sklearn.inprocessing.AdversarialDebiasing.html.

https://github.com/diegominatel/assessing-role-sensitive-attributes
https://github.com/diegominatel/assessing-role-sensitive-attributes
https://aif360.readthedocs.io/en/stable/modules/generated/aif360.sklearn.inprocessing.AdversarialDebiasing.html
https://aif360.readthedocs.io/en/stable/modules/generated/aif360.sklearn.inprocessing.AdversarialDebiasing.html


Table 1. Characteristics of the benchmark datasets evaluated.

Dataset #I #A #PA #UG #PPC #PUG Reference

Alcohol 1,885 11 Ethnicity Non-White 98.19% 8.75% [Kelly et al. 2017]
Amphet 1,885 11 Ethnicity Non-White 48.22% 8.75% [Kelly et al. 2017]
Arrhythmia 452 278 Sex Female 43.57% 55.95% [Kelly et al. 2017]
Bank Marketing 45,211 42 Age Under 25 11.69% 2.95% [Kelly et al. 2017]
Cannabis 1,885 11 Ethnicity Non-White 78.09% 8.75% [Kelly et al. 2017]
Census Income 48,842 76 Race and Sex Non-White or Female 24.90% 37.35% [Kelly et al. 2017]
Coke 1,885 11 Ethnicity Non-White 55.06% 8.75% [Kelly et al. 2017]
Contraceptive 1,473 10 Religion Islam 55.48% 86.22% [Kelly et al. 2017]
Crack 1,885 11 Ethnicity Non-White 13.68% 8.75% [Kelly et al. 2017]
Credit Card 30,000 24 Sex Female 22.12% 60.37% [Kelly et al. 2017]
Diabetes 45,715 50 Gender Female 24.21% 54.73% [Kelly et al. 2017]
Dutch Census 60,420 12 Sex Female 47.60% 50.10% [Van der Laan 2001]
Ecstasy 1,885 11 Ethnicity Non-White 45.83% 8.75% [Kelly et al. 2017]
German Credit 1,000 36 Sex Female 70.00% 31.00% [Kelly et al. 2017]
Heart 383 13 Age Non-Middle-Aged 46.12% 41.41% [Kelly et al. 2017]
Heroin 1,885 11 Ethnicity Non-White 14.85% 8.75% [Kelly et al. 2017]
LSD 1,885 11 Ethnicity Non-White 43.28% 8.75% [Kelly et al. 2017]
Nicotine 1,885 11 Ethnicity Non-White 77.29% 8.75% [Kelly et al. 2017]
Recid. Female 1,395 176 Race Non-White 37.32% 53.36% [Larson et al. 2016]
Recid. Male 5,819 375 Race Non-White 49.69% 62.04% [Larson et al. 2016]
Ricci 118 6 Race Non-White 47.45% 42.37% [Feldman et al. 2015]
Student 480 46 Sex Female 73.84% 36.61% [Amrieh et al. 2015]
Titanic 1,309 6 Sex Male 40.07% 61.84% [Vanschoren et al. 2014]

Alcohol, Amphet, Cannabis, Coke, Crack, Ecstasy, Heroin, LSD, and Nicotine are
subsets of the Drug Consumption dataset, which contains survey responses on legal and
illegal drug use. Each subset defines a different target variable, indicating the consump-
tion or non-consumption of the corresponding drug. We split the Recidivism dataset into
two subsets: one containing male instances and the other containing female instances.
We binarized the target classes in Arrhythmia (presence vs. absence of cardiac arrhyth-
mia), Contraceptive (use vs. non-use of contraceptive methods), and Student (low vs.
medium-high academic performance). All datasets underwent preprocessing, which in-
cluded one-hot encoding of categorical features and standardization. For the Credit Card,
Diabetes, Dutch Census, and Ricci datasets, we adopted the preprocessing procedures
suggested in [Le Quy et al. 2022].

4.3. Evaluation Metrics

The evaluation metrics defined in the experimental protocol are macro-averaged F1-score
for predictive performance (due to the class imbalance in the datasets) and demographic
parity, equalized odds, and equal opportunity for group fairness analysis. Table 2 presents
the details of each of these metrics.

Table 2. Description of the evaluation metrics.

Acronym Description Range value Ideal value

Macro F1-Score Macro-averaged F1-score [0, 1] 1
RDP Ratio of scores relative to demographic parity [0, 1] 1
REO Ratio of scores relative to equal opportunity [0, 1] 1
RDO Ratio of scores relative to equalized odds [0, 1] 1

Previously, we discussed in Section 2 the need to transform group fairness notions
into measurable metrics. For this purpose, we compute the ratio between the scores of the



privileged and unprivileged groups for the performance measures associated with these
notions, which we refer to as RDP, REO, and RDO, as shown in Table 2. The computation
of RDP, REO, and RDO is defined by Equations 1, 2, and 3, respectively, where the
subscripted terms (e.g., Recallpg and Recallug) denote the scores obtained for examples
belonging to the privileged (PG) and unprivileged (UG) groups. In these equations, FPR
stands for false positive rate, and PPR refers to the predicted positive rate.

RDP =
min(PPRPG,PPRUG)

max(PPRPG,PPRUG)
(1)

REO =
min(RecallPG,RecallUG)

max(RecallPG,RecallUG)
(2)

RDO =
min(RecallPG+FPRPG

2
, RecallUG+FPRUG

2
)

max(RecallPG+FPRPG
2

, RecallUG+FPRUG
2

)
(3)

We placed the higher value in the denominator to ensure each score lies between
0 and 1. This normalization allowed us to assess how close the classifier was to the ideal
value of 1 for each fairness concept, regardless of which group was favored or disadvan-
taged. By doing so, we treated disparities symmetrically, focusing on the magnitude of
unfairness rather than its direction. For instance, consider the REO metric: if RecallUG

= 0.60 and RecallPG = 0.75, then REO = min(0.75, 0.60)
max(0.75, 0.60) =

0.60
0.75

= 0.80.

5. Results and Discussion
In this section, we present and discuss the results obtained according to the experimen-
tal setup described in Section 4, which aims to evaluate the influence of using sensitive
attributes in the induction of classifiers through the Adversarial Debiasing algorithm.

Table 3 presents the average scores for the Macro F1-Score, RDP, REO, and RDO
metrics obtained from training 20 classifiers per dataset on both versions with and without
the protected attributes. Bold values highlight the highest average score for each dataset-
metric pair. We omitted standard deviations, as they did not differ substantially between
the classifiers generated from these two versions.

As shown in Table 3, excluding sensitive attributes from the feature matrix yields
higher average scores across all metrics for most datasets, with ‘Without’ outperforming
‘With’ in at least 17 datasets for each of these measures. These results are most significant
for RDO, where models trained without sensitive attributes achieved the best results in 20
of the 23 datasets. Notably, the overall averages for RDP, REO, and RDO increase by at
least 14 percentage points with sensitive attributes compared to those without, whereas
the improvement in Macro F1-Score is eight percentage points.

We highlight three specific cases. The first is Arrhythmia, the only dataset in
which ‘With’ outperformed ‘Without’ across all metrics, with a notable improvement of
nearly seven percentage points in REO. The second is Alcohol, where ‘Without’ achieved
scores near the ideal across all four metrics, while ‘With’ resulted in a drop of over fifty
percentage points in those same indicators. The third involves the Bank Marketing, Cen-
sus Income, and Recidivism Female datasets, where using sensitive attributes led to better



Table 3. Average scores for the Macro F1-Score, RDP, REO, and RDO.

Dataset Macro F1-Score RDP REO RDO
Without With Without With Without With Without With

Alcohol 0.9607 0.4348 0.9985 0.4022 0.9984 0.4012 0.9992 0.4362
Amphet 0.8563 0.8035 0.7928 0.4232 0.8228 0.4675 0.7420 0.3874
Arrhythmia 0.8881 0.8968 0.6043 0.6433 0.7673 0.8350 0.6486 0.6866
Bank Marketing 0.7895 0.7752 0.7050 0.6900 0.6446 0.7391 0.6405 0.6900
Cannabis 0.9067 0.8206 0.8754 0.6263 0.9596 0.6752 0.8382 0.5193
Census Income 0.9823 0.9189 0.3427 0.7945 0.8654 0.6678 0.5803 0.6927
Coke 0.8991 0.8376 0.7644 0.6156 0.7849 0.5990 0.7640 0.5441
Contraceptive 0.9494 0.8871 0.8251 0.6915 0.9221 0.7533 0.8776 0.6903
Crack 0.8512 0.7994 0.3304 0.1839 0.1278 0.1600 0.2088 0.1210
Credit Card 0.9911 0.9852 0.8454 0.8431 0.9601 0.9394 0.8983 0.8787
Diabetes 0.9855 0.9924 0.7674 0.6195 0.6723 0.5396 0.6922 0.5917
Dutch Census 0.9724 0.9654 0.6441 0.5615 0.9599 0.9695 0.9046 0.7549
Ecstasy 0.8312 0.7423 0.8029 0.2844 0.7760 0.3013 0.6414 0.2479
German Credit 0.9456 0.9397 0.8644 0.8599 0.8913 0.8844 0.8302 0.8196
Heart 0.8890 0.8749 0.6612 0.7412 0.8589 0.8454 0.6671 0.6579
Heroin 0.8132 0.7727 0.5554 0.1763 0.3283 0.1316 0.3287 0.0929
LSD 0.9195 0.9037 0.7115 0.5610 0.7922 0.6881 0.7257 0.5746
Nicotine 0.8863 0.8092 0.9363 0.5000 0.9663 0.5388 0.9212 0.4534
Recidivism Female 0.9012 0.8870 0.8196 0.8269 0.8265 0.8273 0.7917 0.7826
Recidivism Male 0.9550 0.9687 0.6948 0.6810 0.7851 0.7786 0.7430 0.7259
Ricci 0.7436 0.2923 0.5907 0.3789 0.6833 0.5476 0.4750 0.3166
Student 0.8122 0.8430 0.6746 0.6765 0.7831 0.7947 0.5801 0.5322
Titanic 0.8371 0.5538 0.6255 0.3552 0.8156 0.2970 0.6239 0.2288
Average 0.8942 0.8132 0.7145 0.5711 0.7823 0.6253 0.7010 0.5402

scores in two metrics, while excluding them yielded higher scores in two others. In such
scenarios, it is difficult to determine which approach is preferable, as the choice depends
on the target application’s specific fairness and performance priorities.

Figure 3 shows a heatmap where rows represent datasets, and columns denote
evaluation metrics. The color of each cell reflects the result of ‘Without’ − ‘With’, with
green indicating positive differences and red indicating negative ones. The color inten-
sity is proportional to the magnitude of the difference. Each cell also includes one of
three symbols (‘↑’, ‘↓’, ‘≃’) to indicate the outcome of the Wilcoxon signed-rank test
at a 5% significance level. The symbol ‘↑’ denotes a statistically significant difference
favoring ‘Without’; ‘↓’ indicates a significant difference favoring ‘With’; and ‘≃’ means
no statistically significant difference was found between these results.

The results of the Wilcoxon test, which performs pairwise comparisons, align with
the average scores presented in Table 3, as the colors and symbols in each cell reflect the
same trend in results. In 15 datasets, a statistically significant difference was observed
across all analyzed metrics. Only German Credit showed no statistically significant dif-
ference in any metric, indicating that the sensitive attribute had a minimal impact on this
dataset.

Our experimental results suggest that training classifiers with Adversarial Debi-
asing without including sensitive attributes in the feature matrix tends to produce fairer
outcomes. Thus, we recommend applying Adversarial Debiasing without using sensitive
data as input features, in alignment with the principle of fairness through unawareness.
However, this recommendation should be carefully considered in the healthcare domain,
where results were inconclusive: Diabetes performed better without sensitive attributes,
Arrhythmia with them, and Heart showed similar performance in both cases.
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Figure 3. Heatmap of ‘With’ and ‘Without’ results, where the colors indicate the
value of ‘Without’ minus ‘With’, and the symbols within each cell denote the
outcome of the non-parametric Wilcoxon test. Symbols ‘↑’ and ‘↓’ indicate
a statistically significant difference between the results, with the arrow di-
rection showing the performance trend, while ‘≃’ indicates no statistically
significant difference.

6. Concluding Remarks

This paper presented an in-depth comparative empirical analysis of the Adversarial De-
biasing algorithm, evaluating classifiers trained with and without protected attributes to
assess their impact on predictive performance and group fairness. Our experimental re-
sults indicate that using Adversarial Debiasing without incorporating sensitive informa-
tion leads to fairer models with better predictive power than when these attributes are
included in the feature matrix. However, these findings should be interpreted cautiously
in the healthcare domain, as the results did not exhibit a consistent trend in this area.

In future work, we plan to expand the experimental setup by testing additional hy-
perparameters of the Adversarial Debiasing algorithm, such as the adversary loss weight.
We also intend to compare the best-performing configurations for each dataset, both with
and without protected attributes in the input feature set. This comparison may help iden-
tify which scenario has greater potential for producing fairer classifiers. Additionally,
we aim to incorporate more healthcare datasets to investigate the Adversarial Debiasing
performance in this domain, as well as datasets from other application areas where the
use of protected attributes is applicable and ethically acceptable. Furthermore, we intend
to broaden this analysis to include other fairness-aware methods and algorithms, thereby
deepening our understanding of the role of sensitive attributes in building fairer machine
learning models.
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