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Abstract
We investigate the resonant regime of a mesoscopic cavity made of graphene or a doped beam splitter. Using Non-Hermitian
Quantum Mechanics, we consider the Bender-Boettcher assumption that a system must obey parity and time reversal
symmetry. Therefore, we describe such system by coupling chirality, parity, and time reversal symmetries through the
scattering matrix formalism and apply it in the shot noise functions, also derived here. Finally, we show how to achieve the
resonant regime only by setting properly the parameters concerning the chirality and the PT symmetry.
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1 Introduction

Many current investigations propose Hermitian models to
describe dissipative processes in order to maintain the
Dirac’s assumption and obtain real observable values [1–
3]. Although it has been demonstrated to be a sufficient
condition to obtain acceptable numbers, it has never been
proven that it is necessary. For instance, non-Hermitian
Hamiltonians are treated as a standard technique to describe
open systems with dissipative processes [4, 5], and the
most known example is the radioactive decay [6]. Beyond
that, there is an attempt of a possible generalization of
quantum mechanics postulates for which the open systems
may be described by parity and time reversal invariant
Hamiltonians.

In general, parity and time reversal symmetry (PT) has
been used as a physical artifice very useful to establish
selection rules and to settle some properties of a quantum
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system. These features allowed one to predict fundamental
particles, e.g., the kaons, and to engender philosophical
debates in the very foundations of physics, as the time arrow
problem and, concomitantly, the PT-symmetry description
of quantum mechanics.

The latter was proposed by Bender and Boettcher [7]
when they analyzed a non-Hermitian Harmonic Oscillator
Hamiltonian and figured out that its spectrum is entire
real, unless the PT-symmetry is spontaneously broken. Ever
since, a plenty of works in this matter were published,
both theoretically and experimentally, indicating that might
be possible to obtain acceptable quantum mechanics using
such assumption. Important application of PT symmetry
in optics were developed. In particular, we mention two
coupled PT symmetric waveguides: a PT symmetric
Bragg scatterer and a PT microring laser [8, 9].

Moreover, fundamental symmetries, such as time rever-
sal, spin rotation, and chirality, must be considered to
describe cavities with a large number of resonances (e.g.,
heavy nuclei). Accordingly, the treatment given to this com-
plex systems is to analyze their symmetries, ignoring its
detailed internal properties [10]. The different combination
of the absence, or presence, of these symmetries forms the
tenfold Cartan classes [11]. In this way, it turns out to be
natural to study systems such as mesoscopic cavities in the
view of Bender-Boettcher formalism.

In principle, for a complex system, the resulting
Hamiltonian must be random, but here, we address
a deterministic behavior to the system for simplicity,
which will allow the study of both quantum mechanical
formalisms. We approach the problem by the scattering
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matrix theory, which seems the most simple way to couple
the desired symmetries. In this paper, we restrict ourselves
to the effect caused by the coupling of chirality and/or PT-
symmetry. We chose such couplings because, as will be seen
throughout the manuscript, chirality plays a very important
role in modern mesoscopic cavities.

Since the characteristic scattering matrices are obtained,
we derive the shot-noise functions which act as observables
to quantify the coupled symmetries. Then, we demonstrate
how the resonance regime condition of such systems can be
achieved and its dependence with parameters which govern
the degree of symmetry. We further find corrections to
the transport functions of a PT cavity tuning the relative
chirality parameter.

2 ScatteringMatrix: Chirality, Parity, and
Time Reversal

We begin by introducing the chiral symmetry and its
applications to physics. For a two-dimensional bipartite
lattice system, there is a twofold degeneracy in the
spectrum. It is said that the system supports a chiral
symmetry and may be described by the off-diagonal
Hamiltonian [12]

H =
(

0 A

A† 0

)
(1)

The off-diagonal terms A are called hopping matrices,
since one considers the transition between the sublattices.
Now we introduce the chiral operator, Ĉ, which brings
up a degeneracy in each energy spectrum level due to the
bipartite lattice{
H, Ĉ

}
= 0,

H = −ĈHĈ. (2)

Comparing (2) with (1), the chiral operator can be
represented by the matricial form

Ĉ =
(
IN 0
0 −IN

)
. (3)

These features about the chiral operator are used to explore
the topological states of condensed matter systems, such
as crystalline [13] and Chern insulators [14]. Here, we
investigate graphene [15], another important system which
we will consider in this paper as the representative of
the chiral systems, whether for pure physical treatment or
technological applications.

The graphene is pictured in a honeycomb structure made
of carbons in each vertex, as depicted in Fig. 1, and can be
quantified by the Hamiltonian (1). This structure results in
the chiral symmetry (2). Physically, the latter introduces the
coexistence of a electron-hole pair in the Dirac Sea. In fact,

Fig. 1 Honeycomb lattice model. We can see the bipartite lattice by
the different colors depicted, although they are all carbon

it was used to study some important theoretical issues about
the transport in graphene, such as Klein paradox [16] and,
for our concern, to study the charge conjugation symmetry.
Here, we intend to study the transport properties of graphene
considering further the parity and time reversal symmetries.
A very straightforward way to couple these symmetries
together is through the scattering matrix formalism, which
we will develop now.

Considering a generic system with α ideal leads coupled
to a cavity. The leads will transport carries from the
reservoirs to the cavity, and also from the cavity to the
detectors. For this reason, the solution for the lead α can be
written as

ψα(x, y) =
Nα∑
n=1

(a(α)
n ψ−(α)

n + b(α)
n ψ+(α)

n ), (4)

where we consider the cavity (scattering center) as the ref-
erence point. The coefficients b

(α)
n and a

(α)
n are generically

called the output and input amplitudes, respectively, while
Nα is the number of open channels in the α-th lead. The
wave functions ψ

±(α)
n are plane waves since we are assum-

ing very far detectors (and emitters) from the cavity. We can
represent the scattering picture of (4) assuming that the out-
put amplitudes result from an unitary transformation of the
input amplitudes,

B = SA, (5)

where A and B stand for the column vector of input and out-
put amplitudes, respectively and S is the scattering matrix
which provides the relation between these amplitudes. We
set the S matrix as unitary, (i.e., SS† = I) in order to pre-
serve the probability current. The scattering matrix fulfills
all constraints because it accounts for all possible interac-
tions that affect the transport properties of the system. Since
we are treating the graphene case, the scattering matrix must
fulfill another constraint due to chirality, which is [11]

S = �zS
†�z. (6)
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We can establish (6) from (2) adopting a Hamiltonian-
dependent model to the scattering matrix (e.g., Mahaux-
Weidenmüller scattering model [5]), we recover S by the
substitution S(H, E) → S(−�zH�z, −E). We turn our
attention to the quantitative aspect of the scattering problem.

Usually, one may write the scattering matrix’ entries as

S =
(
r t′
t r′

)
, (7)

with r, r′ and t, t′ representing the reflection and
transmission blocks of S, respectively. We can apply
the scattering formalism to the simplest graphene setup,
consisting of two incident particles in different leads, each
one with a single open channel. The graphene can be viewed
as a scattering center which allows the particles to be
transmitted or reflected to detector leads, as depicted in the
Fig. 2.

Once we establish the conditions that reproduce the
graphene setup, we can use (5) to write its scattering
equation according to Fig. 2,
⎛
⎜⎜⎝

b1

b2

b3

b4

⎞
⎟⎟⎠ = eiϕ

⎛
⎜⎜⎝

0 0 r∗ t∗
0 0 t∗ r∗
r t 0 0
t r 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

b1

b2

b3

b4

⎞
⎟⎟⎠ = Sgph

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠ , (8)

Fig. 2 Graphene as the scattering center transmitting two particles of
different leads

which r and t express the reflection and transmission
amplitudes of the mirror, respectively. The phase ϕ,
evaluated to [0, π/2], can be viewed as a degree of chirality.
The maximum chirality is achieved setting ϕ = π/2 when
(6) is fulfilled, physically the phase ϕ is the presence of
impurities or doping in the graphene’s structure [17]. For
bosons transported through the cavity, this quantity plays
the same role as Y. Tang and A. Cohen defined Optical
Chirality [18]. For ϕ = 0, we have the Hanbury Brown-
Twiss interferometer (HBT) [19]. The 4 × 4 scattering
matrix in (8) takes into account the backscattering in
lead 3 and 4, resulting in non-trivial values to b1 and b2

which will emerge when we introduce barriers in each
lead. Also another interesting fact we observe is that Sgph

obeys the chiral symmetry condition (6). For our conceptual
proposal, without loss of generality, we set the reflection
and transmission probabilities of the cavity as equivalent,
i.e., −r = it = √

2/2. In order to find the probabilities
to detect both particles in lead 3 or 4 (P(33) and P(44),
respectively), and one particle in lead 3 and 4 (P(34)), we
consider each probability amplitude in (8) as field operators
acting in the vacuum state. Observing the setup depicted in
Fig. 2, the input state can be written as the creation operators
â

†
1 and â

†
2 in the vacuum state. Then, one can calculate the

probability to detect both particles in the same, or different,
arms taking the square modulus of the projection of such
input state and the respective state of interest, i.e., P(ij) =
|〈0|b̂i b̂j â

†
1 â

†
2 |0)〉|2. Using (8) and the commutation relations

for fermions, or bosons, the probabilities of detection in the
output arms are given by

P(33) = P(44) = 1

4
(1 − ε|I |2), (9)

P(34) = 1

2
(1 + ε|I |2). (10)

Equations (9) and (10) are valid for both fermions and
bosons and the parameter ε inform two possible algebras
used: if ε = 1, we have the fermionic case, and, if ε =
−1, we have the bosonic’s. Furthermore, I is the overlap
between the incident particles states which correlates with
each other due to their indistinguishability, I informs the
simultaneity which the particles were emitted into the
system: if I = 1, the particles are emitted exactly at the
same time, whereas I = 0, the particles are emitted with
a sufficiently large time delay. Despite the present system
is the simplest case of a graphene setup, in the perfect
overlapped situation, it manifests the very known Hong-
Ou-Mandel (HOM) effect [20]: to the bosonic case, we
observe a bunching behavior of the carriers, to fermions,
anti-bunching. The latter is known as eletronic HOM effect
[21, 22].

Now, we start the formal analysis to deduce the
above system with PT symmetry. In order to explore the
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PT-symmetry in the previous experiment, we need to
implement a amplifying-absorber mechanism [24] in order
to find means to break parity and time reversal symmetries,
thus, performing an extension of the one dimensional case
[25], we couple two amplifying sections, in leads 1 and 2,
with the scattering matrix (Fig. 3)

(
b′
i

ai

)
=

(
0 t0
t0 0

)(
a′
i

bi

)
,

(
b′
i

ai

)
= S0

(
a′
i

bi

)
, (11)

where t0 is an experimental parameter which rules the
amplifying rate section and i = 1, 2. In order to maintain
the PT-symmetry, it is necessary to balance the opposite arm
by coupling two absorber sections in leads 3 and 4. The
scattering equation is given by the result of the parity and
time reversal operators, P and T , by acting on S0. Following
the same procedure developed in [25] to determine the
form of such operators in the one dimensional case, we
have

(
b′
i+2

ai+2

)
= PT S0

(
a′
i+2

bi+2

)
,

(
b′
i+2

ai+2

)
= σx(S

∗
0 )−1σx

(
a′
i+2

bi+2

)
,

(
b′
i+2

ai+2

)
=

(
0 1

t∗0
1
t∗0

0

)(
a′
i+2

bi+2

)
, (12)

where σx is the Pauli matrix. Equation (12) is expected
to hold since we adopted the solution (4) to a resonator
[26]. We complete the coupling of the sections in graphene

Fig. 3 Amplifying-absorber sections and barriers coupling to the
graphene setup [25]

setup substituting a and b of (11) and (12) in the graphene
scattering equation (8), and we get⎛
⎜⎜⎝

b′
1

b′
2

b′
3

b′
4

⎞
⎟⎟⎠ = −eiϕ

√
2

2

t0

t∗0

⎛
⎜⎜⎝

0 0 1 −i

0 0 −i 1
1 i 0 0
i 1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a′
1

a′
2

a′
3

a′
4

⎞
⎟⎟⎠ . (13)

We note that the scattering matrix in (13) no longer
reproduces the Chiral symmetry as in (8), but (13) still
reproduces the same outcome of the standard graphene
setup, (9) and (10), as will be seen in Section 4. Although
we do recover former symmetry fixing the strong condition
to the sections Im(t2

0 ) = 0, hence the imaginary part of
t2
0 is responsible for the crossover between the cases with

graphene and the graphene-PT. Still working on Fig. 3, we
couple a tunneling barrier in each arm, aiming to explore the
resonant regime. The scattering equation of the barriers is(

b′′
j

a′
j

)
= −

( √
1 − 	 i

√
	

i
√

	
√

1 − 	

)(
a′′
j

b′
j

)
,

(
b′′
j

a′
j

)
= S	

(
a′′
j

b′
j

)
, (14)

where 	 is the barrier’s transmission probability and j =
1, 2, 3, 4. Proceeding as in the previous case, we substitute
a′ and b′ in (13), and after some algebra, we find the
scattering matrix

ST = 1

1 − e2i(ϕ+2θ)(1 − 	)

⎛
⎜⎜⎝

s 0 s′ −is′
0 s −is′ s′
s′ is′ s 0
is′ s′ 0 s

⎞
⎟⎟⎠ , (15)

where we defined

s = √
1 − 	

[
e2i(ϕ+2θ) − 1

]
, (16)

s′ = ei(ϕ+2θ)	. (17)

where we have made the complex variable substitution
t0 = |t0|eiθ . Equation (15) represents the scattering matrix
which combines the graphene scattering experiment with
parity and time reversal symmetries. One may argue that
the barriers would affect the symmetry in each lead of (13),
however it is not an issue since S	 is invariant under PT
transformation; S	 = PT S	 , as one can verify. Concerning
the strong condition of parity and time reversal, the system
will not be affected by such quantities when θ = nπ/2, for
n = 0, 1, . . . ,. This can be viewed as a special case where
no phase is gained due to the amplification or attenuation
due to the sections. Such interpretation will aid us to study
the resonances of the above system. Also, we recover Sgph

in (8) when we fix such values of θ and 	 → 1, as expected,
since there are no backscattering effects.

Although we have represented the system in a fairly
simple form through the scattering matrix of the (15), some
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techniques are very cumbersome to be used to determine
its spectrum. One method would be immerse the system
in a heat bath [25, 27, 28], and evaluate the response of
the system by the noise due to the coupling bath-system
using the fluctuation-dissipation theorem [29] in order to,
finally, analyze the attenuation of the output amplitudes in
the detection leads [30] where it will detect a resonance.
Clearly, this method is very hard to implement in the four
leads detection apparatus. Henceforth, we can approach
such issue by the noise functions using the scattering
formalism.

3 The Noise Functions

We begin the description of the formalism considering the
whole system composed by reservoirs, leads and the cavity
which is under investigation. The reservoirs will provide
the particles to be transported through the system and its
statistics, given by the Fermi-Dirac distribution for the
fermionic case, or by the Bose-Einstein distribution, for the
bosonic’s. The leads are responsible for the propagation of
the emitted particles to the cavity. We can solve the two-
dimensional Schrödinger equation in the leads considering
the x-axis the direction of propagation and the y-axis as the
transversal modes, and represent the latter behavior by the
single-particle quantum field operator given by

�̂(�rα, t) =
N∑
n

∫ ∞

0
dknψ(kn, xα)χn(yα)âα(kn)e

− E(kn)
�

t

(18)

χαn are the transversal eingenfunctions, ψ(kαn, x) some
function that concern all the propagating quantities of the
n-th channel beside âαn which is the destruction operator
which fulfill the standard fermionic(ε = 1) and bosonic(ε =
−1) algebra

âαnâ
†
βm + εâβmâ†

αn = δαβδ(m − n). (19)

For our purpose, it is necessary discard the temperature in
this problem and reduce the problem to the low frequency
limit. Although it is an oversimplification, it will be enough
to explore the effect due the symmetries in the transport
of particles. These assumptions will reflect in the noise
description of the problem, physically, the properties of
the system will be given only by the transmission of the
particles and its overlap, or indistinguishability degree. It
will reflect in the field operator (18) as [31]

�̂(xα, t) =
∫

dkαψ(kα, xα)â(kα)e−i E
�

t . (20)

We observe that the field operator creates a one mode
particle in the α-th lead. The field operator of (20) will act

in Fock space, since we are interested in the multiplet case.
As we settled the usual destruction field operator, now it is
possible create an input state to interact with the quantum
dot, as in [23]. We inject a particle in lead 1 and 2 then we
have the input state

|�〉 = �̂†(x1, t)�̂
†(x2, t)|0〉 (21)

Since we intend to explore the properties by the noise,
we have to represent an observable related to the particle’s
transport, in order to find the noise of the process, we recall
for current operator given by

Îα(t) =
∫

dxαT̂
[
�†(xα, t)�(xα, t)

]
, (22)

where T̂ is the normal ordering operator. As we are dealing
only with processes of transmission of the particles after
interact with the quantum dot (15), one can determine the
possible outcomes through the calculation of the correlation
function, given by [32]

Sαβ(t) = 1

2
〈�Îα�Îβ + �Îβ�Îα〉 (23)

where �Îα = Îα − 〈Îα〉 is the fluctuation of the current
operator at the lead α and the state that evaluate Sαβ(t) and
�Iα is given by (21). With the aforementioned assumptions,
we can use the Wiener-Khinchin theorem in (23) to obtain
a fairly simple expression to the spectral density at low
frequencies [33]

Sαβ(ω) = 〈�Iα�Iβ〉ω, (24)

which has the same form of the probability functions P(ij).
In (24), Iα is the current defined in the frequency domain

Iα(ω) = 1

2π

∫
Iα(t)e−iωtdt (25)

The above analysis was necessary in order to identify
the correlation function, e.g., (9) and (10), as a noise
function. This may extend the concept of noise to scattering
experiments. For the case of analyzing only the transmission
of the carriers, one must impose the low frequency regime,
then the correlation functions will be given by (24), which
we call shot noise, or Poissonian noise, whether the carrier
is a fermion or a boson [34, 35]. As we are analyzing
the transmission properties due to the system depicted in
Fig. 3, it is necessary develop a scattering formalism of such
process to derive the respective noise functions, as we do
next.

Since we already obtained the scattering matrix (15) for
4 propagating leads with one channel each, we consider the
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scattering formalism with one channel per lead coupled to
the quantum dot, then we write down the relation between of
input and output amplitudes linked by the scattering matrix
entries

âi =
4∑

j=1

sij b̂j (26)

where sij is the scattering matrix entries. In fact, we
established (26) based on (5). Then, with an analogous
procedure used to derive (9) and (10), we project the input
state (21) on the outcome state of interest and take its
modulus square, we achieve all the possible configurations
of a 4 × 4 scattering matrix system given by

(
�Î(1,2,3,4)

)2 = |s1(1,2,3,4)|2|s2(1,2,3,4)|2
(

1−ε|I |2
)

, (27)

〈�Î1�Î(2,3,4)〉 = |s11|2|s2(2,3,4)|2 + |s1(2,3,4)|2|s21|2
−2ε|I |2Re

(
s11s2(2,3,4)s

∗
1(2,3,4)s

∗
21

)
,(28)

〈�Î2�Î(3,4)〉 = |s12|2|s2(3,4)|2 + |s1(3,4)|2|s22|2
−2ε|I |2Re

(
s12s2(3,4)s

∗
1(3,4)s

∗
22

)
, (29)

〈�Î3�Î4〉 = |s13|2|s24|2 + |s14|2|s23|2
−2ε|I |2Re

(
s13s24s

∗
14s

∗
23

)
. (30)

Equations (27)–(30) allow us to determine all possible out-
comes of any four terminal system, even with backscattering
and any symmetry embedded. It is important to note that
we no longer refer to the above correlation functions as
probabilities, P(ij), but as noise functions, 〈�Ii�Ij 〉. Such
equations immediately inform the shot noise of the sys-
tem, as we are considering the system at zero temperature
and low frequency. Finally, we extend our considerations to
both fermionic and bosonic cases through the index ε and
also considered the indistinguishability degree between the
particles by the overlap integral

I =
∫

dkdxψ∗(xa, ka)ψ(xb, kb). (31)

It is important to notice that applying (8) and (13) in the shot
noise equations, we immediately obtain the probabilities
(9) and (10), and recover the HOM statistics, as expected.
Another feature is that (27) shows that it still preserves the
exclusion principle for fermions, since we have a perfect
indistinguishable pair, I = 1, then the mean squared
fluctuation of the current operator is zero.

Having previously derived the graphene-like cavity with
PT symmetry scattering matrix, represented in (15), now we
can apply the scattering matrix elements in the shot noise

functions, (27)–(30), and obtain, after some algebra, the
graphene with PT symmetry statistics

(�Î1)
2 = (�Î2)

2 = 0, (32)

(�Î3)
2 = (�Î4)

2

= 1

4

	4

[
1 + (1−	)2 − 2(1−	) cos(ϕ + 2θ)

]2
(1 − ε|I |2), (33)

〈�Î1�Î2〉 = 4(1 − 	)2 [1 − cos(ϕ + 2θ)]2

[
1 + (1 − 	)2 − 2(1 − 	) cos(ϕ + 2θ)

]2
, (34)

〈�Î1�Î3〉 = 〈�Î2�Î4〉 = 〈�Î1�Î4〉 = 〈�Î2�Î3〉
= 2	2(1 − 	) [1 − cos(ϕ + 2θ)]2

[
1 + (1 − 	)2 − 2(1 − 	) cos(ϕ + 2θ)

]2
, (35)

〈�Î3�Î4〉 = 1

2

	4

[
1 + (1−	)2 − 2(1−	) cos(ϕ + 2θ)

]2
(1 + ε|I |2). (36)

If it is applied ϕ = 0, one will obtain the statistics of
a Hanbury Brown-Twiss apparatus embedded with parity
and time reversal symmetry [36]. Equations (33) and (36)
are the noise due to the full transportation of the carriers.
Equation (35) represents the transportation of one carrier
and the reflection of the other and (34) represents no
transport at all. In the HBT regime, one can achieve the
resonances setting the breaking PT symmetry condition to
θ : only the full transportation noise equations will be non-
trivial. Also, we can analyze how the slightest doping will
affect the resonant regime in the former case. Expanding
the above equations to the next non-trivial order of ϕ, one
gets immediately the corrections due to the backscattering
caused by impurities effects through the noise,

〈(�Itr )
2〉 = fε(I )

[
1 + 2

1 − 	

	2
ϕ2

]
, (37)

〈(�Ibs)
2〉 ∼ ϕ4, (38)

where fε(I ) is relative to the overlap term of the respective
function, 〈(�Itr )

2〉 is related to the noise functions
which describes the full transmission of the carriers,
and 〈(�Ibs)

2〉, is the noise functions with any type of
backscattering. It is interesting to note that in a resonant
regime(	 → 0) of a doped system border effects of the
cavity increase as corrections of the noise functions go up.
It is possible too make the same expansion around ϕ = π/2,
which will produce the noise functions with corrections due
to impurities in graphene.

Also, it is possible to find every resonant regime
condition of a more general system, as easily seen in the
above equations when cos(ϕ + 2θ) = 1, it will be obtained
through a relation between the PT-symmetry parameter and
the pureness degree of such a system

ϕ + 2θ = 2πn (39)

Equation (39) shows us that the true responsible for a full
transportation of the particles by the system is how the PT-
symmetry relates itself with the intrinsic symmetry, since
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the noise functions turn to be independent of transmission
barriers and the nature of the carriers. The generality of this
statement is not casual: if one is interested in another Cartan
class, it will be as possible to find the resonance condition
by a similar treatment addressed here.

Moreover, it is possible to obtain more possible physical
situations beside (39), as depicted in Fig. 4. As we
can notice, in order to have non-trivial values to the
backscattering noise equations, Fig. 4b, c, one must take
into account the values of the transmission barriers. When
the symmetry parameters do not fulfill (39), one can
identify transitions between the backscattering to the full
transmission case, and vice-versa, by varying 	.

From a practical point of view, the studying of the
relation between chirality and PT symmetry will reduce
the values of ϕ to its extremes(0 or π/2) and it will
given different quantization conditions when one reaches

the closed cavity. Analyzing the perfect chirality condition,
ϕ = π/2, and the resulting noise functions, we reach to
the new quantization condition to a graphene-like system
through the parity and time reversal breaking

θgph = nπ − π

4
. (40)

The result (40) gives the entire resonances points of a χ/PT
symmetric system, provided the existence of such constraint
between these two symmetries, the χ and the PT. Also,
we look at the direct effect of the PT symmetry on an
observable such as the shot noise and how a non-Hermitian
Hamiltonian formulation can assist to find the energies of a
system at any amount of doping.

There are some interesting features in graphene experi-
ment when we compare with the HBT and the HBT-PT case.
As was studied in [36], the usual HBT scattering matrix pos-
sess the Hermitian condition, following the basic postulates

Fig. 4 The noise functions (32)–(36). Apart from the extreme values 0 and 2π , the system become strongly dependent on 	
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of quantum mechanics. On other hand, the HBT-PT sys-
tem do not possess the latter condition, but does have the
parity and time reversal symmetry. When one adjusts the
HBT-PT sections in order to obey the condition Im(t2

0 ) = 0,
the usual HBT scattering matrix and correlation functions
are obtained, even in the presence of the barriers, which
indicates when the PT symmetry of the system is broken.
The situation is fairly different when we substitute the HBT
system by a graphene. We learned above that graphene
has the chiral symmetry expressed through the constraint
S = �zS

†�z, which causes the losing of hermiticity con-
dition of its scattering matrix, even though the correlation
functions are HBT-kind. Then, coupling the sections and
barriers, we lose the chiral condition and gain parity and
time reversal symmetry; however, when the sections obey
Im(t2

0 ) = 0, the system enters in resonance regime and
turn again chiral symmetric. Apparently, both HBT-PT and
graphene systems share the property of recovering their ini-
tial condition, Hermiticity and chirality respectively, when
we set Im(t2

0 ) = 0, but fundamentally they differ in its noise
functions. The former do not explicitly depends of the barri-
ers when we take away PT symmetry, this is clearly not the
case of graphene, which, in the same amplifying-attenuation
regime, depends directly of the tunnel barriers, as we can
see substituting in the noise equations the values ϕ = π/2
and θ = nπ/2, the latter being the resonance condition to
the HBT system.

4 Conclusion

In the present paper, we have analyzed a χ /PT symmetric
system, such as graphene where chirality refers to the
presence of a pair electron-hole, and encountered its
resonances through a simple mechanism of setting the
proper values of the quantities related to the symmetry of
such system. Furthermore, it was found that the correction
was due to the presence of impurity in a HBT-like system.
For experimental purposes, one can set an experimental
device symmetric by parity and time reversal following
the procedure pointed in [36], and may encounter its
resonances by the present procedure. Moreover, it is
important to remark that one can find the resonance regime
of any system, given its scattering matrix, just doing
the same analysis of the symmetry parameters, ϕ and
θ . Its possible either to construct further formulations of
scattering matrices, with other symmetry parameters, since
the proper constraint of the Cartan classes is fulfilled.
Besides, the formalism used here leans toward the profound
discussion of a more fundamental formulation of quantum
mechanics based in symmetry principles. Although we did
not discussed its proper implications, one can find some

insightful discussions in references [6, 7, 37–39]. Finally,
we envisage that the χ/PT symmetry may find applications
in microbiology and the DNA research in general.
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