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Abstract
Despite the well-documented merits of near-infrared reflectance (NIR) spectroscopy

for forage nutritive value analysis, recent studies reveal inconsistencies in accuracy

of NIR-predicted values. These findings underscore the critical need for robust val-

idation efforts to ensure reliability. Employing visual tools, such as scatter plots

comparing laboratory-measured with NIR-predicted values, enhances the interpre-

tation and qualification of data. Standardized reporting of validation outcomes,

including key metrics and best practices, is essential for ensuring data quality and

fostering broader adoption of NIR spectroscopy across research and industry. In

this article, we suggest guidelines for reporting NIR spectroscopy predictions and

emphasize the need for independent validation as a required procedure to enhance

the credibility and application of NIR spectroscopy for forage analysis.

Plain Language Summary
The accuracy and precision of near-infrared reflectance (NIR) spectroscopy predic-

tions cannot be assumed because a NIR solution produced a value. Using scatter

plots to compare laboratory-measured versus NIR-predicted values, in addition to

fit statistics such as standard error of prediction, bias, and the slope, intercept, and

coefficient of determination of the linear regression of laboratory-measured ver-

sus NIR-predicted values, can reveal inconsistencies often overlooked. We provide

guidelines and rationale for developing independent testing to enhance the credibility

and application of NIR spectroscopy for forage analysis.

1 USE OF NIR SPECTROSCOPY FOR
FORAGE ANALYSIS

The merit and validity of near-infrared reflectance (NIR)
spectroscopy as a tool for rapid determination of forage

Abbreviations: CP, crude protein; DM, dry matter; NIR, near-infrared
reflectance; SEP, standard error of prediction.
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nutritive value are well-documented in the literature. A com-
prehensive review of these contributions is beyond the scope
of this article. Nevertheless, we refer the reader to Batten
(1998), Shenk and Westerhaus (1994), and Burns and Ciur-
czak (2007) as starting references for further exploration on
the topic.

The use of NIR spectroscopy to estimate nutritive value and
digestibility of forages can be traced in US literature to the
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seminal study by Norris et al. (1976). Recognizing the impor-
tance of validation for NIR-predicted values, Norris et al.
(1976) indicated that “to provide a better test of the mer-
its of such measurement (referring to NIR-predicted values),
we used the odd-numbered samples to develop calibration
equations, which were then used to predict crude protein
(CP), neutral detergent fiber (NDF), and in vivo dry mat-
ter digestibility (DMD) for the even-numbered samples.” By
comparing the NIR-predicted values versus the laboratory-
measured values, they reported that forage nutritive value
and digestibility could be predicted within standard errors
of ±9.5 g kg−1 for CP, ±31.2 g kg−1 for NDF, and ±51 g kg−1

for DMD. In 1978, the United States Department of Agri-
culture Near-Infrared Spectroscopy (USDA NIRS) Forage
Network was started to develop software, coordinate further
research, and prepare the technology to be transferred to the
private sector (Marten et al., 1989; Shenk & Westerhaus,
1994; Templeton et al., 1983).

Technological advancements have greatly improved acces-
sibility and affordability of NIR spectroscopy technology. A
variety of spectrometers is now available, including desk-
top and portable handheld types (Berzaghi et al., 2021;
Crocombe, 2018; Zhu et al., 2022). Additionally, multiple
software platforms with diverse methodologies have been
developed to support NIR spectroscopy applications (Breunig
et al., 2000; Ng et al., 2018; Xiaobo et al., 2010). The adoption
of NIR spectroscopy applications is growing rapidly among
researchers and non-researchers, and this technological tool is
particularly being portrayed as a “turnkey” solution. However,
it is essential that all users, especially scientists, remain cog-
nizant of the potential limitations of erroneous NIR-predicted
estimates when reporting response variables and treatment
effects from experimentation, particularly when relying on
third-party or pre-loaded NIR calibrations.

2 CONTEXTUALIZATION OF THE
ISSUE

Shenk and Westerhaus (1991) introduced a method for
defining population boundaries and selecting samples for cal-
ibration of NIR models based on Mahalanobis distances.
Their approach demonstrated the feasibility of selecting a
small, structured subset of samples for calibration of NIR
spectroscopy models from larger datasets. However, they
acknowledged uncertainties regarding the relative importance
of neighborhood size, sample quantity, and the number of
model terms in achieving accurate calibrations.

An essential step in the development of application of
NIR solutions is the measurement of the similarity or dis-
tance between samples in the NIR space. We refer to an
NIR solution as the integration of software, hardware, and
sampling procedures that result in NIR-predicted values.

Core Ideas
∙ Near-infrared reflectance (NIR) spectroscopy is a

well-documented technology for determination of
forage nutritive value.

∙ Technological advancements have greatly
improved accessibility and affordability of
NIR spectroscopy technology.

∙ Recent studies reveal inconsistencies in accuracy
of NIR-predicted values.

∙ Conducting an independent validation is the ulti-
mate standard for assessing the quality of NIR-
predicted values.

Mahalanobis distance has become the standard population-
structuring methodology and is used to identify spectral
outliers in commercial applications of NIR solutions (Pérez-
Marín et al., 2005; Shenk et al., 1997). Different software
packages use different variants of the same Mahalanobis dis-
tance (Garrido-Varo et al., 2019). Nevertheless, Williams et al.
(2017) noted that “it is possible to obtain high errors in pre-
diction of samples with Mahalanobis distances well within
the acceptable range.” Working with soil samples and various
distance metrics to investigate the relationship between soil
compositional similarity and soil vis-NIR, Ramirez-Lopez
et al. (2013) reported that the least accurate results were
obtained using the Mahalanobis distance method. Therefore,
relying solely on spectral data does not ensure accuracy of
NIR predicted values.

3 JUSTIFICATION FOR INDEPENDENT
VALIDATION

Estimates of forage nutritive value from handheld NIR spec-
trometers can be of comparable performance to those derived
from benchtop-type spectrometers (Acosta et al., 2020; Berza-
ghi et al., 2021; Digman et al., 2022). However, accuracy of
NIR predictions cannot be assumed because a “number is
produced” by the NIR solution. Cherney et al. (2021) reported
the results of an independent validation test for three commer-
cially available NIR solutions and concluded that none of the
three NIR solutions predicted dry matter (DM) concentration
with enough accuracy. Additionally, the authors reported
that NIR-predicted forage nutritive value estimates were
not accurate for fiber components (i.e., acid detergent fiber
[ADF] and aNDF) of haylage, corn silage, and total mixed
rations, while CP concentration results were mixed. Le Cocq
et al. (2022) also reported results of an independent validation
of four commercially available NIR solutions to determine
nutritive value of haylage samples and concluded that the
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results were not reliable for on-farm applications. The lack of
publicly independent evaluations of the relative effectiveness
of NIR solutions currently on the market, particularly for
field applications, is a significant concern. Additionally,
the unvalidated use of handheld NIR instruments in forage
research studies, which was noted by Cherney et al. (2021),
highlights an important gap that must be addressed to ensure
the reliability and accuracy of reported findings.

Conducting an independent validation—comparing
laboratory-measured to NIR-predicted values—is the ulti-
mate standard for assessing the accuracy and reliability of
NIR solutions. This process not only verifies the utility of
the application but also enhances the interpretation of results.
Independent validation is essential not only during calibration
development but, most importantly, for end-users who rely
on NIR predictions from service providers or resulting from
pre-loaded calibrations in NIR solutions. Validation can be
accomplished by comparing laboratory-measured to NIR-
predicted values using samples that meet two requirements.
First, the samples for the independent validation exercise
were not included in the calibration of the NIR model and,
second, the samples represent the population being analyzed
and cover the range of NIR-predicted values.

4 PERFORMANCE METRICS

Eleven items were proposed by Williams et al. (2017) when
reporting the results of an independent validation. Among
these were the global and average neighborhood Mahalanobis
distances, metrics used to assess spectral outliers and to define
the population boundaries. However, the application of these
two metrics is limited to specific software packages, and their
inclusion is not necessarily indicative of the overall perfor-
mance of the validation exercise, nor are they universally
applicable across all contexts as was acknowledged by Shenk
and Westerhaus (1991).

Fearn (2002) discussed the utility of various statistical
metrics for evaluating the performance of NIR calibrations,
including standard error of prediction (SEP), ratio of standard
error of performance to standard deviation, range error ratio,
and coefficient of determination (r2). He highlighted SEP as
a straightforward and reliable measure of a model’s predic-
tive accuracy for future samples and emphasized that ensuring
linearity in predictions and reporting SEP alone is sufficient
for evaluating the performance of an NIR solution in valida-
tion exercises. The magnitude of the SEP will depend on how
well the independent validation samples are represented by
the samples that were used in the calibration step.

Windham et al. (1989) suggested that SEP values within
two times the standard error of the laboratory analysis
(SEL)—which represents the standard error of replicate anal-
ysis by the laboratory—are acceptable. The authors also
indicated that if the SEP in validation is too large, then the

source of the variation should be identified and potentially
removed. As a reference, SEL varies by constituent; for exam-
ple, ≤3, 6, 12, 9, 15, and 20–37 g kg−1 for DM concentration,
CP, ADF, acid detergent lignin, NDF, and in vitro true DMD,
respectively, and is preferably half of these values (Shenk
et al., 1981; Templeton et al., 1983; Windham et al., 1989).
Across several portable and benchtop-type NIR solutions,
reported fit statistics in validation include: for CP, r2 values
as high as 0.98, SEP values as low as 7.9 g kg−1, and bias as
low as ±0.3 g kg−1; for in vitro true digestibility, r2 values as
high as 0.97, SEP values as low as 23.8 g kg−1, and bias as
low as ±1.8 g kg−1; for an NDF and ADF, r2 values as high
as 0.96 and 0.93, SEP values as low as 19.2 and 14.2 g kg−1,
and bias as low as ±0.3 and ±0.9 g kg−1, respectively (Acosta
et al., 2020; Berzaghi et al., 2021).

Based on the previous information, NIR-predicted esti-
mates of forage nutritive value are expected to be nearly
identical or highly similar to laboratory-measured values,
with performance fit statistics such as r2 approaching 1,
low SEP, bias close to 0, and a slope of the regression line
near 1 with an intercept close to 0 (Abrams et al., 1987;
Acosta et al., 2020; ISO, 2017; Windham et al., 1989). How-
ever, acceptable fit statistic metrics appear to be specific
to the field of study. For instance, working with soil data
and using r2 as a fit statistic to evaluate NIR calibration
performance, Malley et al. (2004) proposed four categories:
excellent (r2 > 0.95), successful (r2 = 0.90–0.95), moderately
successful (r2 = 0.8–0.9), and moderately useful (r2 = 0.7–
0.8), while noting that even calibrations with r2 < 0.7 may
still be useful for screening purposes. Chang et al. (2001),
also working with soil data, categorized calibration success
into three groups: A (r2 = 0.8–1.0), B (r2 = 0.5–0.8), and
C (r2 < 0.5). Nduwamungu et al. (2009) summarized guide-
lines proposed by seven different authors for assessing NIR
calibration accuracy for soil data. Considering these find-
ings, NIR-predicted values must be “sufficiently” correlated
and unbiased relative to laboratory-measured values to ensure
their practical utility. However, the achievable and accept-
able level of sufficiency varies across fields of application.
While there appears to be a general desire for a single statistic
that measures in some absolute way how “good” a calibra-
tion is (Fearn, 2002), no universally accepted standard exists.
Instead, a comprehensive assessment of multiple factors is
required.

A scatter plot (biplot) of the laboratory-measured versus
NIR-predicted values (Figure 1) provides a visual assessment
for evaluating the (expected) linearity and overall agreement
between the two datasets, enhancing the interpretation and
qualification of results (Dardenne, 2010; Fearn, 2002; ISO,
2017). This visualization helps identify trends, deviations, or
inconsistencies, serving as a useful internal quality assurance
measure for researchers. However, such plot is typically not
to be included in the final publication, as it is more suited for
internal validation and ensuring data reliability.
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(a) (b)

(c) (d)

(e) (f)

F I G U R E 1 Laboratory-measured versus near-infrared reflectance (NIR)-predicted values (a–f). Dotted line represents a reference line of slope
1. The red (solid) line is the fitted linear regression. SEP, standard error of prediction.

Using simulated data, Figure 1 demonstrates how a visual
assessment of the relationship between laboratory-measured
and NIR-predicted values can reveal inconsistencies over-
looked if relying on isolated fit statistics. Notably, panels b, c,
d, and e share identical r2 values; however, the NIR-predicted
values differ substantially from the laboratory-measured
values with bias ranging from −19.5 to 14.5. Although panel
f has a lower SEP value compared to panels b, c, d, and e,
the relationship is not linear. Panel a represents a desirable
outcome.

5 SUGGESTED GUIDELINES FOR
REPORTING NIRS-PREDICTED VALUES

When reporting NIR spectroscopy as the methodology for for-
age nutritive value, it is suggested that the following items
should be included:

(1) A description of the reference analytical methods used
to develop NIR models. This information should always
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accompany the description of the NIR-predicted response
variables as it is critical to contextualize the results. For
example, if the NIR solution determines concentration of
N in the plant tissue, the authors could include: “Concen-
tration of N was analyzed by dry combustion using XYZ
equipment and XYZ protocol after samples were ball
milled” and provide the appropriate references. Ideally,
SEL for each reference method should be provided.

(2) Fit statistics of the independent validation exercise
includes the following:
(a) The number of samples (n) used in the validation

exercise. At least 10–20 independent validation sam-
ples that represent the population and cover the
range of NIR-predicted values should be used in the
determination of bias, slope, and SEP (ISO, 2017;
Windham et al., 1989).

(b) The SEP and bias are estimated as follows:

Let di be the difference between the laboratory-measured
values minus NIR-predicted values for the ith sample. Then,

SEP =

√∑(
𝑑𝑖

)2
𝑛

,

Bias =
∑(

𝑑𝑖

)
𝑛

,

where the sum, like all those that follow, is over all samples,
that is, from 1 to n (Fearn, 2002).

(c) The r2, slope, and intercept values of the fitted lin-
ear regression from laboratory-measured values
(y-axis) and NIR-predicted values (x-axis) (Fearn,
1998).

The five fit statistics of the independent validation exercise
(i.e., SEP, bias, r2, slope, and intercept of the linear regres-
sion), including the description of the validation set (n), can be
reported in the text of the article in the materials and methods
section where the use of the NIR technology is described.

Statistical analyses of treatment effects from experimen-
tation are warranted only after the researcher verifies the
usability and accuracy of the NIR-predicted values by col-
lectively evaluating the fit statistics from the independent
validation exercise, with emphasis on the word “collectively.”
Emphasizing a collective assessment helps prevent cases like
the higher r2 values seen in panel e (Figure 1), or lower
SEP values seen in panel f (Figure 1), from being mistakenly
prioritized over the other fit statistics. This approach helps
researchers make well-informed interpretations of results.

6 SUMMARY AND CONCLUSIONS

NIR spectroscopy has been extensively validated as a rapid
tool for assessing forage nutritive value, with its roots in the
foundational work of Norris et al. (1976) and subsequent
advancements through the USDA NIRS Forage Network.
Despite technological progress, including the development
of handheld portable devices and diverse software platforms,
the accuracy of NIR predictions cannot be assumed because
a NIR solution produces a number. Validation by compar-
ing laboratory-measured versus NIR-predicted values, using
samples outside the calibration dataset, remains essential to
identify potential anomalies and assess the accuracy of NIR-
predicted values. This step is critical for users who receive
results from service providers or who use pre-loaded cali-
brations. We provided specific guidelines and justification
for what items should be reported in research projects when
using NIR technology. Adherence to these practices ensures
robust NIR data quality, paving the way for valid experimental
analyses and broader adoption of this promising technology.
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