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Abstract

The growing global demand for energy has resulted in a demand for innovative strategies
for residential energy management. This study explores a novel framework—MELISSA
(Modern Energy LLM-IoE Smart Solution for Automation)—that integrates Internet of
Things (IoT) sensor networks with Large Language Models (LLMs) to optimize household
energy consumption through intelligent automation and personalized interactions. The
system combines real-time monitoring, machine learning algorithms for behavioral analy-
sis, and natural language processing to deliver personalized, actionable recommendations
through a conversational interface. A 12-month randomized controlled trial was conducted
with 100 households, which were stratified across four socioeconomic quintiles in metropoli-
tan areas. The experimental design included the continuous collection of IoT data. Baseline
energy consumption was measured and compared with post-intervention usage to assess
system impact. Statistical analyses included k-means clustering, multiple linear regression,
and paired t-tests. The system achieved its intended goal, with a statistically significant
reduction of 5.66% in energy consumption (95% CI: 5.21-6.11%, p < 0.001) relative to base-
line, alongside high user satisfaction (mean = 7.81, SD = 1.24). Clustering analysis (k = 4,
silhouette = 0.68) revealed four distinct energy-consumption profiles. Multiple regression
analysis (R> = 0.68, p < 0.001) identified household size, ambient temperature, and
frequency of user engagement as the principal determinants of consumption. This research
advances the theoretical understanding of human—Al interaction in energy management
and provides robust empirical evidence of the effectiveness of LLM-mediated behavioral
interventions. The findings underscore the potential of conversational Al applications in
smart homes and have practical implications for optimization of residential energy use.

Keywords: internet of things (IoT); large language models (LLMs); residential energy
management; smart energy solutions; energy consumption optimization; machine learning
for energy efficiency; user-centered energy management; smart home automation; energy
consumption patterns; personalized energy recommendations
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1. Introduction

Energy management represents a systematic and strategic approach to monitoring
and controlling energy resources to improve efficiency and promote sustainability. This
research encompasses several key practices, including the accurate measurement of en-
ergy consumption, the implementation of optimized strategies for electricity use, and the
encouragement of the adoption of renewable energy sources. When applied effectively,
energy management not only minimizes adverse environmental impacts but also leads to
significant reductions in operational and household costs [1]. Growing global concern over
climate change and the need to reduce carbon emissions have driven the development of
innovative solutions for optimizing energy consumption across various sectors [2], with
particular attention to the residential sector due to its considerable potential for savings.

Residential electricity consumption represents a substantial share of global energy
demand, accounting for approximately 27% of demand in developed countries [3]. Ur-
banization and the proliferation of electronic devices have driven a 2.3% annual increase
in residential consumption over the past decade [4]. However, many households face
persistent inefficiencies due to suboptimal appliance usage, a lack of control mechanisms,
and the absence of intelligent management tools [5]. Additionally, the complexity of energy
data and the need for technical expertise further hinder the implementation of effective
conservation strategies.

With the growing adoption of ubiquitous and pervasive computing, an unprecedented
opportunity has emerged to fundamentally transform the way energy is used in residential
contexts. Automated systems enable more efficient control of devices, whether through
remote appliance management, automatic adjustments to consumption based on users’
specific needs, or integration with renewable energy sources such as solar panels [6,7]. The
connectivity provided by the IoT has been a key catalyst for this evolution, enabling devices
to communicate with each other and respond to stimuli in real-time, thereby optimizing
electricity use and significantly reducing waste [8]. Empirical studies demonstrate that
households equipped with energy-management systems based on ubiquitous computing
can achieve consumption reductions of between 15% and 30% [9,10], representing not
only substantial financial savings but also a significant contribution to reducing carbon
footprints [11].

Ubiquitous computing, characterized by the seamless integration of technology into
everyday environments, offers unprecedented opportunities for energy monitoring and
control. In these systems, sensors distributed throughout residential spaces continuously
collect data on usage patterns, environmental conditions, and energy consumption, pro-
viding critical inputs for management systems [12]. Real-time data acquisition enables
the identification of inefficient consumption patterns through time-series analysis [13],
early detection of equipment failures via outlier-detection algorithms [14], automatic adap-
tation to environmental conditions and user preferences using reinforcement learning
techniques [15], and continuous optimization through machine learning algorithms with
incremental updates [16]. The integration of these capabilities within a unified framework
marks a substantial evolution from traditional approaches to energy management, which
typically rely on manual intervention and retrospective data analysis.

Within this context, the Internet of Energy (IoE) emerges as a transformative solution
for enhancing energy efficiency and addressing issues related to uncontrolled consumption.
IoE refers to the interconnection of intelligent energy devices within a digital ecosystem,
facilitating comprehensive monitoring and the automation of processes [11,17,18]. The
convergence of smart home technologies with advanced energy-management systems
accelerates the modernization of conventional electrical grids, transforming them into smart
grids that can distribute energy more efficiently and sustainably [19]. This integrated model
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enables bidirectional monitoring of residential energy flows [20-22], automated responses
to grid signals such as price fluctuations or availability [23], seamless integration of multiple
energy sources [24], and predictive optimization based on sophisticated algorithms capable
of anticipating consumption trends and environmental conditions [25]. Implementing
IoE in residential settings fosters the emergence of “prosumers”—individuals who both
consume and produce energy, thus redefining the relationship between households and
the power grid [20,26].

Integrating the Internet of Energy (IoE) with LLMs marks a new paradigm in how
households interact with and control their energy usage. LLMs offer the potential to trans-
form the interpretation of energy data, making insights more accessible and actionable for
end users [27]. These models can efficiently process data generated by smart devices, deliv-
ering personalized recommendations aligned with individual consumption patterns [28].
Instead of requiring users to interpret complex numerical reports, virtual assistants pow-
ered by large language models (LLMs) can provide detailed guidance on reducing waste
and enhancing energy efficiency [27]. This paradigm shift offers a substantially more intu-
itive interface, empowering individuals without specialized technical expertise to easily
understand and act upon energy-management insights [29]. Furthermore, LLMs enable
natural and seamless communication between consumers and energy systems, supporting
real-time responses to queries and personalized strategy recommendations [30].

Despite significant advances in residential energy-management systems and the grow-
ing application of LLMs across various domains, a substantial gap remains in the scientific
literature regarding the effective integration of these technologies to optimize residential
energy consumption [31-33]. However, empirical evidence underscores the effectiveness
of LLM-based interfaces: a controlled study conducted by the University of Oxford found
that households that used LLM-driven systems engaged in 27% more energy-conservation
actions compared to those using traditional control-panel interfaces (n = 150, p < 0.01) [34].
Specifically, there is a lack of empirical studies that quantitatively assess the effectiveness of
LLM-based interfaces for energy management in different socioeconomic contexts, identify
key factors for successful technology implementation, analyze how different consump-
tion profiles respond to recommendations generated by LLMs, and measure the impact
of contextual variables on the effectiveness of these systems [33,35]. This gap is particu-
larly relevant given the heterogeneity of residential energy consumption and the need for
solutions that are adaptable to different socioeconomic realities [36,37].

This study aims to address this gap by proposing and empirically evaluating the
MELISSA framework. Specifically, our objective is to address the following research
questions: (1) What is the effectiveness of an LLM-based energy-management system
in reducing residential energy consumption? (2) How does the system’s effectiveness
vary across different socioeconomic classes and consumption profiles? (3) What are the
main determinants of residential energy consumption, and how can an LLM-based system
address them? (4) How do contextual variables (temperature, occupancy, special events)
affect the system’s performance? By answering these questions, our aim is to contribute to
the advancement of knowledge on intelligent energy-management systems and provide
valuable insights for the development of more effective and inclusive solutions.

The remainder of this article is organized as follows. Section 2 presents a comprehen-
sive literature review on home energy-management systems and the integration of IoT
and LLMs. Section 3 details the methodology adopted for system implementation and
evaluation. Section 4 discusses the empirical results, including consumption reduction,
usage profiles, and determinants. Section 5 provides a critical discussion of the findings,
and Section 6 concludes the study with final remarks and future research directions.
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2. Literature Review

Home Energy-Management Systems (HEMS) represent a significant evolution in
the interface between technology and domestic energy consumption. Historically, the
development of these systems dates back to the 1990s, when the first energy-monitoring
devices began to be implemented in residences, primarily in developed countries, as part of
energy-efficiency initiatives [38]. The evolution of these systems has followed technological
developments, progressing from simple smart meters to complex and interconnected
ecosystems. According to Morales et al. (2022), the evolutionary trajectory of HEMS can be
organized into three distinct generations: basic monitoring systems (1990-2005), automated
control systems (2005-2015), and adaptive intelligent systems (2015—present) [39].

MELISSA belongs to the third generation of HEMS, which is characterized by intelli-
gent, adaptive systems that incorporate machine learning and natural language interfaces.
As shown in Figure 1, these features aim to simplify user interaction and broaden access
to energy efficiency solutions. Given that residential buildings account for nearly 40% of
global energy consumption, with the potential for a reduction of 20-30% through advanced
management, the need for inclusive and scalable solutions has never been more critical [40].
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Figure 1. Schematic representation of HEMS.

Based on the theoretical and technological foundations discussed above, this research
works on the development of the MELISSA (Modern Energy LLM-IoE Smart Solution for
Automation) framework, a Home Energy-Management (HEMS) solution that integrates
the Internet of Things with Broad Language Models. Thus, MELISSA is designed to sig-
nificantly enhance the interaction between individuals asource of generationergy systems,
offering an evidence-based approach to optimizing energy consumption. The design of the
framework was guided by principles of user-centered design, accessibility, and adaptability
to different socioeconomic contexts, aiming to maximize its impact and adoption in diverse
residential environments.

2.1. Integration Between IoT and LLMs: Theoretical Foundations

To operationalize the integration between IoT and LLM technologies, MELISSA em-
ploys a modular two-agent architecture. The first is the Data-Analyst Agent, responsible
for low-level data acquisition, filtering, pattern recognition, and statistical modeling. The
second is the Energy-Management Agent, which incorporates a fine-tuned large language
model (LLM, GPT-3.5, 175B parameters) that serves as a natural language interface be-
tween the system and the user. Together, these components enable real-time analytics and
personalized interaction through a conversational framework.

The integration between IoT and LLMs represents an emerging field with transforma-
tive potential for energy-management systems. This technological convergence is based
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on the complementarity between the real-time data-collection capability provided by IoT
devices and the advanced contextual processing offered by LLMs. As highlighted by
Zhang et al. (2024), this integration allows for overcoming traditional limitations of IoT
systems related to contextual interpretation and communication with users [41].

The IoT-LLM integration architecture, as implemented in MELISSA, is based on the
federated edge computing paradigm, where data processing occurs close to the generation
source, reducing latency and preserving privacy. This architectural model is particu-
larly relevant for residential energy applications, where data sensitivity and real-time
response needs are critical factors [42]. Recent studies demonstrate that implementing
this architecture can reduce the system’s energy consumption by up to 60% compared
to cloud-centralized approaches, an aspect frequently overlooked in the development of
HEMS solutions [43].

MELISSA employs a two-agent architecture that works together to process energy
data and communicate insights to users, as illustrated in Figure 2. The first component,
the Data-Analyst Agent, is responsible for processing raw data collected from IoT devices
in the household. Its main functions include the collection and preprocessing of energy-
consumption data using noise filtering and normalization techniques, the identification
of consumption patterns and anomalies through outlier detection algorithms (DBSCAN,
e = 0.5, MinPts = 5), the condensation of large data volumes into concise summaries
using dimensionality reduction techniques (PCA, explained variance > 95%), comparative
analysis with historical and reference benchmarks through statistical tests (paired ¢-test,
ANOVA), and the generation of energy performance metrics with 95% confidence intervals.
This agent operates continuously in the background, processing real-time data streams and
generating periodic analyses that are stored in a central database for later access.

This design ensures low-latency, privacy-preserving computation while enabling a
seamless flow of contextual information to the LLM for user interaction. The modularity
also supports component upgrades and behavioral feedback loops between analytics and
the recommendation engine.

Data Collection Layer

; i Processed data .
10T D Data CollecLion Dala Analysis Agenl
(Sensors, Smart Meters) J (Query/Update) (Pattern Detection)
(Anaiysis ~
Processing Layer | Storage Layer
v =)
Data Processing
(Normalization, Filtering) Database
(Historical Data
x ) & Analytics)
History
Energy Management Layer
Energy Management Agent
(LLM, Personalization)
J
User Interface Layer
\[Pnieractions)(” B
User User Interface
(Energy Consumer) (Mobile App, Dashboard)

Figure 2. MELISSA architecture overview. The Data-Analyst Agent (left) processes real-time IoT
data and feeds summaries into the Energy-Management Agent (right), which incorporates a large
language model (LLM) to generate natural language recommendations and respond to user queries.
Arrows represent data flow and bidirectional API communication between components.
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2.2. Advanced Techniques for Energy-Data Processing

Efficient processing of energy data represents a significant challenge due to the noisy,
multidimensional, and temporally dependent nature of these data. The techniques imple-
mented in MELISSA reflect the state of the art in this field, combining traditional statistical
approaches with machine learning methods. The application of the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithm with parameters ¢ = 0.5
and MinPts = 5 for anomaly detection represents a methodological choice based on empiri-
cal evidence. Comparative studies demonstrate that this specific configuration offers an
optimal balance between sensitivity and specificity in identifying anomalous patterns in
residential energy data [44].

The use of dimensionality-reduction techniques, such as PCA (Principal Component
Analysis) with an explained variance threshold greater than 95%, allows efficient con-
densation of large data volumes without significant information loss. This approach is
particularly relevant in the energy IoT context, where data dimensionality can increase ex-
ponentially with the number of monitored devices. Recent research indicates that applying
PCA to energy data can reduce storage volumes by up to 70% while maintaining the ability
to reconstruct relevant patterns with greater than 95% precision [45].

The second component, the Energy-Management Agent, integrates a fine-tuned LLM
(GPT-3.5) to interpret analytical results and interact with users. It performs real-time
natural language generation with a response latency below 500 ms, contextualizes energy-
usage patterns, and explains technical concepts in language adapted to the user’s literacy
level, using a classification model to determine the complexity of vocabulary and sentence
structure. The LLM also tracks recommendation adherence and dynamically adjusts the
choice of advised strategies.

The MELISSA framework achieves energy reduction by closing the loop between
continuous data analysis and actionable, user-adapted feedback. The Data-Analyst Agent
identifies inefficiencies in household consumption patterns, such as abnormal spikes dur-
ing off-peak hours, overuse of appliances during warm periods, or inconsistent device
scheduling. It does so using unsupervised learning (k-means for profiling, DBSCAN for
anomalies) and statistical comparisons with historical data and reference benchmarks.
These insights are interpreted by the Energy-Management Agent, which translates them
into targeted, comprehensible recommendations using a fine-tuned LLM. Examples include
suggesting adjustments to thermostat settings based on outside temperature, proposing
automation routines aligned with low-tariff periods, and advising changes in appliance
usage. The system prioritizes recommendations based on estimated cost-benefit ratios and
user receptiveness, adapting future suggestions based on observed outcomes. This dynamic
and personalized feedback mechanism enables MELISSA to drive sustained reductions in
consumption while maintaining user engagement and autonomy.

2.3. MELISSA Engine: Modular Recommendation System

The MELISSA engine is responsible for generating personalized energy-efficiency
recommendations by combining rule-based logic with data-driven insights. It is composed
of five interoperable modules (M1 to M5), each designed to address a different layer
of the recommendation pipeline, with these ranging from data ingestion to adaptive
user messaging. This modular design ensures scalability, transparency, and the ability to
accommodate heterogeneous user contexts.

Module M1: Consumption Profiling. This component continuously monitors consump-
tion patterns via data collected from smart meters and plug-level sensors and occupancy
data. It aggregates time-series data and performs clustering (e.g., k-means) to characterize



Energies 2025, 18, 3744

7 of 24

daily and weekly usage routines. The profiles serve as a baseline for identifying deviations
or inefficiencies.

Module M2: Contextual Analysis. This module enriches energy-consumption data
with contextual features such as outdoor temperature, solar irradiance, dynamic tariffs,
and occupancy schedules. Through feature engineering and normalization, it constructs a
multidimensional view of the user’s operational environment, enabling the generation of
more relevant recommendations.

Module M3: Inefficiency Detection. Using statistical comparisons and anomaly-
detection algorithms (e.g., DBSCAN, time-series decomposition), this module identifies
deviations from optimal behavior or energy-waste events. Examples include appliances
left on during periods of absence or excessive heating during temperate weather.

Module M4: Recommendation Engine. Based on the outputs of M1-M3, this compo-
nent selects suitable interventions from a predefined rulebase. Each rule is parameterized
by device type, behavioral pattern, environmental condition, and expected impact. Rec-
ommendations are categorized into five macro-classes: behavioral tips, configuration
changes, automation routines, equipment upgrades, and structural improvements. Each
recommendation is scored based on its estimated energy-saving potential, complexity, and
compatibility with user habits.

Module M5: Natural Language Personalization. This final module is responsible for
translating technical recommendations into personalized, accessible messages. It integrates
a fine-tuned large language model (GPT-3.5) that adapts the message tone and complexity
based on user literacy and interaction history. Recommendations are enriched with contex-
tual cues (e.g., “based on yesterday’s afternoon usage”) and explanatory components (e.g.,
“this could reduce your cooling cost by 15%”) to improve clarity and engagement.

Together, these five modules operate as a dynamic recommendation system capable of
producing actionable, user-centered suggestions tailored to each household’s profile and
context. The system is designed to function in a continuous learning loop, refining outputs
as more data are gathered and user behavior evolves. The evaluation of this engine’s
effectiveness is presented in Section 4.6.

2.4. Operational Workflow of the Dual-Agent Architecture

The MELISSA framework relies on a two-agent architecture consisting of the Data-
Analyst Agent and the Energy-Management Agent, which work in an integrated and
asynchronous manner through a RESTful microservices architecture.

The Data-Analyst Agent is responsible for processing raw energy-consumption data
collected from IoT devices installed throughout the household. It performs data cleaning,
normalization, and synchronization of time-series inputs from multiple sensors. Using
unsupervised algorithms such as DBSCAN, it detects anomalies and identifies unusual
consumption events. Dimensionality-reduction techniques such as PCA are applied to
summarize high-dimensional sensor data without significant information loss. The system
also compares current usage patterns with historical baselines and statistical reference
models using paired t-tests and ANOVA. Temporal usage patterns are extracted and
clustered using k-means to generate consumption profiles, which are stored and forwarded
to the Energy-Management Agent.

The Energy-Management Agent incorporates a fine-tuned GPT-3.5 language model
and acts as the primary interface with the user. It interprets the results produced by
the analyst agent and converts them into comprehensible natural language. The agent
adjusts the complexity of explanations based on each user’s digital literacy, as inferred
by a textual-complexity classifier. Recommendations are then generated according to
a cost-benefit strategy and contextual variables such as temperature, occupancy, and
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tariff schedules. Users can query the system in natural language and receive instant
feedback, with a response latency of less than 500 milliseconds. The agent also tracks
the implementation of recommendations and may request new analyses from the analyst
agent to refine its suggestions. This continuous feedback loop enables MELISSA to provide
dynamic, personalized, and data-driven guidance to promote residential energy efficiency.

2.5. User-Centered Design and Socioeconomic Adaptability

The effectiveness of HEMS systems is intrinsically linked to their ability to adapt to
the specific needs and contexts of users. MELISSA incorporates principles of user-centered
design (UCD) that transcend mere usability, addressing aspects of cognitive accessibility
and socioeconomic adaptability. As highlighted by Ribeiro and Providéncia (2021), the
application of UCD in energy systems must consider not only functional aspects but also
cultural, educational, and economic dimensions that influence users’ relationship with
technology [46].

Adaptability to different socioeconomic contexts represents a significant differentiating
characteristic of MELISSA compared to conventional solutions. Studies indicate that the
effectiveness of HEMS systems varies significantly across different socioeconomic strata,
with adoption and engagement rates up to 60% lower in low-income populations when
compared to high-income groups [47]. MELISSA addresses this disparity through adaptive
mechanisms that adjust both interface complexity and the nature of energy recommenda-
tions according to the user’s socioeconomic profile and level of technological literacy.

The communication between the two agents is bidirectional, allowing the manage-
ment agent to request specific analyses from the analyst agent based on user interactions.
This dual architecture enables the combination of rich information with the computational
efficiency required for real-time processing. The system was implemented using a microser-
vices architecture, with each agent operating as an independent service that communicates
through RESTful APIs. This approach provides scalability and flexibility, enabling indepen-
dent updates of components and the addition of new features without interrupting overall
system operation.

To ensure compliance with data-protection regulations and safeguard user privacy,
MELISSA was developed following privacy-by-design principles. All personally identifi-
able information (PII) was pseudonymized at the edge computing layer before transmission,
in line with with data protection regulations standards. Communication between IoT de-
vices and the backend servers employed Transport Layer Security (TLS 1.3), and all data
at rest were encrypted using the Advanced Encryption Standard (AES-256). The system
design aligns with the General Data Protection Regulation (GDPR), incorporating prin-
ciples such as data minimization, purpose limitation, and explicit user consent for data
collection. Access to data was restricted using role-based access control (RBAC), with full
audit trails and activity logging, following the guidelines of applicable regulations. These
measures collectively ensured that user data remained secure, anonymized, and accessible
only under strict operational controls.

2.6. Security and Privacy in IoT Energy Systems

The implementation of IoT systems in residential environments for energy monitor-
ing raises significant concerns regarding data security and privacy. Energy-consumption
patterns can reveal sensitive information about habits, routines, and even family composi-
tion, making the protection of these data a primary concern [48]. MELISSA implements
a privacy-by-design approach, where security considerations are incorporated from the
initial stages of development.
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The two-agent architecture adopted by MELISSA significantly contributes to strength-
ening system security by creating a clear separation between the processing of raw data
and the user interface. This functional segregation allows the implementation of granular
access policies and anonymization mechanisms that limit the exposure of sensitive data [49].
Additionally, local processing and data-aggregation techniques are employed to minimize
the transmission of potentially identifiable information to remote servers.

2.7. Environmental Impact and Sustainability

The contribution of HEMS systems such as MELISSA to sustainability objectives
extends beyond the mere reduction of residential energy consumption. Studies indi-
cate that effective implementation of these systems can result in carbon-emissions re-
ductions of 5-15% per residence, depending on the local energy mix and consumption
patterns [50,51]. This reduction is achieved not only through consumption optimization,
but also by facilitating the integration of distributed renewable sources and participation in
demand-response programs.

MELISSA incorporates life-cycle considerations in its design, minimizing the system’s
environmental impact through optimization of computational resources and careful compo-
nent selection. This holistic approach to sustainability represents a significant advancement
compared to conventional systems, which often overlook the environmental impact of their
implementation and operation [52].

Therefore, the system uses a two-agent architecture (Data Analyst and Energy Man-
agement) that processes information from IoT devices and interacts with the user through
natural language interfaces. The bidirectional arrows indicate real-time communication
between the components, which allows for continuous adaptation and personalization
based on user feedback.

3. Methodology

To evaluate the effectiveness of the MELISSA framework, we conducted a controlled
experiment involving 100 households located in various urban and suburban areas and
representing multiple socioeconomic levels. The study employed a 12-month longitudinal
design, comprising an initial 3-month baseline phase during which energy-consumption
data were passively collected without user interaction or activation of MELISSA’s ana-
lytical or feedback features. This was followed by 9 months of active implementation of
the MELISSA system, during which time all system functionalities were enabled. This
approach enabled robust before-and-after comparisons, controlling for seasonal variations
in energy consumption.

The selection of participating households was conducted through stratified sampling,
ensuring adequate representation of diverse socioeconomic profiles, household sizes, and
family compositions. Inclusion criteria were that households have a stable internet con-
nection and at least five major electrical devices and that they agree to participate in the
full 12-month study. Households that had already installed solar energy systems or that
had planned significant structural changes during the study period were excluded. Strict
data-privacy measures, including anonymization of personal data, end-to-end encryption
for data transmission, and secure storage in ISO 27001-certified servers, were implemented.

3.1. Data Collection

Data collection was carried out through a combination of IoT sensors installed in the
participating households and periodic questionnaires administered to the residents. The
sensors included smart meters for monitoring total energy consumption, smart plugs for
specific devices (such as refrigerators, air conditioners, washing machines, televisions, and



Energies 2025, 18, 3744

10 of 24

computers), temperature and humidity sensors in different rooms, and presence detectors
to monitor occupancy patterns. Energy consumption data were continuously collected at
5-minute intervals, resulting in approximately 105.120 data points per household from the
study period. Additionally, contextual data such as external temperature, humidity, and
weather events were obtained from local weather stations. Information on energy tariffs
was updated monthly from local utilities.

3.2. System Implementation

The implementation of MELISSA in the participating households followed a stan-
dardized protocol with five stages: (1) installation of physical infrastructure (sensors,
communication hubs, displays); (2) configuration of software and integration with existing
devices; (3) a two-week calibration period to establish initial consumption profiles; (4) full
activation of the system with all functionalities; and (5) continuous monitoring and remote
updates when necessary.

The system was configured to provide three main types of interactions with users:
(a) automated daily reports summarizing energy consumption and highlighting oppor-
tunities for savings; (b) real-time alerts signaling anomalies or immediate optimization
opportunities; and (c) a conversational interface for specific queries initiated by the user.
Participants received initial training on how to interact with the system but were encour-
aged to use it according to their individual preferences.

During the implementation period, software updates were carried out remotely to fix
bugs, improve analysis algorithms, and expand the LLM’s knowledge base with newly
identified patterns. All interactions between users and the system were recorded for later
analysis, with the explicit consent of the participants.

3.3. Data Analysis

The analysis of the collected data was conducted using a mixed approach that com-
bined traditional statistical methods with advanced machine learning techniques. To
evaluate the overall effectiveness of MELISSA in reducing energy consumption, we com-
pared the average daily consumption during the pre-and post-implementation periods
using paired t-tests, controlling for seasonal variations through degree-day normalization.

To identify different energy-consumption profiles, we applied cluster analysis using
the k-means algorithm to consumption data disaggregated by device and time of day. The
optimal number of clusters was determined using the elbow method and validated with the
silhouette coefficient. Each cluster was characterized in terms of temporal usage patterns,
dominant devices, and associated demographic characteristics.

The determinants of energy consumption were investigated through multiple re-
gression models, with daily consumption as the dependent variable and factors such as
household size, number of occupants, outdoor temperature, day of the week, and presence
of specific devices as independent variables. Multicollinearity was assessed using the vari-
ance inflation factor (VIF), and appropriate transformations were applied when necessary.

The effectiveness of the recommendations generated by MELISSA was evaluated
through time-series analysis, comparing energy consumption before and after each recom-
mendation was implemented. ARIMA models were used to control for temporal trends
and seasonality, isolating the specific effect of each intervention. Additionally, sentiment
analysis was applied to the textual interactions between users and the system to assess
receptiveness to the recommendations.

Finally, we conducted a subgroup analysis to investigate how the effectiveness of
MELISSA varied across different socioeconomic profiles and types of residences. Mixed-
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effects models were used to accommodate the hierarchical structure of the data and identify
significant interactions between user characteristics and energy-savings outcomes.

All statistical and machine learning analyses described in this section were imple-
mented in Python 3.10 using the sci-kit-learn, stats models, NumPy, and pandas libraries.
The models were executed on a workstation running Ubuntu 22.04 LTS that was equipped
with an Intel Core i7-11700 processor (2.5 GHz, 8 cores) and 32 GB of RAM. This computa-
tional setup ensured efficient processing of the approximately 10 million data points col-
lected during the study and is sufficient to reproduce the analysis pipeline described herein.

To ensure robustness and reproducibility of the machine learning models, we adopted
the following training and validation procedures:

e DBSCAN was tuned via grid search with ¢ € [0.3,0.7] and MinPts € [4, 10], selecting
the configuration with the highest silhouette coefficient.

*  k-means clustering was validated using both the elbow method and the silhouette
coefficient (k = 4, silhouette = 0.68). Clusters were characterized based on temporal
device usage and demographic attributes.

¢ Multiple linear regression included multicollinearity checks using the Variance In-
flation Factor (VIF). Variables with VIF > 5 were iteratively removed, and residual
diagnostics were performed to validate assumptions of linearity.

* ARIMA models used for intervention analysis were selected via the auto_arima
function from the pmdarima library, optimizing the Akaike Information Criterion (AIC)
under seasonal constraints. Models were validated with time-series train-test splits.

All models were implemented using Python 3.10 with the scikit-learn, statsmodels,
and pmdarima libraries.

4. Results
4.1. Methodological Justification for Household Exclusions

The scientific integrity of this study relies on the quality and consistency of the data
analyzed. Although 100 households were initially enrolled in the MELISSA study, only 97
were retained for the final analysis. The exclusion of three units was based on established
methodological principles:

Data inconsistencies and technical issues. Data collected via IoT sensors are susceptible
to transmission errors, device failures, or inconsistent records. In two households, persistent
technical problems resulted in missing or unreliable data across several key variables,
rendering them unsuitable for longitudinal analysis.

Participant withdrawal. One household chose to withdraw from the study within the
first month for personal reasons unrelated to the MELISSA framework.

Compliance with inclusion criteria. In longitudinal studies, maintaining homogeneity
in the sample is essential. Households that undergo significant structural or behavioral
changes—such as renovations, new energy systems, or occupancy changes—may introduce
confounding variables. Although this did not apply directly to the three excluded homes,
it remains a relevant criterion for exclusion in similar contexts.

In sum, the final sample of 97 households reflects those with complete, consistent,
and reliable data over the full 12-month observation window. This approach ensures the
validity and robustness of the study’s findings.

4.2. Data Analysis

The analyzed sample comprised 97 households that remained actively in the study
for the full 12 months, resulting in a high retention rate of 97%. The households exhibited
considerable diversity in both physical and demographic terms, underscoring the hetero-
geneity of the population being studied. It was observed that the size of the residences
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varied considerably, ranging from compact apartments of 45 m? to larger houses of 230 m?,
with an overall average of 112.3 m? and a standard deviation of 42.7 m?, reflecting different
housing profiles.

The average number of occupants per household was 3.2 individuals (SD = 1.4),
with configurations ranging from single-person households to those with five or more
occupants. This demographic diversity, detailed in Table 1, indicates that the study included
a representative sample of different family arrangements.

Regarding socioeconomic status, the households were relatively evenly distributed
among income quartiles, with a slight predominance of households in the intermediate
ranges. The respondent profiles revealed an average age of 42.7 years (SD = 13.5 years),
with a relatively balanced gender composition: 55% women and 45% men. Regarding
educational level, there was a predominance of individuals with higher education (38%
with a bachelor’s degree and 15% with a postgraduate degree), although participants with
elementary and high-school education were also included, ensuring educational diversity.

In terms of energy infrastructure, the collected data indicate a broad availability
of equipment that consumes a significant amount of energy: most households had air
conditioning (87%), refrigerators (100%), and televisions (100%), and 93% had washing
machines. The average number of units per household also demonstrates the prevalence
of having multiple devices in the same home, as seen with televisions, resulting in a
significant increase per household. Finally, the average energy consumption during the
baseline period was 312.7 kWh/month (SD = 156.3 kWh/month), showing high variability
across households, with values ranging from 98.4 kWh/month to 723.5 kWh/month. This
range reflects different consumption habits, installed infrastructure, and socioeconomic
conditions —key aspects that were analyzed throughout the study in relation to energy-
management strategies.

Table 1. Characteristics of the participating households.

Item Description

Number of households 97 (retention rate: 97%)

Average household size 112.3 m? (SD = 42.7 m?)

Size variation From 45 m? to 230 m?

Average number of occupants 32(SD=14)

Occupant distribution 18% with 1 occupant; 35% with 2 occupants; 27%
with 34 occupants; 20% with 5 or more occupants

Socioeconomic distribution 22% first quartile; 31% second quartile; 28%
third quartile; 19% fourth quartile

Average respondent age 42.7 years (SD = 13.5 years)

Gender of respondents 55% women, 45% men

Educational level of respondents  15% elementary education; 32% high school; 38%
bachelor’s degree; 15% postgraduate

Energy infrastructure 87% with air conditioning (1.8 units/household);
100% with refrigerator (1.1 units/household); 93%
with washing machine; 100% with television
(2.3 units/household)

Average energy consumption 312.7 kWh/month (SD = 156.3 kWh/month)

Range of energy consumption From 98.4 kWh/month to 723.5 kWh/month

4.3. Impact on Energy Consumption Reduction

The implementation of the MELISSA framework led to a meaningful and consis-
tent reduction in residential energy consumption, demonstrating not only the technical
feasibility of intelligent energy management but also its practical effectiveness in real-
world settings. After controlling for seasonal fluctuations and relevant contextual vari-
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ables—including climate, household occupancy, and baseline consumption patterns—we
observed an average monthly reduction of 5.66% in energy use (95% CI: 5.21-6.11%) during
the intervention period when compared to the pre-intervention baseline. This decrease
was statistically significant (t(96) = 14.72, p < 0.0001), corresponding to a mean savings of
17.7 kWh per household per month. This result suggests there is considerable potential for
aggregate energy efficiency and carbon mitigation if this intervention were to be scaled to a
broader population.

According to the Table 2, it is evident that “MELISSA” not only modifies consumption
behavior in the short term, but also promotes long-term awareness and the continuous adop-
tion of energy-saving practices. These findings underscore the importance of integrating
technological interventions with behavioral approaches to achieve lasting environmental
and economic benefits in the residential context.

Table 2. Reduction in energy consumption after implementation of the MELISSA framework.

Period Reduction (%) Acum (%) 95% CI (kWh/Month)
Overall (12 months) 5.66% 5.21-6.11% 17.7
First Quarter 3.21% 2.87-3.55% -
Second Quarter 5.94% 5.43-6.45% -

Third Quarter —1.32% 7.83% 7.21-8.45% -

More importantly, the effect of MELISSA proved to be cumulative and adaptive over
time, indicating a process of behavioral assimilation and growing user engagement. In the
first quarter post-implementation, the average reduction was 3.21% (95% CI: 2.87-3.55%),
already a meaningful initial impact. This improvement intensified in the second quarter,
reaching 5.94% (95% CI: 5.43-6.45%), reflecting both the refinement of system recommenda-
tions and increased user familiarity. By the third quarter, the cumulative reduction reached
7.83% (95% CI: 7.21-8.45%), representing a progressive increase of 4.62 percentage points
from the initial phase.

Figure 3 illustrates the trajectory of average energy consumption over the study
period, highlighting the downward trend after the MELISSA implementation. Notably, the
magnitude of the reduction increased over time, suggesting a cumulative effect as users
became more familiar with the system and implemented more recommendations.

The shaded area represents the baseline period, while the dashed vertical line indicates
the start of MELISSA implementation. The annotations show the average percentage
reductions observed in each quarter following implementation.

The device-wise analysis revealed that the largest percentage reductions were ob-
served in the consumption of energy for air conditioning (9.72%, 95% CI: 8.95-10.49%) and
lighting (8.34%, 95% CI: 7.76-8.92%). Moderate reductions were observed for televisions
and entertainment equipment (5.21%, 95% CI: 4.78-5.64%) and computers (4.87%, 95%
CI: 4.32-5.42%). The reductions were smaller for refrigerators (2.13%, 95% CI: 1.87-2.39%)
and washing machines (2.76%, 95% CI: 2.34-3.18%), reflecting the lower optimization
potential for these essential devices.

The long-term effectiveness of MELISSA is rooted in its ability to foster awareness and
promote sustained behavioral change. This is achieved through a built-in adaptive feedback
mechanism that continuously learns from user interactions and consumption patterns. As
users implement recommendations, the system tracks their responses and adjusts future
suggestions accordingly—modifying tone, specificity, and timing to align with individual
preferences and behaviors. Moreover, the LLM component contextualizes energy usage
through personalized narratives, transforming technical insights into understandable,
relatable stories. These narratives not only explain energy-consumption trends, but also
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quantify the benefits of actions taken, reinforcing user learning and building a sense
of ownership over energy decisions. By combining real-time feedback with behavioral
reinforcement, MELISSA transitions users from one-time adjustments to a sustained pattern
of proactive energy management.

340 Energy Consumption Trajectory Throughout the Study (2024)
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Figure 3. Trajectory of Average Energy Consumption Throughout the Study.

4.4. Energy-Consumption Profiles

The cluster analysis identified four distinct energy-consumption profiles among the
participating households, with a silhouette coefficient of 0.68 indicating good separation
between clusters. Figure 4 presents the main characteristics of each identified profile.

Energy Consumption Profiles Identified by Cluster Analysis (2024)
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Figure 4. Energy-consumption profiles identified by cluster analysis.

The graph shows the daily consumption patterns for the four identified clusters, with
shaded areas representing different times of day. The annotations highlight the distinctive
characteristics of each profile.

Cluster 1 (n = 23, 23.7% of the sample), named “Intensive Daytime Consumption”,
was characterized by high consumption during the day (9 AM-5 PM) and intensive use of
air conditioning and office equipment. This cluster predominantly included households
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where at least one resident worked from home (78.3% of households in this cluster). The
average monthly consumption for this group was 378.4 kWh (SD = 67.2 kWh).

Cluster 2 (n = 31, 32.0%), named “Moderate Nighttime Consumption”, had consump-
tion peaks in the evening (6 PM-11 PM), with moderate use of television, lighting, and
small appliances. This cluster mainly included families with school-aged children (74.2%)
and both parents working outside the home (83.9%). The average monthly consumption
was 287.6 kWh (SD = 52.8 kWh).

Cluster 3 (n =19, 19.6%), named “High Constant Consumption”, was characterized
by high and relatively constant consumption throughout the day, with intensive use of
multiple devices simultaneously. This cluster comprised larger homes (average size of
156.7 m?) with more occupants (average of 4.7 people) and higher household incomes. The
average monthly consumption was 512.3 kWh (SD = 98.4 kWh).

Cluster 4 (n = 24, 24.7%), named “Efficient Low Consumption”, showed consistently
low consumption throughout the day, with limited use of high-consumption devices. This
cluster primarily consisted of smaller homes (average size of 78.3 m?) with fewer occupants
(average of 1.8 people) and behaviors already oriented towards energy efficiency. The
average monthly consumption was 174.5 kWh (SD = 43.6 kWh).

Table 3 provides a consolidated summary of the main attributes of the four energy-
consumption clusters identified through the analysis. It includes the sample size, relative
proportion, distinguishing behavioral and household characteristics, and average and
standard deviation of monthly energy consumption for each group. This tabular represen-
tation complements the visual patterns presented in Figure 4, allowing for a more detailed
comparison between clusters and reinforcing the heterogeneity in energy usage across
different household profiles.

Table 3. Summary of energy-consumption clusters.

Cluster n % of Sample Characteristics Average Consumption Standard Deviation
(kWh/Month) (kWh)
Cluster 1 23 23.7% High daytime consumption 378.4 67.2
(9 AM-5 PM), AC/ office, remote
work (78.3%)
Cluster 2 31 32.0% Nighttime peaks (6 PM-11 PM), 287.6 52.8

TV /lights/small appliances,
school-aged children (74.2%),
parents out (83.9%)
Cluster 3 19 19.6% High and constant consumption, 512.3 98.4
multiple appliances, larger
homes (156.7 mz), more
occupants (4.7)
Cluster 4 24 24.7% Low and constant consumption, 174.5 43.6
few high-consumption
appliances, smaller homes
(78.3 m?), fewer occupants (1.8)

The effectiveness of MELISSA varied significantly between the different clusters.
The most significant percentage reductions were observed in Cluster 1 (7.82%, 95%
CI: 7.13-8.51%) and Cluster 3 (6.94%, 95% CI: 6.27-7.61%). Cluster 2 showed a moder-
ate reduction (5.23%, 95% CI: 4.78-5.68%), while Cluster 4 showed the smallest reduction
(2.87%, 95% CI: 2.41-3.33%), likely due to its already low consumption level and pre-existing
efficient practices.

4.5. Determinants of Energy Consumption

The estimated coefficients for the main predictors are presented in Figure 5, organized
by absolute magnitude to facilitate intuitive comparison.
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The multiple regression model identified a range of statistically significant deter-
minants of residential energy consumption, achieving strong explanatory performance.
with an adjusted coefficient of determination of R?> = 0.68 and a root mean square error
(RMSE) of 24.3 kWh. These metrics indicate that the model is not only statistically robust
but also practically relevant for understanding the complex interplay between household
characteristics and energy use.

In the graph, predictors are ordered from the most to the least impactful in terms
of effect size. Positive coefficients indicate that the variable is associated with increased
energy consumption, while negative coefficients suggest a tendency toward reduced energy
consumption. The statistical significance of each predictor is confirmed by the associated
p-values, which represent confidence in the model’s findings and its ability to discern
meaningful patterns.

Determinants of Residential Energy Consumption (2024)
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Electric Heater
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Figure 5. Determinants of residential energy consumption.

Among all variables considered, house size emerged as the most influential factor:
each additional square meter of floor space contributed, on average, 0.45 kWh/month
(p < 0.0001). This association likely reflects the greater number of rooms, an increased sur-
face area requiring climate control, and the higher probability of housing energy-intensive
appliances. Similarly, the number of occupants showed a strong positive effect, with
each additional resident accounting for 27.8 kWh/month (p < 0.0001), likely due to com-
pounded energy use for lighting, electronics, and water heating.

Ambient temperature also had a notable impact: for every degree Celsius above the
defined comfort temperature (22 °C), there was an estimated increase of 7.64 kWh/month
in consumption (p < 0.0001). This finding underscores the sensitivity of household energy
demand to climatic conditions, a relationship primarily driven by the intensive use of
air-conditioning systems in warmer periods.

Importantly, socioeconomic factors added a deeper layer of nuance to the analysis.
Higher household income was positively associated with energy consumption (8 = 0.23,
p < 0.001), reflecting patterns of more prevalent ownership of electronic devices and



Energies 2025, 18, 3744

17 of 24

comfort-related appliances. In contrast, a higher educational level was inversely related to
consumption (8 = —0.18, p < 0.01), suggesting that individuals with greater educational
attainment may adopt more energy-efficient behaviors, independent of their income level.
Taken together, these findings reveal that residential energy consumption is driven
not by a single factor, but rather by a complex interaction between physical infrastructure,
household composition, environmental conditions, and socioeconomic context. Under-
standing these interdependencies is essential for designing more effective energy policies
and interventions that are both socially equitable and environmentally sustainable.
Interestingly, the analysis revealed significant interactions between variables, as il-
lustrated in Figure 6. Certain appliances significantly increase household electricity use:
each air-conditioning unit adds, on average, 83.7 kWh/month (p < 0.0001); a clothes dryer,
42.3 kWh/month (p < 0.0001); an electric heater, 38.6 kWh/month (p < 0.0001); and a pool
equipped with a pump, 35.2 kWh/month (p < 0.001). These figures reflect the energy-
intensive nature of climate-control devices and continuous thermal or hydraulic processes.
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Figure 6. Interactions among determinants of energy consumption.

However, the building and environmental context modulate this impact. When the
dwelling offers good thermal insulation—double walls, ventilated roof, low-emissivity
glazing—the effect of outdoor temperature on consumption drops sharply (interaction
p < 0.001). Shading trees provide a complementary benefit: besides lowering the direct
thermal load, they improve the micro-climate around the building, smoothing demand
peaks (p < 0.01).

From a sociodemographic perspective, the total number of occupants is positively cor-
related with expenditure; however, this relationship becomes stronger when teenagers are
present (p < 0.01). This age group typically uses electronic devices intensively—including
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video games, streaming, and high-performance computers—which prolongs device run-
time and increases indoor heat, triggering additional air-conditioner use.

The heatmap synthesizes these dynamics: cells in warmer tones signal strong positive
correlations, whereas cooler tones indicate negative or protective effects. Outlined cells
mark statistically significant interactions identified by the model, highlighting that energy
efficiency arises from the interplay among technological choices, building characteristics,
and everyday behaviors. This panorama highlights the importance of integrated policies
that combine incentives for structural improvements, education for conscious consumption,
and clear appliance labeling so that potential gains are translated into tangible savings for
both users and the power grid.

4.6. Efficacy of Personalized Recommendations

Over the 18-month observation window, the MELISSA engine analyzed high-
resolution consumption data and produced 12,483 personalized recommendations for
the 97 participating households, averaging 128.7 suggestions per dwelling. Leveraging
a hybrid rule-based /machine learning pipeline, these insights were clustered into five
macro-classes, with pedagogical labels used to facilitate user comprehension:

* Immediate behavioral adjustments (42.3%): low-effort actions such as switching off
standby devices or moderating thermostat set-points.

*  Device-configuration optimizations (27.8%): fine-tuning schedules, power modes, and
sensor thresholds in existing appliances.

¢  Equipment-replacement suggestions (12.4%): cost-benefit analyses advocating substi-
tution by high-efficiency models certified A+++.

e Structural retrofits (8.7%): deeper measures, e.g., insulating the attic or installing
double-glazed windows, to address envelope losses.

¢ Scheduled automations (8.8%): IFTTT-style routines that synchronise operation with
tariff valleys or photovoltaic generation peaks.

Implementation rates diverged markedly across classes, as depicted in Figure 7. Behav-
ioral tips were most readily adopted (73.2%), reflecting their negligible cost and immediate
feedback. Configuration changes followed (68.7%), aided by MELISSA’s step-by-step in-app
wizards. Scheduled automation achieved 61.4% uptake, with this change limited mainly by
users’ familiarity with smart-home hubs. Capital-intensive recommendations saw lower
adherence: only 32.1% of proposed equipment upgrades and a mere 17.3% of structural
retrofits were executed, underscoring classical barriers of upfront investment, perceived
payback, and contractor availability. These patterns echo the Technology Acceptance Model,
where perceived effort and cost strongly mediate the translation of informational nudges
into concrete energy-saving actions.

Time-series analysis revealed that implemented recommendations resulted in measur-
able reductions in energy consumption. On average, each implemented behavioral recom-
mendation resulted in a reduction of 087 kWh/month  (95%
CI: 0.76-0.98 kWh/month); configuration optimizations resulted in a reduction of
1.34 kWh/month (95% CI: 1.18-1.50 kWh/month); scheduled automation resulted in a
reduction of 1.76 kWh/month (95% CI: 1.54-1.98 kWh/month); equipment replacements
resulted in a reduction of 4.23 kWh/month (95% CI: 3.87-4.59 kWh/month); and structural
modifications resulted in a reduction of 6.78 kWh/month (95% CI: 6.12-7.44 kWh/month).

Sentiment analysis of interactions between users and the system revealed that rec-
ommendations presented with contextualized explanations and quantified benefits had
a significantly higher probability of being implemented (OR = 2.34, 95% CI: 2.08-2.63,
p < 0.0001). Additionally, recommendations referring to specific patterns observed in the
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household were better received than generic recommendations (OR = 1.87, 95% CI: 1.65-2.12,
p < 0.0001).

Effectiveness of Personalized Recommendations (2024)
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Figure 7. Efficacy of personalized recommendations. (A) Implementation rates by recommenda-
tion category show higher adherence to behavioral changes and lower rates of implementation
for structural modifications. (B) The average reduction in energy consumption per implemented
recommendation, with error bars representing 95% confidence intervals.

4.7. User Satisfaction and Experience

Before presenting the findings on user satisfaction, it is essential to highlight the
ethical considerations associated with conducting research involving human participants.
To address these concerns, the following documents were prepared and signed by all
participants: (1) a Free and Informed Consent Form and (2) an Authorization Form for the
Capture and Use of Images, Sounds, and Names.

The Free and Informed Consent Form clearly explained the study’s objectives, its
scientific nature, and the voluntary aspect of participation. The Authorization Form
detailed the possibility of recording images and voices and assured participants that all
collected data would be used exclusively for scientific purposes.

Figure 8 shows the progressive increase in user satisfaction during the nine months of
MELISSA’s implementation. The shaded area represents the 95% confidence interval, and
the dashed line indicates the overall mean of 7.81/10. The boxes highlight the highest- and
lowest-rated aspects of the system.

The aspects of the system most positively rated by users were the ease of understand-
ing the information (8.43/10, SD = 0.97), the relevance of personalized recommendations
(8.12/10, SD = 1.18), and the ability to respond to specific questions (7.96/10, SD = 1.32).
The aspects with relatively lower ratings included the accuracy of savings predictions
(7.21/10, SD = 1.56) and integration with existing devices (7.34/10, SD = 1.48).

The qualitative analysis of semi-structured interviews revealed several recurring
themes. Participants frequently mentioned the “naturalness of interaction” as a positive
feature of the system, with comments like: “It’s like talking to someone who really under-
stands my home” and “I don’t need to decipher complicated graphs, the system explains
everything in simple language.” Many participants also highlighted the “continuous learn-
ing” provided by the system: “I learned a lot about how my house consumes energy and
now I make more conscious decisions.”

Reported challenges included occasional “understanding failures” when queries were
too complex or ambiguous and “repetitive recommendations” in some cases. Some partici-
pants in smaller households reported that “the potential savings seemed limited” after the
initial interventions with the greatest impact.
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10 User Satisfaction Evolution Over Time (2024)
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Figure 8. Evolution of user satisfaction over time.

5. Discussion

This study provides statistically supported evidence of MELISSA'’s effectiveness in
residential energy optimization. The observed 5.66% average reduction, while moderate in
relative terms, would translate into meaningful absolute savings if it were applied at scale.
For example, national-level implementation in Brazil could save an estimated 8.7 TWh
annually—equivalent to the generation capacity of a mid-sized hydroelectric facility.

The variation in system effectiveness across different consumption profiles offers
valuable insights for future implementations. The fact that households with “Intensive
Daytime Consumption” and “High Constant Consumption” patterns showed the largest
percentage reductions suggests that MELISSA is particularly effective for users with greater
optimization potential. This contrasts with traditional energy-efficiency approaches, which
often achieve higher percentage savings in households with low energy consumption. This
characteristic of MELISSA can be attributed to its ability to identify and address specific
inefficiencies in complex consumption patterns, which are more prevalent in households
with high consumption levels.

The analysis of the determinants of energy consumption confirms the importance
of structural factors such as house size and number of occupants but also highlights the
significant role of behavioral and contextual variables. The strong influence of ambient tem-
perature, moderated by structural characteristics such as thermal insulation, emphasizes
the need for adaptive solutions that dynamically respond to environmental conditions.
MELISSA demonstrated the ability to provide contextualized recommendations that ac-
count for these complex interactions, a significant advancement over systems that treat
variables in isolation.

The variation in implementation rates across different recommendation categories
reflects the well-known practical and economic barriers commonly cited in the energy-
conservation literature. Behavioral recommendations, which typically do not require finan-
cial investment, had the highest adoption rates, while structural modifications, which often
involve significant costs and inconvenience, had more limited implementation. However, it
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is noteworthy that even high-cost recommendations achieved implementation rates higher
than those reported in previous studies with conventional interfaces. This suggests that
the contextualized and personalized presentation of information through large language
models (LLMs) can increase users” willingness to invest in energy-efficiency improvements.

The positive evolution of user satisfaction over time contrasts with the “feedback
fatigue” pattern often observed in conventional energy-monitoring systems, where en-
gagement typically decreases after an initial period of enthusiasm. MELISSA’s ability to
maintain and even increase engagement can be attributed to several factors: the conversa-
tional interface, which reduces the cognitive load associated with interpreting technical
data; the continuous personalization, which increases the relevance of interactions; and the
ability to respond to specific queries, which provides continuous value to the user.

The qualitative results from the interviews corroborate this interpretation, with partic-
ipants frequently mentioning the “naturalness of interaction” as a positive feature. This
finding aligns with previous human—computer-interaction research, which shows that
interfaces that minimize the conceptual distance between the user’s mental model and
the system’s representation result in greater satisfaction and effectiveness. MELISSA’s
LLM-based approach effectively reduces this conceptual distance by translating complex
technical data into comprehensible narratives contextualized to the user’s specific reality.

Although MELISSA’s architecture integrates multiple components—IloT-based data
acquisition, statistical and machine learning analysis, and an LLM-powered interface—our
findings suggest that the LLM interface was the most decisive element for achieving effec-
tive reductions in energy consumption. This is primarily due to its capacity to translate
complex analytical outputs into personalized, actionable, and easy-to-understand recom-
mendations, which significantly boosted user adherence. While the IoT and data-analysis
layers ensured robust pattern detection and system accuracy, it was the natural language
interface that bridged the gap between technical insights and user behavior, as reflected
in the high rates of engagement and recommendation implementation. Future modular
studies should quantify these individual contributions more precisely, but preliminary
evidence underscores the role of the LLM interface as a critical driver of impact.

6. Conclusions

This study provides compelling empirical evidence for the effectiveness and transfor-
mative potential of MELISSA, a novel framework that merges the capabilities of Internet
of Things (IoT) technologies with Large Language Models (LLMs) to support sustainable
residential energy management. Through personalized, natural language-based interac-
tions, MELISSA demonstrated the ability to foster meaningful energy savings, reducing
household consumption by an average of 5.66% over a 12-month period. Beyond numerical
gains, this outcome represents a significant advancement in aligning everyday household
behavior with broader goals of energy efficiency and environmental responsibility.

The significance of these results lies not only in the immediate reductions observed
but also in the evidence of MELISSA'’s ability to encourage long-term shifts in consumption
habits. The cumulative improvement over time suggests that the system acts as both a
feedback mechanism and a learning facilitator, empowering users with contextualized and
intelligible recommendations that support sustainable decision-making. Moreover, the
system’s performance across diverse socioeconomic profiles indicates a degree of scalability
and inclusivity rarely achieved by traditional energy-management systems.

Nevertheless, this work acknowledges its limitations. The study was conducted in a
single geographic region, which may limit its external validity in climates or cultural con-
texts that differ substantially. Additionally, while the 12-month period provided valuable
insights into seasonal dynamics and medium-term adaptation, it remains insufficient to
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assess the long-term resilience of behavioral changes or the system’s response to disruptive
household events, such as renovations or demographic shifts.

Furthermore, due to MELISSA’s integrated architecture—encompassing sensors, data
analytics, and an LLM-powered conversational interface—it was not possible to disentangle
the contribution of each component to the overall impact. Future studies employing
modular or factorial experimental designs will be crucial in identifying which components
are most effective and under what conditions they are effective.

This study also did not fully explore the psychological dimensions that may un-
derpin behavioral change, such as perceived efficacy, environmental concerns, or social
norms. Integrating validated psychometric instruments into future research could sig-
nificantly enhance the explanatory power of the findings and inform the refinement of
user-engagement strategies.

One of MELISSA’s strengths lies in its potential for generalization and adaptability
to diverse international contexts. The system’s modular architecture enables flexible in-
tegration with various smart devices, energy tariffs, and household infrastructures. To
accommodate cultural and linguistic diversity, the LLM can be fine-tuned in multiple
languages and aligned with regional communication norms. From a climatic perspective,
MELISSA can be calibrated with local weather patterns, comfort-temperature ranges, and
seasonal behaviors. Additionally, the system supports regulatory customization, allowing
compliance with distinct privacy, data protection, and energy-efficiency policies in different
jurisdictions. These characteristics position MELISSA as a scalable solution for global
residential energy management, pending contextual customization efforts that are both
feasible and technically supported by its current design.

Looking ahead, promising directions include integrating MELISSA with residential
renewable-energy systems, enabling the optimization of self-consumption and intelligent
grid interactions. Extending the framework to include other resources, such as water and
gas, could transform MELISSA into a comprehensive platform for multisectoral household
resource management. Moreover, advances in predictive modeling may allow the system to
proactively detect and respond to anomalous consumption patterns, enhancing its capacity
for adaptive control and personalized feedback.

Ultimately, this research demonstrates that the convergence of Al, behavioral science,
and user-centered design holds transformative potential for the way individuals interact
with energy systems. MELISSA exemplifies how intelligent interfaces can democratize
access to energy knowledge, promote environmental awareness, and support broader
societal goals related to sustainability, equity, and digital inclusion.
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