AoriEnsoi iy
/ ’&m«% gricngineering

Article
Automatic Filtering of Sugarcane Yield Data

Eudocio Rafael Otavio da Silva *'*, José Paulo Molin

check for
updates

Citation: da Silva, E.R.O.; Molin, J.P,;
Wei, M.C.E,; Canal Filho, R. Automatic
Filtering of Sugarcane Yield Data.
AgriEngineering 2024, 6, 4812-4830.
https://doi.org/10.3390/
agriengineering6040275

Academic Editor: Sotirios K. Goudos

Received: 11 October 2024
Revised: 3 December 2024
Accepted: 11 December 2024
Published: 13 December 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Marcelo Chan Fu Wei © and Ricardo Canal Filho

Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, “Luiz de Queiroz” College of
Agriculture (ESALQ), University of Sao Paulo (USP), Piracicaba 13418-900, Brazil; jpmolin@usp.br (J.P.M.);
marcelochan@usp.br (M.C.EW.); ricardocanal@usp.br (R.C.E.)

* Correspondence: eudocio@usp.br

Abstract: Sugarcane mechanized harvesting generates large volumes of data that are used to monitor
harvesters’ functionalities. The dynamic interaction of the machine-onboard instrumentation—crop
system introduces discrepant and noisy values into the data, requiring outlier detectors to support this
complex and empirical decision. This study proposes an automatic filtering technique for sugarcane
harvesting data to automate the process. A three-step automated filtering algorithm based on a sliding
window was developed and further evaluated with four configurations of the maximum variation
factor f and six SW sizes. The performance of the proposed method was assessed by using artificial
outliers in the datasets with an outlier magnitude (OM) of £0.01 to 1.00. Three case studies with real
crop data were presented to demonstrate the effectiveness of the proposed filter in detecting outliers
of different magnitudes, compared to filtering by another method in the literature. In each dataset, the
proposed filter detected nearly 100% of larger (OM = £1.00 and £0.80) and medium (OM = £0.50)
magnitudes’ outliers, and approximately 26% of smaller outliers (OM = £0.10, +-0.05, and $-0.01).
The proposed algorithm preserved wider ranges of data compared to the comparative method and
presented equivalent results in the identification of regions with different productive potentials of
sugarcane in the field. Therefore, the proposed method retained data that reflect sugarcane yield
variability at the row level and it can be used in practical application scenarios to deal with large
datasets obtained from sugarcane harvesters.
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1. Introduction

Yield maps can be a valuable layer of information for agriculture decision making, en-
abling several precision agriculture (PA) applications. The mechanized harvest and Global
Navigation Satellite System (GNSS) provided the acquisition of large volumes of data, but
discrepant and noisy values became intrinsic of the machinery-onboard instrumentation—
crop system. In agriculture, outliers can indicate not only anomalies in data acquisition,
but also field variability, e.g., spatial variability of attributes [1]. Sugarcane exhibits high
biomass variability at short distances (e.g., at the row level) [2] and understanding its
spatial distribution in the field is necessary for sustainable agricultural production, energy
generation, and the development of public policies [3], as aimed at by the Sustainable
Development Goals (SDGs) established by the United Nations [4].

Sugarcane is cultivated in rows and it is mechanically harvested every one or two
rows [2]. Data acquisition during this operation can present errors, logging discrepant data
into these voluminous datasets due to various factors, such as delays; problems with traffic
control in the sugarcane row, causing misalignment of the harvester; difficulties in the
harvester feeding process due to the terrain; errors in the readings of the sensors onboard
the harvester; stops for machine maintenance in the field; problems with the hardware
and software of the onboard harvester computer; and headland maneuvers, among other
factors [5-7]. Therefore, the harvesters’ generated data needs to be filtered out for later use
in agricultural management, aiming at the elimination of outliers. An outlier is a data point
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that deviates considerably from the other points in the dataset. However, not every outlier
is an error [8]. The decision on which data should be removed is complex and relies on
detection methods, which are hard to implement and have no methodological consensus
among researchers.

In recent years, several studies have been conducted to detect outliers in datasets
derived from onboard harvester computers, primarily aiming to obtain yield maps [2,9-19].
Depending on the proposed approach, the filtering process is based on statistical mod-
els [20-23], distance [24-26], density [27-30], and clustering [31-33], among other methods.
However, filtering relies on knowledge about outliers, such as their occurrence, probability,
and intervals [8,34].

Outliers challenge the agricultural sector because (i) it is necessary to account for
laws governing spatiality when analyzing the spatial structure of a variable (e.g., Tobler’s
Law) and neighborhood matrix criteria (e.g., contiguity) [35]; (ii) they affect the statistical
model assumptions [36]; (iii) there is a lack of a unified strategy for outlier detection [36];
(iv) there is a lack of a true reference about the outlier, meaning a definitive assessment of
outlier detection performance in real field data is often impossible [17,37]; (v) they have
unknown threshold settings, since the data from the field are not previously known and
the limits vary according to the agricultural context; and (vi) most data filtering methods
require user-adjustable input parameters, introducing subjectivity into the process [38]. For
example, the filtering procedure in MapFilter 2.0 software [2] requires the user to enter the
boundary variation parameter in the global and local filtering stages, and requires manual
entry of the spatial dependence value of the variable to be filtered. Therefore, this shows
an opportunity to optimize the procedure for the specificities of sugarcane, proposing the
automation of processes.

It is practical to conceive an outlier detection approach that is free from the influence of
prior knowledge about such measurement discrepancies and suitable for online application.
Thus, the sliding window (SW) algorithm implemented to a statistically based filter is
proposed for filtering out data obtained from sugarcane harvests. The SW is a compu-
tational technique that generates a subset of a data structure, continually updating this
subset, akin to the online algorithm [39,40]. The SW algorithm reduces the use of nested
loops, replacing them with a single loop, minimizing time complexity [41]. Thus, the main
contributions of this research are described in three aspects—(i) variable filter thresholds:
an automated method for filtering out sugarcane harvester data is presented, in which the
upper and lower thresholds are variable in the dataset; (ii) automation: an online algorithm
based on SW is proposed, being computationally optimized for large volumes of data,
and able to detect outlier values without requiring prior knowledge of the dataset; and
(iii) filter performance indicator: artificial outliers were used to evaluate the performance
of the proposed algorithm.

In view of the above, this study aims to (i) propose an automated filtering technique
for sugarcane harvesters’ data based on the sliding window algorithm, focusing on yield;
(ii) evaluate the effects of sliding window size and threshold configuration approaches
on outlier detection performance; and (iii) compare the performance of the proposed
method with other filtering procedures developed for high-density field data, to increase
computational efficiency.

2. Materials and Methods
2.1. Obtaining Sugarcane Harvest Data and the Online Sliding Window Algorithm

The prevalent sugarcane harvesters in the market, and used in this study, cut and
process a single row of sugarcane at a time. Harvest data acquisition in the field occurs
sequentially as the harvester moves along the rows of sugarcane, with these data being
stored in an onboard computer in the frequency of 0.20 Hz. Yield data were obtained
from the commercial sensor system (Solinftec, Aracatuba, Sao Paulo, Brazil) embedded
in the harvesters, along with GNSS receivers. This approach is based on the total weight
of harvested sugarcane in the studied areas, spatially distributed in the field considering
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the hydraulic propulsion variations in the chopping system. A detailed description and
validation of this system can be found in [42].

Each data point acquired (1) is composed of multiple features (p), stored into different
columns. Thus, data acquisition results in a matrix (M) of dimensions n x p. The SW
algorithm will later perform selecting one feature at a time (univariate SW) with selected
SW size. Each data point inside the SW is also called an element. Therefore, if the size of
the SW is equal to five (five elements), for example, this corresponds to the record of five
sugarcane harvesting points obtained in the field and stored in the file, as shown in the
scheme for obtaining SW (Figure 1).
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Figure 1. Scheme for obtaining sliding window (SW) during sugarcane harvesting. Data array
(A), initial window construction (B), window sliding from one subset to next until iteration of full
matrix (C).

2.2. The Filtering-Out Method and the Development of the Sliding Window Algorithm

A window is a subsequence between the i-th and j-th received items, denoted as
WIi, i1 = (X3, Xit1, -+ xj), where i < j, and 7 and j are the items in the sequence of a list.
In the SW model, the window is represented by W[p — w + 1, p], where p is the current
counting point within the window and w is the window size. Whenever a new instance
arrives, the SW is queued in a first-in, first-out (FIFO) data structure, where the oldest one



AgriEngineering 2024, 6

4815

is discarded [38]. Therefore, only a constant amount of recent data is considered for data
mining purposes [43]. The SW algorithm operates based on certain requirements: a matrix
as input; contiguous elements; a window representing a range of elements; a state to be
maintained in this window, in this case being the established setup for data filtering; and
the complete iteration of the matrix.

In this study, the SW algorithm was developed and applied using real matrices, where
during its execution, data are constantly updated within the window, generating subsets of
data to be applied in filtering. The authors of [40] highlight that the sliding window model
can be of two types: count-based and time-based. In this study, the SW was count-based,
meaning it always contained a fixed number of data points, e.g., a fixed number of elements
representing SW size (Figure 2). This allows data to be processed in smaller batches at
a time, reducing the effect of old data on filtering and improving the accuracy of data
estimation [40,44].
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Figure 2. Method of detection and filtering discrepant data using sliding window (SW) algorithm.
Highlighted data in yellow represents SW size equal to five elements.

The SW-based algorithm was implemented in the data filtering method, based on
statistics using the median value of the dataset, to determine the presence of outliers in
data. Values within the upper limit (UL) and lower limit (LL) are considered inliers. Values
above and below UL and LL are considered outliers and they can be removed from the
dataset (Equations (1) and (2)).

Upper limit (UL) = Med; + Med; x f 1)

Lowerlimit (LL) = Med; — Med; x f 2)

where Med; is the median of values inside the SW, and f is the maximum variance factor
accepted for the median.

Four configurations of the maximum variation factor f were investigated to establish a
value of f to unify and automate the proposed data filtering. The smaller the value of f, the
smaller the corresponding interval for the upper and lower limits, and therefore, outlier
detection becomes more sensitive. Thus, the values of the factor f were defined and tested
as 0.30, referred to as approach 1 (Al); 0.40, approach 2 (A2); 0.50, approach 3 (A3); and 0.90,
approach 4 (A4). The proposed approaches were investigated with different configurations
of SW size and limits resulting from the factor f, with SW sizes equal to 10, 20, 30, 50, 100,
and 200.
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The SW sizes were determined based on the length of the sugarcane rows, frequency
of data collection, and harvester movement speed. The lengths of the sugarcane rows
range from 15.54 to 1061.31 m (mean: 429.12 m, dataset 1) and from 8.01 to 720.90 m
(mean: 213.05, dataset 2), which are commonly observed in sugarcane fields. Based on this,
subsets were generated from the SW to include observations within a single row (smaller
SW size) and observations spanning more than one row (larger SW size). Once the SW
size was defined, it remained fixed while sliding through the dataset, as it represents a
counting window (e.g., SW size equal to 10 corresponds to 10 observations). However,
these observations may correspond to different row lengths, as each observation within the
window reflects specific collection characteristics, such as the harvester’s speed and the
time interval for georeferenced data storage.

On average, the following was true: (a) When the harvester’s mean speed was
4.00 kmh™! and the mean data collection interval was 5 s (mean values observed for
datasets 1 and 2), the harvester’s displacement corresponded to SW = 10 — 55.56 m;
SW =20 — 111.10 m; SW =30 — 166.67 m; SW = 50 — 277.78 m; SW = 100 — 555.56 m;
and SW =200 — 1111.10 m. (b) In other scenarios during the same harvest, for example,
with a mean harvester speed of 4.00 km h~! and a data collection interval of 3 s, the dis-
placement corresponded to SW = 10 — 33.33 m; SW =20 — 66.70 m; SW = 30 — 100.00 m;
SW =50 — 166.67 m; SW = 100 — 333.33 m; and SW = 200 — 666.70 m. Thus, the char-
acteristics of the subsets generated by the SW reflect the specific conditions during data
collection by the harvester.

The proposed automated filtering algorithm consists of three steps, represented by
i, ii, and iii (Figure 3). Steps i and iii aim to filter out the data, while step ii aims to detect
outliers with a fixed threshold value.

(a) Step i (input: Raw harvest dataset M, output: Filtered yield column from M,
forwarded to step ii): Automatically, by defining the factor f (0.30, 0.40, 0.50, or 0.90) and
the size of the SW (10, 20, 30, 50, 100, or 200), the “yield” column of the dataset is selected for
filtering. UL and LL values are obtained and vary throughout the algorithm execution, due
to the SW size, factor f, and dataset values within the SW. During the algorithm execution,
the window slides over the data matrix and performs the filtering operation, checking the
data one by one. Each time the window slides over the data matrix, a new UL and LL
are obtained, and the filtering process is performed. Each value (1) is examined to verify
whether it falls within the filtering interval. If it does, it is classified as an inlier and retained
in the dataset (if); if the value is not within the UL and LL, it is considered an outlier and
removed from the dataset (else). If the data are equal to zero (0), it is also considered an
outlier and removed (elif). This operation is completed by iterating over the entire column
of the data matrix. At the end of step i, a filtered dataset is obtained and automatically
inserted into step ii.

(b) Step ii (input: Filtered yield column from step i, output: Filtered yield column from
M, forwarded to step iii): The filtered data from the previous step are transformed into a
data matrix and the “yield” column is submitted for data filtering. The SW size and the
factor f in this step are fixed and do not change under any circumstances, with SW equal
to 200 and the factor f equal to 0.40. This was defined after numerous tests of SW size
and factor f configurations for this second stage (not presented in the study), in which
outliers could be identified in dispersion intervals different from those considered in step i.
In preliminary tests, there were occasional incidences of observations with exceptionally
high yield values for the sugarcane crop after filtering in step i (e.g., yield value equal to
250.00 Mg ha~!). These values remained in the dataset without being detected as outliers
because they were located in a region with high yield values. Even when sliding the
window, these values remained within the intervals considered to be inliers. Therefore,
a larger SW and a relatively tolerant factor f were required, allowing for a larger set of
data to determine the variations in LL and UL and, consequently, the removal of these
observations. Similarly to step i, the conditional structure if, else, and elif occurs as the
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window slides and filters out the dataset. Step ii ends after iterating over the entire data
matrix and the filtered dataset is automatically inserted into step iii.

(c) Step iii (input: Column time from the M filtered in step ii, output: Filtered harvest
dataset M): The data matrix from step ii is inserted into a third filtering step. The “time”
column is selected and filtered. This column refers to the time spent for data acquisition
at a point in the field. The SW size is the same as determined in step i, and the factor f
in this step is fixed and does not change under any circumstances, with f equal to 0.90.
In previous tests, it was found that filtering the “time” variable required a configuration
with a factor f with limit tolerances that only removed extreme values. This was because,
after steps i and ii, fewer observations with anomalous data were expected for this variable.
The conditional structure if and else occurs as the window slides over the data matrix
and filters out the dataset, with reference to the time column. At the end of this step, the
filtered dataset, the filtering execution time (in seconds) and the descriptive statistics of
these filtered data (mean, maximum, and minimum values; coefficient of variation (CV);
standard deviation (SD); skewness and kurtosis), and the sugarcane yield map of the
studied fields are generated as outputs.

Approach 1 (A1) (a) Stepi (b) Step ii (c) Step iii
=030 £=0.40 £=0.90
SW = 10, 20, 30, 50, 100, 200 SW =200 SW = 10, 20, 30, 50, 100, 200
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Input:
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dataset M

UL = Medi + Medi x f
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Figure 3. Structure of proposed filtering algorithm for different approaches, in which different
configurations of sliding window (SW) size and variation factor f were tested. A1, A2, A3, and A4:
approaches 1, 2, 3, and 4; Med;: median of values located within sliding window; f: variation factor
accepted for median; LL: lower limit; UL: upper limit; val: value.
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2.3. Dataset and Case Studies

Two case studies were conducted in commercial sugarcane fields in the northwest
region of the State of Sao Paulo, Brazil. The first dataset originates from sugarcane
fields located in the municipality of Catanduva (21°8'18" S, 48°58'26” W; altitude: 532 m)
(dataset 1—case study 1) and the second dataset is from sugarcane fields in Sao José do Rio
Preto (20°49'13" S, 49°22/47" W; altitude: 510 m) (dataset 2—case study 2) (Figure 4). In
case study 1, the dataset is composed of six areas, in a total of 48.99 ha, while case study 2
is composed of 11 sugarcane areas of 73.43 ha total (Table 1).

@ Dataset 1 P el o

i

o 0 20 40km \\
L1 | \
\.| 6 Fields
]
©® Dataset 2 o

0 55 110km
L1 1

Legend
Sao Paulo, Brazil
Catanduva, SP
M Sao José do Rio Preto, SP
T Harvest data Ll

0 40 80km \. 11 Fields

Figure 4. Geographic locations of datasets 1 (Catanduva, SP) and 2 (Sao José do Rio Preto, SP),
northwest region of the State of Sao Paulo, Brazil.

Table 1. Characterization of sugarcane datasets 1 and 2.

Number of oD Density Mean Yield

Dataset Fields Area (ha) n° Points (Points ha—1) (Mg ha-1)
1 6 48.99 70,120 1431.05 108.80
2 11 73.43 70,446 959.31 51.08

2.4. Validation

To assess the performance of the proposed method, artificial outlier (AO) values
were inserted into the datasets. The performance evaluation was based on the number of
artificial outliers detected, as the number of introduced outliers is known. This method
of filter performance evaluation has been utilized in recent studies, such as [37,45] in
space research, to detect outliers in Two-Line Element sets (TLEs) of objects in Earth’s
orbit. For this purpose, different data points (1) in the sugarcane harvester datasets were
randomly selected, from which AOs were generated. In the selected points, yield values
were subjected to magnitudes of outliers (OMs), with OM = £0.01, £0.05, £0.10, +0.50,
£0.80, and +1.00, representing small (+0.01, £0.05, and £0.10)-, medium (£0.50)-, and
large (£0.80 and £1.00)-magnitude outliers (Equation (3)).

Zo=2Z+ (OM x Z) 3)

where Z is the original value of an element; Z is the value of the artificial outlier; and OM
is the magnitude of the outlier, with £0.01, £0.05, £0.10, £0.50, £0.80, and +£1.00.
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The datasets from case studies 1 and 2 were contaminated with 1776 and 1620 arti-
ficial outlier values, representing approximately 2.50 and 2.30% of the data, respectively.
From this, the performance in detecting AO for different configurations of SW size and
factor f was evaluated. To achieve this, the ratio of AO detected to the total AO inserted
was calculated.

The best-performing configuration of the proposed data filtering method was com-
pared with the Mapfilter 2.0 software [2] to detect AO. Mapfilter 2.0 is a procedure for
filtering out high-density field data, employing the median of the dataset to calculate the
lower and upper limits (global filtering). Also, it includes local filtering, in which the
lower and upper limits are determined from the median of the data located within a radius
band around a point, both in a single direction (anisotropic filter) and in any direction
(isotropic filter). The MapFilter 2.0 parameters used in this study were boundary variation
equal to 30.00% (global filtering), spatial dependence equal to 200.00 m, and boundary
variation corresponding to 30.00% (local filtering). The boundary variation in MapFilter 2.0
is equivalent to the factor f of the SW algorithm.

Descriptive statistics of the proposed method and MapFilter 2.0 were analyzed, such
as mean, maximum, and minimum values; the coefficient of variation; and standard
deviation. The filtered data and the removed outliers were spatialized using the Geographic
Information System (GIS) QGIS v. 3.22.10 [46]. The removed outliers were identified in
terms of the operations of harvesting, displacement, stopping, and maneuvering.

Additionally, using the best-performing configuration of the proposed data filtering
method, a new dataset (dataset 3—Mirassolandia, SP, Brazil, 20°37/01" S, 49°27'50"” W;
number of fields: 5; area: 110.30 ha; raw data: number of points = 83,250;
density = 754.76 points ha~!; mean yield = 78.15 Mg ha—!) was filtered and spatialized to
demonstrate that the proposed method is suitable for filtering sugarcane yield data without
prior knowledge of the dataset. The algorithm development and analyses in this study were
carried out through the JupyterLab virtual environment, using the Python programming
language v. 3.10.5 [47,48]. The study was carried out on a laptop with a Windows operating
system, an Intel Core i5 processor, 8 GB of memory ram, and a solid-state disk (SSD) of
256 GB.

3. Results and Discussion
3.1. Sliding Window Filtering Algorithm Performance

For datasets 1 and 2, the results obtained by the SW filtering algorithm indicated a
reduction in the number of values identified as outliers as the SW size and the factor f
increased (Figure 5). In dataset 1 (Figure 5A), the execution of the three algorithm steps
demanded low processing time, ranging from 25.60 s (A1, SW = 100) to 36.65 s (A4, SW = 50).
These are directly related to the premise of the SW algorithm, which aims to reduce the
operation time [40]. Initial yield data filtering efforts lasted 40.00 min for a single dataset,
prompting automation and optimization [11]. Algorithms improved for large agricultural
databases, especially in sugarcane [2,19], yet full automation remains incomplete.

In dataset 1, the percentage of data removed in the harvesting of this sugarcane field
ranged from 28.19% (A4, SW = 200) to 41.66% (A1, SW = 20). In [19], values ranging among
16.00, 22.00, 31.00, and 40.00% were removed from the datasets of sugarcane harvester yield
monitors, characterized as outliers. Even after filtering, point density can be considered
high, with inlier values above 40,000.00 points, representing approximately 853 points
per hectare.

The analysis of dataset 2 revealed that the algorithm’s execution time for filtering out
the sugarcane yield dataset ranged from 25.21 s (A1, SW = 10) to 50.85 s (A3, SW = 200)
(Figure 5B). These tests were conducted on a laptop equipped with an Intel Core i5 processor,
using Python 3.10.5. Due to the low computational load, the algorithm demonstrated
optimized processing. This indicates that the developed algorithm can be used in practical
application scenarios, capable of handling large datasets, such as those from the mentioned
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case studies: case study 1 with a dataset from the sugarcane harvester yield monitor,
composed of 70,119 observations; and case study 2, with 70,445 observations.
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Figure 5. Averages of the filtered data (outliers and inliers) for the different sliding window sizes in
the proposed approaches (y-axis on the left) and execution times of the proposed filtering algorithm
(y-axis on the right) for dataset 1 (A) and 2 (B). SW: sliding window. A1, A2, A3, and A4: approaches
1,2,3,and 4.

The algorithm demonstrated proficiency in identifying outliers, aligning consistently
with manual assessment, especially concerning yield data that exceed the standard for sug-
arcane production (e.g., values exceeding 300.00 Mg ha~!) and the recording of harvesting
data storage time in the file (e.g., values exceeding 20.00 s). This is relevant considering the
average data acquisition frequency of 0.20 Hz. The outliers in certain intervals coincide
with the trained human perception as outliers, increasing confidence in the automated
filtering performed by the proposed online SW algorithm.

3.2. Performance of Artificial Outliers” Detection

To find the appropriate SW size, the numbers of artificially inserted discrepant values
detected with different SW sizes are depicted in Figure 6, where the detection performance
was assessed for each limit-setting approach (factor f). Additional performance parameters
of AO detection for the factor f and SW size settings are available in the Supplementary
Materials (Tables S1 and S2). In both datasets, approaches A2, A3, and A4 exhibited inferior
performance in detecting artificial outliers compared to approach Al.
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Figure 6. Performance in the detection of artificial outliers (%) by the proposed data filtering under
different approaches and SW sizes for dataset 1 (A) and dataset 2 (B). OM: Outlier magnitude.
AO: Artificial outlier. Al, A2, A3, and A4: Approaches 1,2, 3, and 4.

The number of outliers detected with the same magnitude is dependent on the SW
size. For OM values >=+0.80, most of the AOs were identified with detection performance
close to or equal to 100% in all approaches (A1, A2, A3, and A4). As the OM reduced to
£0.50, the detection performance of AO decreased, especially for approaches A3 and A4,
which detected approximately 74.00 to 78.00% of the outliers. For OM = £0.10, approach
Al presented the best performance in comparison to the others; however, overall, the
performance was lower compared with other OM amplitudes. These results indicate a
variable standard of performance in detecting smaller OM values.

Dataset 2 exhibited a similar pattern to dataset 1. For OM values >=+0.80, almost all
AOs were detected, regardless of the SW size, with detection rates of 98.00 to 100.00%.
For OM = +0.50, inferior performance was observed in approaches A3 and A4, while
approaches Al and A2 stood out as having the best performance.

Analyzing OM values <40.10, a decreased performance for A1l and A2 was observed,
indicating a deterioration for the smallest OM values. The larger the tolerances, the fewer
false positives or false outliers are identified. This occurs because the algorithm tolerates
larger deviations in the SW limits. When comparing performance between approaches,
Al (f = 0.3) demonstrated the best performance, while A4 (f = 0.4) exhibited the greatest
deterioration in performance. This discrepancy can be attributed to the fact that, in approach
A4, the variation factor used to calculate the upper and lower limits resulted in a wider
interval, encompassing both inliers and outliers. As this interval is variable across the
data domain, it underwent expansion along the dataset, leading to a higher incidence of
undetected AO, especially those of smaller magnitude (e.g., OM = 10.10).

Observing approach Al in Figure 6, the increasing SW size up to 100 was accompanied
by a growth in the detection of AO, with a performance reduction for SW equal to 200.
However, for an SW size of 100, the statistics related to sugarcane yield indicated values
that are beyond the standard potential for sugarcane cultivation (dataset 1, maximum yield
value equal to 805.60 Mg ha~!; Table 2).
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Table 2. Descriptive statistics of the yield values obtained by the proposed filtering method by SW
sizes (10, 20, 30, 50, 100, and 200) for the Al approach (f = 0.3).

Mean Min Max
Dataset SW N Mg ha 1 SD CV (%) Asy Kurt
10 41,795 129.89 38.00 259.47 22.74 17.51 0.07 0.02
20 40,907 128.68 39.14 223.77 22.43 17.43 0.03 —0.10
1 30 41,250 128.07 38.76 195.01 22.14 17.29 0.02 —0.09
50 41,771 127.40 23.92 195.01 21.72 17.05 —0.02 —0.08
100 42,032 127.11 21.41 805.60 21.28 16.74 0.78 24.73
200 42,072 126.79 21.41 805.60 20.87 16.46 0.77 26.75
10 40,820 52.25 27.15 83.43 6.63 12.69 0.21 0.06
20 41,886 51.81 21.15 83.43 6.61 12.76 0.20 0.06
5 30 43,676 51.73 21.15 83.43 6.55 12.67 0.18 0.02
50 44,113 51.63 16.91 83.43 6.50 12.59 0.15 0.03
100 44,353 51.60 14.38 80.06 6.46 12.53 0.11 —0.05
200 44,322 51.50 14.38 78.25 6.42 12.46 0.06 —0.06

SW: sliding window; N: data points; min: minimum; max: maximum; SD: standard deviation; CV: coefficient of
variation; asy: asymmetry; kurt: kurtosis.

The values in dataset 1 shown in Table 2 indicate that the filtering did not yield suitable
statistical values for SW = 100 and SW = 200, including higher kurtosis values compared to
SW intervals < 50. For these SW sizes, the number of detected AO was greater in ascending
order of SW =10 < 30 < 50 < 20 for dataset 1. For dataset 2, it exhibited an ascending order
of SW =10 < 20 < 30 < 50. Such a situation, to determine the appropriate SW size, requires
a commitment to determine an SW size that detects the smallest possible number of false
positives and negatives, and for this, choosing one of the configurations corresponding to
one of the points from Figure 6.

It was found that SW sizes equal to 20, 30, and 50 exhibited adequate performance in
identifying AO and statistically coherent values with the reality of the data. An SW size
of 50 stood out for presenting the highest average detection rates of AO across different
magnitudes in both datasets when compared to SW sizes of 20 and 30. Hence, an SW size
of 50 is suggested for filtering out sugarcane harvest data using approach Al.

The proposed method demonstrated a low false positive detection rate, minimizing
the probability of detecting an element as an outlier when it is, in fact, an inlier. Figure 6
demonstrated that, under approach Al and SW = 50, the false positive rates for harvest
data are close to zero for artificial discrepant values with OM > £0.50 and are among the
lowest for discrepant values with OM equal to £0.10, £0.05, and £0.01.

Itis relevant to highlight the inherent complexity in defining a threshold that accurately
identifies discrepant data. The subset generated by the SW makes this threshold site-specific,
comprehending the spatial relationships among them. Overall, the results obtained in
the datasets indicate that approach Al, with SW adjustment limits (variation factor f)
equal to 0.30 and an SW size equal to 50, is the strategy with the best performance in
detecting discrepant values in sugarcane harvest data. Most artificial discrepant values,
with OM > £0.50, can be detected, demonstrating the method’s capability in identifying
true discrepant values.

Additionally, it was found that the proposed method identified and removed from
the dataset records related to the movement of the harvester in the field (Figure 7A).
These data include data about the machine’s movement between plots and in the access
roads. In addition, the algorithm detected and removed data corresponding to the machine
stopping in the field to replace the base cutter blade, corrective maintenance, lack of a
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truck to refuel/unload the harvested sugarcane, and washing and cleaning of equipment
(Figure 7B). The proposed filtering method easily identified data with record times for other
operations greater than harvest record times and with yield values set to zero, since these
were operations in which the machine was not actually harvesting.

(A) Moving (B) Stop (C) Maneuver

X Outlier

Dataset 1

X Outlier

Dataset 2

*

0 75 15km
L1 1

Figure 7. The detection of outliers by the sliding window method proposed for the sugarcane

harvesting data corresponding to the operations of displacement (A), stop (B), and maneuver (C) of
the harvester in the field in datasets 1 and 2.

For the stored data as maneuvers (Figure 7C), there were two sources for the iden-
tification of discrepant data by the proposed filter: yield equal to zero and the time for
maneuvering that exceeded the storage time of actual harvest data (values of up to 60.00 s).
There were data within the field recorded as maneuvering in regions that did not have
tracks for machinery displacement. This is possibly an operational error and these data
were removed as the yield at these points was null.

These types of data generated in sugarcane fields may occur due to (i) fields with long
sugarcane rows without segmentation by crossing tracks for machinery displacement—
reaching harvesting capacity in places far from the roads with unloading/replenishing
points will result in maneuvering in unwanted places [6]; (ii) the presence of very short
row lengths, causing the greatest occurrence of maneuvering data, in addition to being
economically and energetically unprofitable, as verified by [6]; (iii) the need for more route
optimization studies in mechanized sugarcane harvesting [6,49]. All these factors and
characteristics of sugarcane harvesting result in data with peculiarities that need to be
processed using proper filters to generate reliable information on the sugarcane field.
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3.3. Methods’ Performance Comparison

Using the best configuration of the proposed filtering method (approach Al, with SW
adjustment limits (variation factor f) equal to 0.30 and an SW size equal to 50), the filter
results were compared with those generated from MapkFilter 2.0 (Table 3). It was found that
up to the OM > +0.50, the AO detection of the proposed method showed close values, with
a reduction in performance observed at OM equal to +0.50. Below this OM, the proposed
method exhibited performance degradation compared to MapFilter 2.0. While not desired,
this makes sense when considering that the proposed method presents variation in the SW
limits regarding the characterization of an outlier and inlier as the window slides through
the database. Therefore, for datasets 1 and 2, lower magnitude values became more difficult
to detect, as the outlier threshold depends on the subset of data generated in the SW.

Table 3. Artificial outlier detection performance (%) by the proposed filtering method and by
MapFilter 2.0.

Outlier Magnitude
Dataset Method
+0.01 +0.05 +0.10 +0.50 +0.80 +1.00
1 Sliding Window Algorithm 26.35 26.35 27.36 93.24 97.30 97.30
MapFilter 2.0 100.00 100.00 98.65 98.31 100.00 98.99
5 Sliding Window Algorithm 26.30 24.44 21.11 98.15 99.26 99.26
MapFilter 2.0 100.00 100.00 99.26 99.26 100.00 99.63

MapkFilter 2.0 detected 100% of AO of lower magnitude, highlighting its robustness.
However, it was observed that it presented narrower ranges of yield values and lower
variation in limits in the dataset compared to the SW method proposed. This may not be as
favorable for data filtering, as there is a risk of eliminating legitimate data that, although
corresponding to real field data, do not fall within the limits established by the filter. In this
aspect, the proposed method stood out positively as it preserved wider data ranges, thus
allowing the retention of information reflecting the existing variability in the field.

In general, the proposed method captures the dataset variability by preserving the
range of values, encompassing both low and high yield levels. It primarily removes data
points that deviate significantly within the subsets generated at each sliding window step.
Future research should look for methods to enhance the detection of lower-magnitude
outliers by improving the algorithm’s ability to identify errors intrinsically related to
mechanized sugarcane harvesting while reducing the false positive rate. A key challenge
lies in defining thresholds to distinguish outliers when subsets generated by the SW
contain similar value classes, even when some data points are artificially inserted into the
dataset. Positively, the developed algorithm demonstrates impartiality, confirming its lack
of user bias.

In dataset 1, discrepant values of 40.43% were identified by the proposed method
and 43.46% by the comparison method. In dataset 2, the percentages of discrepant values
were 37.38% and 30.95%, respectively. The comparative filtering method removed a greater
number of harvest points for dataset 1, while the proposed method had a greater data
removal for dataset 2 (Table 4). There was a reduction in the standard deviation and
coefficient of variation compared to the raw data, indicating greater consistency in the
filtered data.

In dataset 1, the yield values ranged from 0.00 to 860.16 Mg ha~! in the raw data, from
23.92 to 195.01 Mg ha~! in the data filtered by the proposed method, and from 85.54 to
158.82 Mg ha~! in the data filtered by the comparative method. For dataset 2, the values
were from 0.00 to 233.99 Mg ha~! for the raw data, from 16.91 to 83.43 Mg ha~! for the
data filtered by the proposed method, and from 34.43 to 63.44 Mg ha~! for MapFilter 2.0. Tt
is evident that the proposed SW algorithm preserved a greater range of yield values and
greater data variability in the sugarcane fields compared to MapFilter 2.0, as highlighted
by the higher CV and SD values. This is relevant because sugarcane exhibits high biomass
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variability over short distances [2], indicating that the SW algorithm was able to handle
yield spatial variability in the field at the row level. Despite differences in some statistical
parameters, the filtering methods were equivalent in identifying regions with different
sugarcane yield potentials. Therefore, the proposed method allowed for the retention of
data reflecting the existing yield variability in the sugarcane fields (Figure 8).

Table 4. Descriptive statistics of raw and filtered yield data for datasets 1 and 2.

n Mean Min Max SD CV (%)
Dataset Method
Mg ha-1

Raw Data 70,120 108.80 0.00 860.16 58.02 53.33

1 Sliding Window Algorithm 41,771 127.40 23.92 195.01 21.72 17.05
MapkFilter 2.0 39,645 127.28 85.54 158.82 16.32 12.82

Raw Data 70,446 51.08 0.00 233.99 22.24 55.44

2 Sliding Window Algorithm 44,113 51.63 16.91 83.43 6.50 12.59
MapkFilter 2.0 48,640 51.28 34.43 63.44 5.75 11.21

n: data points; min: minimum; max: maximum; SD: standard deviation.

Like any algorithm, Mapfilter 2.0 and the SW algorithm transform a dataset, the ‘input’,
into an ‘output’ corresponding to the filtered data. Although the ‘output’ of both methods
is similar in terms of data statistics and spatialization into sugarcane yield classes, there are
differences in terms of computational efficiency: (i) the proposed filtering is automated, in
contrast to MapFilter 2.0, which requires the user to input parameters, adding subjectivity
to the filtering process—automation is necessary to optimize time and resources in the
operational processes of agricultural production, with the aim of increasing yield [50]; and
(i) the proposed filter has an optimized processing time, because not only is the algorithm’s
execution time relatively short, but there is also no need to know the sugarcane harvest
database beforehand to manually establish the parameters to carry out the filtering process,
saving time of the data analyst. Dataset 3 demonstrates that, even without prior knowledge
of the dataset, it is possible to filter the data and identify locations with high and low
production potential, capturing the spatial variability within the sugarcane rows (Figure 9).

Another aspect to highlight is the updated subset of data when the window slides
and the direction of the filter. MapFilter 2.0 filters out the data in the direction of the row
(anisotropic filter) and also includes filtering based on neighbors within a given radius,
incorporating the values of neighboring rows in the calculation of the UL and LL thresholds
(isotropic filter). In the proposed filter, the anisotropic phenomenon is highlighted, as
the filtering occurs in the direction of the row. It is known that isotropic phenomena are
relevant to the spatiality of natural phenomena when a single spatial model is sufficient to
describe the spatial variability of the phenomenon under study [51]. However, sugarcane
agricultural management is carried out in rows, where natural and anthropogenic factors,
such as relief and gaps, for example, have an impact on the spatial continuity of the crop
within the row. These factors are, therefore, likely to regulate the spatial structure of
sugarcane yield. The proposed filter considers the data in the direction that have the
maximum continuity of the phenomenon under study, which is the row direction.

Future studies should investigate modeling using geostatistical methods on datasets
filtered by the proposed method and evaluate the spatial structure of yield in the sugarcane
row, such as variogram parameters of the range, sill, and nugget effect. Additionally, the
SW algorithm is set to be tested in the future to filter data from harvesters for other crops.

As in this study, the use of the SW algorithm, combined with the insertion of artificial
data into datasets, has been increasingly explored by researchers. This approach aims to
address issues such as the absence of a true reference for outliers and the need to update
data, enabling the continuous and dynamic capture of a subset of the data that include
the most recent and local information. Various fields of research have applied SW to solve
problems in areas such as meteorology [52], ecology [53], medicine [54], computer sci-
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ence [55], astronomy [37], and others. Thus, this study contributes to advancing knowledge
by integrating these themes into the agricultural context, specifically in PA.
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Figure 8. Filtered yield maps from (A) the proposed sliding window algorithm and (B) Mapfilter
2.0 from dataset 1. Similarly, (D,E) show the results of dataset 2, filtered by the same methods. In
(C/F), the observations of a row of sugarcane from each dataset are plotted, showing similarities in
the observations, with the proposed filtering method capturing more variability in the row.

Two case studies (and an additional dataset) with real data obtained from agricultural
operations in sugarcane fields were conducted. The proposed method for outlier detection
and removal is simple, does not require specialized hardware, and is computationally
optimized for large volumes of data. Furthermore, the approach taken and the filtering
values obtained from the datasets in this study reflect a current debate about the treatment
of data obtained from sensors with high spatial resolution, where an agricultural data
analyst must be attentive not only to the quantity of data obtained in the field, but also

to the quality of these data. All these factors ensure that the proposed approach can be
implemented in other sugarcane harvesting fields.
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Figure 9. Yield maps filtered by the proposed method using the best configuration of the sliding
window algorithm (A1, SW = 50, f = 0.30) for dataset 3. Three rows in field 5 are highlighted,
illustrating the variability within and between them.

4. Conclusions

In this study, an automated algorithm based on a sliding window implemented with a
statistical data filtering method was developed. The following outlier detection strategy is
suggested: (1) in step i, a sliding window size of 50 and a threshold configuration of f equal
to 0.30; (2) in step ii, a sliding window size of 200 and a threshold configuration of f equal
to 0.40; and (3) in step iii, a sliding window size of 50 and a threshold configuration of f
equal to 0.90. When executing the algorithm, all filtering steps are performed automatically,
eliminating the need to manually input values as parameters, thus avoiding subjective
decision making. The proposed filter is capable of detecting nearly 100% of outliers of
larger (OM = £1.00 and +0.80) and medium (OM = £0.50) magnitudes, as expected, and
approximately 26% of small outliers (OM = +0.10, +0.05, and £0.01). The proposed filtering
preserved the widest data intervals and showed equivalent results in identifying regions
with different sugarcane production potentials in the field compared to the MapFilter
2.0 method. Therefore, the proposed method allowed for the retention of data reflecting
the existing variability in the fields and it can be used for filtering harvester data in
sugarcane fields.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriengineering6040275/s1, Table S1: Performance in the detection
of artificial outliers (%) by the proposed data filtering under different approaches (A1, A2, A3, and
A4) and Sliding Window (SW) sizes for dataset 1; Table S2: Performance in the detection of artificial
outliers (%) by the proposed data filtering under different approaches (A1, A2, A3, and A4) and
Sliding Window (SW) sizes for dataset 2.
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