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Abstract
This paper studies a Bayesian local influence method to detect influential observa-
tions in a partially linear model with first-order autoregressive skew-normal errors. 
This method appears suitable for small or moderate-sized data sets ( n = 200∼400 ) 
and overcomes some theoretical limitations, bridging the diagnostic gap for small 
or moderate-sized data in classical methods. The MCMC algorithm is employed for 
parameter estimation, and Bayesian local influence analysis is made using three per-
turbation schemes (priors, variances, and data) and three measurement scales (Bayes 
factor, �-divergence, and posterior mean). Simulation studies are conducted to vali-
date the reliability of the diagnostics. Finally, a practical application uses data on the 
1976 Los Angeles ozone concentration to further demonstrate the effectiveness of 
the diagnostics.

Keywords  Bayesian local influence method · Gibbs algorithm · Matrix differential 
calculus · Time series model

1  Introduction

In regression models, the assumption of independent and identically distributed 
errors is often made. However, e.g. Seber and Wild (1989) proposed that this 
assumption is unrealistic for time series data, where errors often exhibit serial cor-
relation. Autoregressive (AR) models are commonly used to address this issue 
in time series analysis. Additionally, real-world data may not follow a symmetric 
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distribution, and the skew-normal (SN) distribution proposed by Azzalini (1985) 
can be used to analyze asymmetric data.

Partially linear models (PLMs), widely used in various areas, combine both lin-
ear and non-linear components. Different methods, such as kernel smoothing and 
penalized splines, can be used to handle the non-linear components in these models. 
For example, a semiparametric model for longitudinal data in HIV seroconverters 
is proposed by Zeger and Diggle (1994), while a semiparametric regression model 
for air pollution time series is improved by Dominici et al. (2004) using generalized 
additive forms. Recent studies on PLMs are made by Ferreira et al. (2013); Ferreira 
and Paula (2017); Oliveira and Paula (2021); Cardozo et  al. (2022), and Ferreira 
et al. (2022a, 2022b).

On the other hand, local influence analysis is a valuable technique for statisti-
cal diagnostics and identifying influential observations. It allows us to scrutinize the 
impact of perturbations on the model fitting process. This method has been exten-
sively explored in previous research, particularly in the context of regression and 
time series models where normal or elliptical distributions are assumed by e.g. Cook 
(1986); Galea et al. (1997); Liu (2000, 2004) and Liu et al. (2022a). Furthermore, 
Paula et al. (2012); Ferreira and Paula (2017) and Ferreira et al. (2022b) and others 
have demonstrated the effectiveness of the method, by examining various alterna-
tives. Ferreira and Paula (2017); Ferreira et  al. (2022a, 2022b) extended the local 
influence analysis to PLMs with autoregressive SN errors. Liu et  al. (2017, 2020, 
2022b, 2023a, 2023b) delved into the application of local influence analysis in 
autoregressive models, when considering SN distributions as well.

While traditional local influence analysis has been successful in many models, 
it has limitations in terms of computational intensity, theorem proofs, and estima-
tion challenges in PLMs with non-Gaussian distributions. To address these limita-
tions, Bayesian methods have gained attention in statistical modeling tasks, offering 
advantages such as overcoming difficult theorems, reducing computational com-
plexity, and being suitable for moderate-sized datasets. Bayesian local influence 
techniques, including a general theory proposed by Zhu et  al. (2011), have been 
enriched. Tang and Duan  (2014) applied Bayesian local influence analysis to gen-
eralized partial linear mixed models for longitudinal data, while Dai et  al. (2019) 
discussed its application to spatial autoregressive models assuming a normal distri-
bution. Ju et al. (2022) extended the study by Dai et al. (2019) to the context of a SN 
distribution.

In this paper, we aim to provide statistical diagnostic methods in Bayesian local 
influence analysis for PLMs with first-order autoregressive SN errors for small or 
moderate-sized data sets. We construct three scales of Bayesian perturbation mani-
fold internal structures for perturbations of priors, variances, and data. Using the 
principles of local influence analysis, we conduct statistical diagnostics of the 
model. With the introduction of concepts such as prior and posterior distribu-
tions, Bayesian methods can successfully compensate for the limitations of classi-
cal methods for small- or moderate-sized data sets. In addition, Bayesian methods 
have some very good advantages: they skip cumbersome theorem proofs and reduce 
computational complexity. Finally, in the empirical sanalysis, we once again prove 
our point, obtaining results that are almost the same as those of classical methods. 
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Moreover, based on the previously obtained results of classical methods, we accu-
rately detect an influential observation and explain its cause using relevant knowl-
edge in geography.

The structure of this paper is as follows: Sect. 2 introduces two representations 
of the SN distribution and selects the simpler one. Section 3 introduces PLMs with 
first-order autoregressive SN errors, modeling the non-parametric part to facilitate 
Bayesian estimation. Section  4 presents Bayesian estimation, including likelihood 
function calculation, prior distribution specification, detailed posterior distribution 
calculation, and MCMC implementation. Section  5 introduces the theory of local 
influence analysis, focusing on three perturbations (priors, variances, and data) and 
three metrics (Bayes factor, � divergence, and posterior mean) to quantify the influ-
ence of perturbations on PLM-SNAR(1). Section 6 presents numerical simulations 
with a moderate-sized dataset ( n = 200 ), while Sect.  7 demonstrates an empirical 
study to validate the proposed method. Section  8 summarizes the paper and sug-
gests future research directions. The appendix includes additional content related to 
the model reduction and diagnostic matrices for perturbations involving priors, vari-
ances, and data.

2 � The SN distribution

If the probability density function (pdf) of the random variable Y has the following 
form (Azzalini 1985):

where �(∗) and Φ(∗) represent the pdf and cumulative distribution function (cdf) 
of the standard normal distribution, respectively, then we refer to Y to follow a uni-
variate SN distribution with location parameter � , scale parameter �2

A
 , and skewness 

parameter �A , namely Y ∼ SN(�, �2
A
, �A) . When �A = 0 , the distribution becomes a 

normal distribution.

Lemma 1  (Azzalini 1985) If Y ∼ SN(�, �2
A
, �A) , then Y

d
=� +

�A�A√
1+�2

A

��X0
�� + �A√

1+�2
A

X1 , 

where X0 and X1 are mutually independent standard normal random variables.

However, there is another representation of the SN distribution. If the pdf of the 
random variable Y has the following form (Sahu et al. 2003):

where �(∗) and Φ(∗) represent the pdf and cdf of the standard normal distribu-
tion, respectively, then we refer to Y to follow a univariate SN distribution with 

(1)f (y|�, �2
A
, �A) =

2

�A
�

(y − �

�A

)
Φ
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)
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S
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location parameter � , scale parameter �2
S
 , and skewness parameter �S , namely 

Y ∼ SN(�, �2
S
, �S) . When �S = 0 , the distribution becomes a normal distribution.

Lemma 2  (Ferreira et  al. 2022b) If Y ∼ SN(�, �2
S
, �S) , then Y

d
=� + �S

||X0
|| + �SX1, 

E(Y) = � +

√
2∕��S , where X0 and X1 are mutually independent standard normal 

random variables.

From Table 1, it is evident that employing the Azzalini (1985) representation of the 
SN distribution results in a more intricate form of the model’s coefficients. For compu-
tational ease, we utilize the representation proposed by Sahu et al. (2003) in this paper.

3 � PLM‑SNAR(1) model

The PLM-SNAR(1) model is defined as follows:

where Yi represents the response variable, xi = (1, xi1, xi2,… , xip)
⊤ represents the 

p + 1 linear explanatory variable values, � = (𝛽0, 𝛽1, 𝛽2,… , 𝛽p)
⊤ is the (p + 1) × 1 

vector of coefficients of the linear explanatory variables, ti represents the nonlinear 
explanatory variable, g(⋅) denotes a smoothing function, �i is the error term of an 
AR(1) structure with � as the AR(1) coefficient, and ei is the error to follow an iid 
SN distribution with zero mean, i = 1,⋯ , n . Like Ferreira et al. (2022b), we assume 
�0 = 0 in this paper.

To simplify the expression of the model, we can represent model (3) in matrix form 
as follows (the detailed proof can be found in the appendix):

where Yi represents the response variable, �1 = m1 , �i = mi + �(yi−1 − mi−1) , 
mi = wi

⊤� + z⊤
i
b , wi = (x⊤

i
,T⊤

i
)
⊤ is a (p + 3) × 1 vector, xi = (1, xi1, xi2,… , xip)

⊤ , 
Ti = (1, ti)

⊤ , � = (�⊤,�⊤
)
⊤ is a (p + 3) × 1 vector, � = (𝛽0, 𝛽1, 𝛽2,… , 𝛽p)

⊤ , 

(3)

Yi = xi
⊤� + g(ti) + 𝜖i,

𝜖i = 𝜌𝜖i−1 + ei, −1 < 𝜌 < 1,

ei
iid
∼SN(−

√
2∕𝜋𝜆, 𝜎2, 𝜆), i = 1, 2, 3… n,

(4)
Yi = �i −

√
2∕�� + �hi + �i,

�i
iid
∼N(0, �2

), i = 1, 2, 3… n,

Table 1   Comparison of two 
representations

Stochastic representation

Azzalini
Y

d

=� +

�
A
�
A√

1+�2
A

��X0
�� + �

A√
1+�2

A

X
1

Sahu
Y

d

=� + �
S

||X0
|| + �

S
X
1
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� = (𝛼0, 𝛼1)
⊤ , zi is the i-th row of the n × K matrix Z , Z = ZK�

−
1

2

K
 , b = �

1

2

K
u 

is a K × 1 vector, u = (u1, u2,… , uK)
⊤ , ZK is an n × K matrix with i-th row 

ZKi = {|ti − �1|3,… , |ti − �K|3} , �K is a K × K penalty coefficient matrix with k-
th row �Kk = {|�k − �1|3,… , |�k − �K|3} (to avoid overfitting), hi = |h0i| , �i = �h1i , 
h0i and h1i are mutually independent standard normal random variables, n is the sam-
ple size and K is the number of knots.

4 � Bayesian implementation

4.1 � Likelihood function

From model (4), we can get

We can observe that the sequence {yi} (i = 1,⋯ , n) has the Markov property from 
the above model. Therefore, we can express the likelihood function for an observed 
sample y = (y1, y2,… , yn)

⊤ by

where � = (�⊤, bT, 𝜎2, 𝜆, 𝜌)⊤.

4.2 � Prior distributions

In Bayesian statistics, specifying prior distributions for the parameters is crucial. 
These prior distributions reflect our prior beliefs about the parameters and can 
lead to more accurate parameter estimation. To refine the Bayesian model, we 
partition the parameter � = (�⊤,�⊤, bT, 𝜎2, 𝜆, 𝜌)⊤ into two components and spec-
ify separate prior distributions for each component - one for the parametric part 
and another for the non-parametric part.

4.2.1 � Parametric component

For setting prior distributions for the linear part of the model, a popular approach 
is to use conjugate prior distributions. In our case, following Ferreira et al. (2013), 
we choose to reparameterize � with 2�0 − 1 , where �0 ∈ (0, 1) follows a beta dis-
tribution. Specifying the prior distribution for the coefficient �0 poses a challenge. 

(5)
Y1��, b, �2, �, h1 ∼ N(m1 −

√
2∕�� + �h1, �

2
),

Yi� yi−1,�, b, �, �2, �, hi ∼ N(�i −

√
2∕�� + �hi, �

2
), i = 2, 3,… , n.

L(�|y) = f (y1|m1, �2, �, h1)
n
∏

i=2
f (yi| yi−1, yi−2,… , y1,�i, �2, �, hi)

= f (y1|m1, �2, �, h1)
n
∏

i=2
f (yi| yi−1,�i, �2, �, hi)

= (
√

2�)−n exp

(

− 1
2�2

[(y1 − m1 +
√

2∕�� − �h1)2 +
n
∑

i=2
(yi − �i +

√

2∕�� − �hi)2]

)

,



	 Y. Liu et al.

1 3

A uniform distribution is not suitable in this context, as it is more appropriate for 
random walk processes. Instead, we opt for a beta distribution, which is better suited 
for fitting autoregressive processes (Marriott and Newbold 1998). We choose the 
following prior distributions:

where Np denotes a p variate normal distribution, IGamma denotes an inverse 
gamma distribution, and Beta denotes a beta distribution.

4.2.2 � Non‑parametric component

Like Crainiceanu et al. (2005), we assume that the coefficients in the additive mix-
ture model are normally distributed

where � is a 2 × 1 vector, b is a 20 × 1 vector ( K = 20 ), Σ0 is a 2 × 2 positive definite 
matrix, I20 is a 20 × 20 identity matrix, and �b2 is a positive constant.

4.3 � The implementation of MCMC algorithm

4.3.1 � Posterior distribution

Now that we have computed the likelihood function and specified the prior distribu-
tions, the next step is to calculate the posterior distributions, so we obtain:

� ∼ Np+1

(
�0,Ω0

)
,

�2
∼ IGamma

(q0
2
,
q1

2

)
,

� ∼ N
(
��, ��

2
)
,

�0 ∼ Beta
(
a�0 , b�0

)
,

� ∼ N2

(
0,Σ0

)
,

b ∼ N20

(
0, �b

2I20
)
,

����, y, h ∼ Np+3

�
A���,A�

�
,

�2���2 , y, h ∼ IGamma
�q0 + n

2
,
q1 + l

2

�
,

����, y, h ∼ N(�p, �
2
p
),

�0���, y, h ∝ �0
a�0

−1
(1 − �0)

b�0
−1

exp

�
−

1

2�2

n�
i=2

[(2�0 − 1)(yi−1 − mi−1) − yi + mi

−

√
2∕�� + �hi]

�
,

b��
b
, y, h ∼ N20(Ab

�
b
,A

b
),
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where

Note that in this context, we use �par to refer to all parameters in � except for par. 
Once the posterior distribution is computed, we can employ it as the target distribu-
tion for sampling, thus obtaining estimations for various parameters.

4.3.2 � MCMC algorithm

For Bayesian practitioners, the MCMC algorithm stands as a potent tool, allow-
ing the extraction of samples from the posterior distribution for parameter estima-
tion. Moreover, it adeptly tackles computational hurdles, particularly in evaluating 

A� =

�
Δ

−1
�

+ 𝜎−2

�
w1w

⊤

1
+

n�
i=2

(wi − 𝜌wi−1)(wi − 𝜌wi−1)
⊤

��
−1

,

�� =Δ
−1
�
�0 + 𝜎−2

�
w1(𝜏1 +

√
2∕𝜋𝜆 − 𝜆h1)

+

n�
i=2

(𝜏i − 𝜌𝜏i−1 +
√
2∕𝜋𝜆 − 𝜆hi)(wi − 𝜌wi−1)

�
,

l = (w
⊤

1
� − 𝜏1 −

√
2∕𝜋𝜆 + 𝜆h1)

2

+

n�
i=2

[(w
⊤

i
− 𝜌w⊤

i−1
)Λ − 𝜏i + 𝜌𝜏i−1 −

√
2∕𝜋𝜆 + 𝜆hi]

2,

𝜇p =

𝜎2𝜇𝜆 − 𝜎𝜆
2
[(y1 − m1)(

√
2∕𝜋 − h1) +

∑n

i=2
(yi − 𝜇i)(

√
2∕𝜋 − hi)]

𝜎2
+ 𝜎𝜆

2
∑n

i=1
(

√
2∕𝜋 − hi)

,

𝜎2
p
=

𝜎2𝜎𝜆
2

𝜎2
+ 𝜎𝜆

2
∑n

i=1
(

√
2∕𝜋 − hi)

,

A
b
=

�
𝜎−2
b
I + 𝜎−2

�
z1z

⊤

1
+

n�
i=2

(zi − 𝜌zi−1)(zi − 𝜌zi−1)
⊤

��
−1

,

�
b
= 𝜎−2

�
z1(𝜉1 +

√
2∕𝜋𝜆 − 𝜆h1) +

n�
i=2

(𝜉i − 𝜌𝜉i−1 +
√
2∕𝜋𝜆 − 𝜆hi)(zi − 𝜌zi−1)

�
,

�
0
= (�⊤

0
, 0, 0)⊤,

�� = diag(Ω0,Σ0),

𝜏i = yi − z
⊤

i
b,

𝜉i = yi − w
⊤

i
�,

𝜏1 = y1 − z
⊤

1
b,

𝜉1 = y1 − w
⊤

1
�,

𝜌 = 2𝜌0 − 1.



	 Y. Liu et al.

1 3

complex integrals, by employing numerical approximations through Monte Carlo 
numerical integration. In this study, we leverage specific algorithms within the 
MCMC framework, such as the Metropolis-Hastings (MH) algorithm and Gibbs 
sampling (Albert 2007; Gelman et al. 2013).

As delineated in Sect. 4.3.1, explicit posterior distributions can be computed for 
all parameters except �0 . Consequently, all parameters except �0 lend themselves 
to parameter estimation via Gibbs sampling, given that Gibbs sampling mandates 
explicit posterior distributions for parameters. However, owing to the unattainabil-
ity of an explicit posterior distribution for �0 , the Gibbs sampling method proves 
impracticable. In this scenario, the MH algorithm emerges as the method of choice 
for sampling from the undetermined posterior distribution.

To streamline the integration of data and parameters from R into the WinBUGS 
program for MCMC sampling, we rely on the R package R2WinBUGS, as detailed 
in Sturtz et al. (2005). This integration facilitates seamless and efficient sampling in 
our Bayesian analysis (Fig. 1).

Building on the preceding context, we choose to employ the MH algorithm and 
the Gibbs sampling, a fundamental component of WinBUGS, with our correspond-
ing pseudo-code outlined in Appendix. To streamline the parameter estimation pro-
cess, we use WinBUGS for a single-step solution. This strategy proves efficient in 
exploring the target distribution, thereby enhancing the effectiveness of Bayesian 
analysis and parameter estimation.

Fig. 1   The operating process of Gibbs sampling using R2winBUGS
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5 � Bayesian local influence analysis

5.1 � Bayesian perturbation model and manifold

Under the assumption of regularity conditions, we can consider the perturbation 
model M = {p(y, �|�) ∶ � ∈ Rm

} as forming an m-dimensional Riemannian Hil-
bert manifold (Zhu et al. 2011). Let l(�) = ln[p(y,�|�)] , the tangent space T� of the 
manifold M is formed by all the elements in the tangent vector l̇(y,�|�) = 𝜕l(�)

𝜕�
.

Furthermore, under the fulfillment of regularity conditions, gij(�) , the element at 
the i-th row and j-th column of the matrix G(�) , constitutes the measure tensor of 
M, where

and E�[f (∗)] represents the expectation of f (∗) with respect to p(y,�|�).
In G(�) , the diagonal elements represent the perturbation values of the corre-

sponding elements in � . The value of gij(�)∕
√

gii(�)gjj(�) indicates the degree of 
correlation between �i and �j . If G(�0

)  is a diagonal matrix, it implies that different 
perturbations are mutually orthogonal, ensuring no interdependence among them. 
On the other hand, if G(�0

) is not diagonal, it would invalidate the diagnostic results.
To address this issue, we propose another perturbation vector 

�̃ = �0
+G(�0

)

1

2 (� − �0
) . This ensures that the estimated value of G(�̃) at point 

�0 is represented as C ∗ Im , where C is a positive constant and Im denotes an m × m 
identity matrix.

Based on this theoretical foundation and inspired by the work of Hao et al. (2019), 
we conducted research using three different approaches: prior perturbation, model 
and prior joint perturbation, and data and prior joint perturbation. These approaches 
allow us to effectively perform statistical diagnostic analysis in our study.

5.1.1 � Perturbation of priors

In Sect. 4.2, we have established the prior distributions for each coefficient. Now, we 
consider perturbations of the parameters, see Hao et al. (2019) and Appendix.

5.1.2 � Perturbation of variances

In the context of Bayesian local influence analysis, it is common to apply a small per-
turbation to the PLM-SNAR(1) model by modifying its variance �2 . Like Hao et al. 
(2019), this is achieved by rescaling the variance using perturbation coefficients, 
denoted as �i , resulting in the new variance �−1

i
�2 , see Appendix. The goal of this 

gij(�) =E�[��i
l(�)��j

l(�)] = −E�[�
2
�i�j

l(�)], i, j = 1, 2,… ,m,

��i
l(�) =

�l(�)

��i

,
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perturbation is to assess the impact of variance changes on the posterior distribution of 
the PLM-SNAR(1) model.

5.1.3 � Perturbation of data

Like Hao et al. (2019), we not only explore variance perturbations but also investigate 
the impact of data perturbations. The unique aspect of our data perturbation approach is 
that it preserves the original data structure while introducing perturbations. By employ-
ing this method, we can derive an updated posterior distribution and assess the model’s 
sensitivity and robustness to different variations in the input data. Data perturbations in 
this paper are categorized into the following two types: response variable perturbation 
and explanatory variable perturbation. This comprehensive analysis allows us to gain 
valuable insights into how the model responds to different types of data variations and 
enhances our understanding of its performance under various scenarios (we refer to 
Appendix for details).

5.2 � Local influence measure

Since Cook (1986) introduced the concept of local influence, it has become a pow-
erful tool for detecting influential observations in statistical models. Liu (2004) 
has previously validated its effectiveness, particularly in time series models. How-
ever, with the advancement of Bayesian statistics, traditional methods of local 
influence analysis may not be directly applicable to Bayesian models. Therefore, 
adopting the framework of Bayesian local influence analysis is more appropriate 
in this context.

According to Zhu et al. (2011), f (�) ∶ M → R
l represents the objective function, 

where commonly used objective functions include Bayes factor, �-divergence and pos-
terior mean. For a finite-dimensional manifold M , if �(t) is a geodesic on M with 
�(0) = �0 and �t�(t)|t=0 = h ∈ R

m , we can apply Taylor’s expansion to obtain 
f [�(t)] = f [�(0)] + f �

h
(0)t + o(t2) , where f �

h
(0) = ∇

⊤
f
h  , and ∇f = ��f (�(0)) . This 

expansion enables us to assess the impact of small perturbations on the objective func-
tion, allowing us to conduct local influence analysis in the Bayesian setting.

5.2.1 � First‑order influence measure

When ∇f ≠ 0 , we consider using the first-order influence measure. The first-order 
influence measure (FI) is defined in the h ∈ R

m direction by Zhu et al. (2011):

where G = G(�0
) and Wf  is a positive semi-definite matrix.

Specifically, for an appropriate perturbation �̃ , FI can also be written as:

FIf ,h = FIf (𝜔(0)),h =

h⊤∇fWf∇
⊤
f
h

h⊤Gh
,
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If the value of FIf ,h is larger, it indicates that the perturbation �̃ has a greater local 
influence on the model. This conclusion is based on the fact that the maximum value 
of FIf ,h is equal to the largest eigenvalue of G−

1

2∇fWf∇
⊤
f
G

−
1

2 , and the eigenvector 

corresponding to the largest eigenvalue of G−
1

2∇fWf∇
⊤
f
G

−
1

2 can be used to assess 
the robustness of the prior, influential observations, or improper sampling distribu-
tions, while also obtaining the worst perturbation direction corresponding to f (�̃) , 
the direction in which the objective function is maximally perturbed.

In order to evaluate FI
f (�̃),h objectively, we use the following first-order adjusted 

influence measure FICf (�0),h
 at �0 in an unit direction h :

where B = Q∕trace(Q) , and Q = G
−

1

2∇fWf∇
⊤
f
G

−
1

2 . By decomposing matrix B, we 
can obtain non-zero eigenvalues �1 ≥ �2 ≥ … ≥ �r and their corresponding eigen-
vectors e1, e2,… , er . The appropriate perturbation 𝜔̃ is reflected by the largest eigen-
value �1 , which means we can use the corresponding eigenvector e1 to detect the 
most significant perturbation. However, Poon and Poon (1999) proposed that evalu-
ating local influence solely by examining e1 is not sufficient. To address this limita-
tion, we can use the overall contribution vector of all eigenvectors associated with 
non-zero eigenvalues to estimate local influence: M(0) = �1e1

2
+ �2e2

2
+…+ �ner

2 , 
where ei2 = (e2

i1
, e2

i2
,… , e2

in
)
⊤ . It is easy to find that the j-th component of M(0) is 

equal to M(0)j =
∑r

i=1
𝜆ie

2
ij
= FICf (�̃0

)
= bjj , where bjj is the j-th diagonal element of 

the matrix B, j = 1, 2,… , n . Based on the studies of Zhu and Lee (2001) and Lee 
and Xu (2004), we use M̄0 + c∗ ∗ SM(0) as a benchmark, where M̄0 and SM(0) are 
the respective mean and standard error of M(0), and c∗ is a selected constant, which 
may depend on the specific application; c∗ = 2 is suggested by Zhu and Lee (2001).

A. The commonly used objective function used for first-order influence 
measure: Bayes factor

Modified from Hao et al. (2019), in the measure of the logarithmic Bayes factor, 
the distance between � and �0 can be expressed as:

where p(y|�) = ∫ p(y,�|�)d� . If we set Wf = I , then we can obtain:

FIf (𝜔̃),h|𝜔̃=𝜔0 =

h⊤G
−

1

2∇fWf∇
⊤
f
G

−
1

2 h

h⊤h
.

FICf (�0),h
= h⊤Bh.

BF(�) = ln[p(Y|�)] − ln[p(Y|�0
)],

∇BF = Ep(y,�|�0
)
{𝜕�ln[p(y,�|�0

)]},

hBF
max

=

G(�0
)

−
1

2
∇BF√

∇
⊤
BF
G(�0

)

−1
∇BF

.
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However, the vast majority of integrals in the world are difficult to compute. There-
fore, in order to compute ∇BF , we use the method mentioned in Sect. 4.3.2, using 
Gibbs sampling to estimate the statistic

where �(t) is obtained by sampling from the posterior distribution using MCMC 
algorithm, T is the number of samples.

5.2.2 � Second‑order influence measure

When ∇f = 0 , we consider using the second-order influence measure. For con-
venience of notation, we assume that the dimension of f (�) is 1, then we use Tay-
lor expansion f [�(t)] = f [�(0)] + 0 +

1

2
f ��
h
(0)t2 + o(t3) , where f ��

h
(0) = h⊤Hfh 

and Hf = �2
�
f (�(0)) . The second-order influence measure (SI) is defined in the h ∈ R

m 
direction by Zhu et al. (2011):

Specifically, for an appropriate perturbation �̃ , it can also be written as:

Similar to the first-order sensitivity measure, for the computation of the second-
order sensitivity measure, only the largest eigenvalue of G−

1

2HfG
−

1

2 and its corre-
sponding eigenvector need to be considered. We can also perform the same transfor-
mation as before on it:

where Bs = ��∕trace(��) and �� = G
−

1

2HfG
−

1

2 . For the selection of benchmarks, 
we can still use the same approach as in Sect. 5.2.1.

B. The commonly used objective function used for second-order influence 
measure: � -divergence

Modified from Hao et al. (2019), the �-divergence corresponding to the posterior 
distributions before and after perturbation � is defined as follows:

∇BF = Ep(y,�|�0
)
{��ln[p(y,�|�0

)]}

≈

1

T

T∑
t=1

��ln[p(y,�
(t)|�0

)],

SIf ,h = SIf (�(0)),h =

h⊤Hfh

h⊤Gh
.

SIf (�̃)),h|�̃=�0 =

h⊤G
−

1

2HfG
−

1

2 h

h⊤h
.

SICf (𝜔0),h
= h⊤Bsh,

D�(�) = ∫ �[R(�|�)]p(�|y)d�,
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where R(�|�) = p(�|y,�)
p(�|y)  , �(⋅) is a convex function, and �(1) = 0 . If �(⋅) is the loga-

rithmic function ln(⋅) , the �-divergence degenerates into the Kullback–Leibler 
(K–L) divergence, then

where a⊗2
= aa⊤, a = [a1, a2,⋯ , an]

⊤ . Similar to Sect.  5.2.1, H� can be approxi-
mated by MCMC sampling:

C. The commonly used objective function used for second-order influence 
measure: posterior mean

Modified from Hao et  al. (2019), the posterior mean of the function h(�) is 
defined as follows:

In this paper, we adopt the Cook’s posterior mean distance to characterize the effect 
of � on the posterior mean distance of h(�):

where �� =

[
Var(�(�|�))]−1 is the inverse of the posterior covariance matrix of h(�) 

with respect to p(�|y,�0) . When f (�) = ���(�) , we can get

The operational steps of the proposed Bayesian local sensitivity analysis method for 
solving the objective function above can be summarized as follows:

Step 1: Construct a Bayesian perturbation manifold.
Step 2: Calculate ∇f = ��f (�(0)),�� = �2

�
f (�(0)) , and G = G(�0

).
Step 3: If ∇f  is not equal to zero, then calculate the first-order influence meas-

ure. Otherwise, calculate the second-order influence measure.
Step 4: Determine whether the k-th point is an influential point for a given 

objective function f (�).

H𝜙 = 𝜙��

(1)E�0{𝜕�ln[p(�|y,�0
)]}

⊗2

= 𝜙��

(1)E�0{𝜕�ln[p(y,�|�0
)] − E�0{𝜕�ln[p(y,�|�0

)]}}
⊗2

= 𝜙��

(1)
[
E�0{𝜕�ln[p(y,�|�0

)]}
⊗2

− {E�0{𝜕�ln[p(y,�|�0
)]}}

⊗2]
.

H𝜙 =𝜙��

(1)
[
E�0{𝜕�ln[p(y,�|�0

))]}
⊗2

− {E𝜔0{𝜕𝜔ln[p(y,�|�0
))]}}

⊗2]

≈𝜙��

(1)
[
1

T

T∑
t=1

{𝜕�ln[p(y,�
(t)|�0

)]}
⊗2

− {

1

T

T∑
t=1

{𝜕�ln[p(y,�
(t)|�0)]}⊗2

]
.

��(�) = ∫ h(�)p(�|y,�)d�.

���(�) =
(
��(�) −��(�0)

)⊤
��

(
��(�) −��(�0)

)
,

∇h = 0,

�� = �∗

�

⊤
���

∗

�
,

��
∗

= Cov�0{h(�), 𝜕�ln[p(y,�
(n)|�0

)]}

≈

1

T

T∑
t=1

{h(�(t)
)𝜕�ln[p(y,�

(t)|�0
)]} −

[
1

T

T∑
t=1

h(�(t)
)

][
1

T

T∑
t=1

𝜕�ln[p(y,�
(t)|�0

)]

]
.
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Note: The selection of the objective function
Indeed, there is no one-size-fits-all criterion for selecting different objective 

functions or local sensitivity measures in Bayesian local influence analysis. The 
choice of objective function depends on the specific context and the target of the 
assessment.

For example, when evaluating the impact of perturbations on the posterior dis-
tribution, �-divergences are often preferred. On the other hand, if the focus is on 
assessing the impact of perturbations on model parameters, the posterior mean 
distance is commonly considered first.

Using different objective functions may lead to varying results in the final 
analysis. This variation is natural since different objective functions capture dif-
ferent aspects of the model or the perturbation’s influence. Researchers should 
carefully select the most appropriate objective function based on the specific 
research question and the desired insights. The flexibility in choosing objective 
functions provides a valuable tool in Bayesian local influence analysis, enabling a 
comprehensive understanding of the model’s sensitivity and robustness to pertur-
bations, see Tang and Duan  (2014).

6 � Simulation study

To investigate the effectiveness of the proposed method for diagnostics of PLM-
SNAR(1), we conduct a simulation study here.

We generate a sample of n = 200 based on the following model:

where x1i ∼ U(0, 1) , x2i ∼ U(1, 2) and ti ∼ U(0.6, 1.6) are used, with U indicating a 
uniform distribution.

To perform spline interpolation, we calculate the sample quantiles of t. The 
simulation includes two parts, namely parameter estimation and statistical diag-
nostics. Our focus is on statistical diagnostics in this section.

6.1 � Parameter estimation

For these parameters, the following prior distributions are set, with the intercept 
�0 not taken into consideration as in Ferreira et al. (2022b):

(6)

yi = 2x1i + 4x2i + cos(4�ti) exp
�
−

1

2
ti
2
�
+ �i,

�i = (2 ∗ 0.9 − 1)�i−1 + ei,

ei
iid
∼SN(−

√
2∕� ∗ 0.22, 0.972, 0.22), i = 1, 2, 3… 200,
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For each sample in our analysis, we utilize the MCMC algorithm and the poste-
rior distribution to calculate the parameter estimates. The resulting estimates for the 
parameters are as described in Table 2 and Fig. 2 (the sampling process is presented 
in Appendix):

These estimates provide valuable insights into the model’s behavior and help 
us understand the relationships between the variables under consideration.

In summary, our sampling process has yielded favorable results. The close 
agreement between the sample mean and the true parameter value demonstrates 
the effectiveness of our sampling approach. Additionally, the small standard error 
indicates the stability of our sampling process, particularly for moderate-sized 
samples. This confirms the effectiveness of Bayesian estimation in our analysis.

6.2 � Local influence analysis

Incorporating the MCMC algorithm, we conduct diagnostic work for the PLM-
SNAR(1) model using Bayesian local influence analysis. Following a similar pro-
cedure as described in Sect. 5, we subject the model to prior perturbation, variance 
perturbation, and data perturbation. Moreover, we use three objective functions 
(Bayes factor, �-divergence and posterior mean) to evaluate the influence measures. 
This comprehensive analysis allows us to assess the impact of small perturbations in 
the model and gain valuable insights into its behavior and sensitivity.

6.2.1 � Perturbation of variances (and priors)

Firstly, we perform the perturbation of variances. We choose to perturb at num = 50 
and num = 150 and the perturbation involves changing the corresponding ynum to 
ynum + 5�y , where �y is the standard error in generating y. The diagnostic results are 
displayed in Fig. 3.

(7)

�1 ∼ N(0, 100),

�2 ∼ N(0, 100),

�2
∼ IGamma(0.1, 10),

� ∼ N(0.2, 400),

�0 ∼ Beta(20, 1.5).

Table 2   Parameter estimates 
with the corresponding values 
used in the simulation study

Parameter True value Mean SD

�
1

2.00 1.97 0.19
�
2

4.00 4.01 0.20
� 0.97 0.89 0.10
� 0.22 0.24 0.68
�
0

0.90 0.91 0.02
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From Fig. 3, it is evident that we accurately diagnose the predetermined perturba-
tion points for all three measures, particularly at num = 50 and num = 150 , where 
the diagnostic results stand out significantly compared to other points.

Next, we delve into the simultaneous perturbation of variances and priors. We 
perturb the variances and, concurrently, adjust the linear parameter �1 and the shape 
parameter �2 (as the parameters of the first-order autoregressive assume a similar 
role to the linear parameters, we solely perturb the prior distribution of the linear 
parameters). The perturbation process entails two steps. First, we change the corre-
sponding ynum to ynum + 5�y (where �y is the standard error in generating y). Second, 
we modify the prior distribution of �1 to N(0,N(0, 3 × 107) , the prior distribution 
of �2 to IGamma (0.1,IGamma (0.1, 10−6) . The diagnostic results are presented in 
Fig. 4.

Upon examination, it is observed that the measurement method of the Bayesian 
factor is not currently effective in diagnosing the prior perturbation part. However, 
with an increase in the perturbation of the prior part, the Bayesian factor contin-
ues to be effective in diagnosing the prior perturbation part. Figure 4 illustrates our 
accurate diagnosis of predetermined perturbation points for all three measures. Par-
ticularly noteworthy are the two locations at num = 50 and num = 150 , as well as 

Fig. 2   Graph of non-parametric thin-plate spline fit showing adjusted curves (light gray lines) and true 
curves (dark gray lines). Y-axis represents the non-parametric component, and X-axis represents ‘t’

Fig. 3   Schematic diagrams of the Bayesian local influence analysis for the three measures under the per-
turbation of variances
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for the parameter �1 , where diagnostic results stand out significantly compared to 
other points. Additionally, it is evident that the �-divergence and Bayes factor meas-
ure may not be the optimal choices for diagnosing prior perturbation; the Posterior 
mean appears to be the most effective choice.

6.2.2 � Perturbation of data

Then, we perform a data perturbation on the response variable. We choose to per-
turb at num = 80 and num = 180 and the perturbation method involves changing the 
corresponding ynum to ynum + 10ynum. The diagnostic results are shown in Fig. 5.

From Fig.  5, we can observe that the perturbation of the data (response variable 
y) can be accurately diagnosed. Specifically, the two points where num = 80 and 
num = 180 were successfully diagnosed by all three methods. For other points, the 
diagnostic values are generally small, indicating the effectiveness of our diagnostic 
work.

Finally, we perform data perturbation on the explanatory variable (previous pertur-
bation on y has been canceled). The perturbation involves changing the corresponding 
xnum to xnum + 8xnum at num = 80 and num = 180 . The diagnostic results are shown in 
Fig. 6.

In Fig. 6, we can clearly see that the diagnostic values obtained at the two locations 
where the explanatory variable was perturbed ( num = 80 and num = 180 ) are signifi-
cantly higher than the values at other locations. This indicates that we have success-
fully diagnosed these two points. It appears that the diagnostic of perturbations in the 
explanatory variable is equally effective as the previous perturbations we analyzed.

Fig. 4   Schematic diagrams of the Bayesian local influence analysis for the three measures under simulta-
neous perturbation of variances and priors, with larger perturbation on parameters in the picture (a)

Fig. 5   Schematic diagrams of the Bayesian local influence analysis for the three measures under the per-
turbation of data on the response variable
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7 � Application

To validate the effectiveness of statistical diagnosis using Bayesian local influence anal-
ysis on the PLM-SNAR(1) model, we conducted practical applications on the 1976 US 
California high-altitude ozone pollution data. The dataset consists of n = 366 observa-
tions, with each representing a response variable (daily ozone concentration) and an 
explanatory variable (temperature of the day).

To process the data, we follow the following steps:
Step 1: Extract the desired variable column data.
Step 2: Record the corresponding order of the data and denoted it as "t".
Step 3: Delete the sets of data with missing values in the response variable.
Step 4: Delete the sets of data with missing values in the explanatory variable.
Next, we conduct a partial descriptive analysis on the dataset shown in Fig. 7.
Figure 7 provides valuable insights into the dataset. Figure 7a, b reveal significant 

skewness in the data, suggesting that a SN distribution could be a suitable fit. Figure 7c 
illustrates a clear linear relationship between ozone concentration and temperature, 
while Fig. 7d indicates a notable nonlinear relationship between ozone concentration 
and the corresponding day. These findings suggest that partial linear models can effec-
tively capture the dataset’s characteristics.

Furthermore, Ferreira et  al. (2022b) used the maximum likelihood estimation 
method and demonstrated that the partial residuals in the data exhibit characteristics of 
an autoregressive process of order 1, i.e., AR(1). This evidence further supports the use 
of the PLM-SNAR(1) model for analyzing the dataset and validates the effectiveness of 
our statistical diagnostics using Bayesian local influence analysis.

Therefore, we construct the following special case of model (3) for the data:

Before proceeding with the subsequent statistical diagnostic work, we first need to 
estimate the parameters of the model. The prior distributions will remain the same 
as Eq. (7), in addition to the intercept with �0 ∼ N(−5, 100) (Table 3).

Indeed, the comparison between Bayesian and frequentist parameter estimation 
methods shows that they perform similarly in this context. However, the main 

(8)

yi = 𝛽0 + 𝛽1 ∗ xi + g(ti) + 𝜖i,

𝜖i = 𝜌𝜖i−1 + ei, −1 < 𝜌 < 1,

ei
iid
∼SN(−

√
2∕𝜋𝜆, 𝜎2, 𝜆), i = 1, 2, 3… 330.

Fig. 6   Schematic diagrams of the Bayesian local influence analysis for the three measures under the per-
turbation of data on the explanatory variable
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emphasis of this paper lies in the statistical diagnostics, with parameter estima-
tion being only an integral component. As a result, we will not delve further into 
the discussion of parameter estimation in this section.

Next, we proceed with the local influence analysis under two scenarios: model 
perturbation and data perturbation. We utilize three measures, namely Bayes 

Fig. 7   Partial descriptive analysis of Ozone data: a Histogram of Ozone, b Boxp lot of ozone, c scatter 
plot of ozone versus temperature, d line chart of ozone versus day

Table 3   MCMC and maximum 
penalized likelihood (MPL) 
estimates    (Ferreira et al. 
2022b)

Parameter MCMC MPL

�
0

−5.73 −7.32
�
1

0.29 0.31
� 2.66 1.91
� 6.13 6.80
�
0

0.46 0.33
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factor, �-divergence and posterior mean, to conduct the analysis. The results of 
the analysis are presented below (Figs. 8, 9 and 10).

Note that in Table 4 B indicates Bayes-factor, � indicates �-divergence, P indi-
cates posterior mean, Data y indicates perturbation of data (Ozone) and Data x 
indicates perturbation of data (Temperature). As multiple methods detected an 
issue with observation #278, it is necessary to review the dataset and verify the 
accuracy of this result (Table 5).

Our assessment holds significance as the results of the Bayesian local influence 
analysis align with the frequentist local influence analysis conducted by Ferreira 
et al. (2022b), albeit with a slight difference. While their diagnostic results were 
commendable, ours are comparable, and notably, the Bayesian approach identifies 
certain observations (such as #74, #119, #184, #278 and #295) that were not pre-
viously detected. This newly discovered information adds a valuable dimension to 
our diagnostic findings (Table 6).

Using observation #74 as an example, we conduct a detailed analysis of the 
causes to showcase the effectiveness of our diagnostic method. We see that #74 
corresponds to March 17, 1976. To understand the reason for such an influential 
observation, we need to examine the weather information for a few days before 
that day. This analysis will provide insights into any unusual weather conditions 

Fig. 8   Perturbation of variances

Fig. 9   Perturbation of data (Ozone)

Fig. 10   Perturbation of data (Temperature)
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Table 4   Summary of the diagnostic results

i Variance-B Variance-� Variance-P Data 
y-B

Data 
y-�

Data 
y-P

Data 
x-B

Data 
x-�

Data  
x-P

74 * * * * * * * * *
117 *
119 * * * * * *
130 * * * * * *
143 * * * * * * * * *
160 * * * * * * * * *
163 * * *
166 *
176 * * * * * *
184 * * *
200 *
229 * * *
232 * * * * * *
237 * * * * * * * * *
240 * * * * * * * * *
246 * * * * * * * * *
251 * * * * * * * * *
253 * * * * * * * *
266 * * * * * * * *
274 * * * * * * * * *
278 * * * * * * * * *
286 *
295 * * * * * * * * *

Table 5   Observation #278 and 
its neighboring observations

i Ozone con-
centration

277 14
278 24
279 10
280 14

Table 6   Observation #74 and its 
neighboring observations

i Ozone con-
centration

71 12
72 16
73 9
74 24
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or other factors that may have influenced the ozone concentration on March 17, 
1976. By examining the weather data leading up to that date, we can gain a bet-
ter understanding of the underlying cause of the influential observation and its 
impact on the ozone concentration.

Under normal circumstances, the temperature of the troposphere decreases 
with increasing altitude, leading to air convection where cold air sinks and hot 
air rises, carrying pollutants to higher altitudes for release. However, in certain 
conditions, such as the inversion phenomenon, the temperature of the troposphere 
may increase with altitude. In Los Angeles, the inversion phenomenon is more 
severe due to its location on the west coast with nearby cold ocean currents and 
surrounded by deserts.

The inversion phenomenon traps pollutants at ground level, leading to atmos-
pheric pollution and severe ozone concentration. Table 7 confirms that Los Ange-
les experienced the inversion phenomenon on several days, causing ozone to 
accumulate at the surface.

Other factors, such as wind speed, humidity, and air visibility, also contribute 
to ozone pollution. Low wind speed and high humidity can lead to ozone accu-
mulation, while good air visibility reduces the reaction of ozone with suspended 
particles. The data in Table 8 indicates that on the day of abnormal ozone con-
centration, wind speed was low, humidity was at 60% (favorable for ozone stor-
age), and air visibility was good with fewer suspended particles.

Tables 6 and 7 reveal that observation #74 (March 17, 1976) is indeed influen-
tial. Table 8 further indicates that the ozone accumulated on the preceding day was 
not effectively cleared, and the favorable conditions on March 17, 1976, exacerbated 

Table 7   Inversion phenomenon that occurred from March 12 to March 17, 1976

Date Surface temp Temp at the bottom of the 
inversion layer

Height of the bottom 
of the inversion layer

12/03/1976 46.04 59.72 613
13/03/1976 64.40 334
14/03/1976 61.88 567
15/03/1976 57.92 64.94 488
16/03/1976 57.02 71.06 531
17/03/1976 58.64 66.56 508

Table 8   Some weather 
indicators from March 12, 1976 
(the first day when the inversion 
occurred during this period) to 
March 17, 1976 (the units of 
measurement for each column 
are the same)

Date Wind speed Humidity (%) Air visibility

12/03/1976 0 60 300
13/03/1976 4 31 300
14/03/1976 3 66 150
15/03/1976 5 53 2
16/03/1976 2 42 50
17/03/1976 3 60 70
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ozone pollution. Consequently, there is no misdiagnosis in the Bayesian local influ-
ence analysis, affirming the validity of the conclusion regarding the influential 
observation.

8 � Concluding remarks

This paper presented the use of Bayesian local influence analysis for statistical diag-
nosis in the PLM-SNAR(1) model, addressing the limitations of maximum likeli-
hood estimation in frequentist statistics for moderate-sized data. By employing 
the Gibbs sampling and Metropolis-Hastings sampling, we successfully obtained 
parameter estimation results. The method’s feasibility was demonstrated through 
simulation experiments and real-world applications, employing different objective 
functions and applying variance and data perturbation in the analysis. In the empiri-
cal analysis, we applied the PLM-SNAR(1) model to the 1976 Los Angeles ozone 
concentration dataset (moderate-sized data) and achieved superior results compared 
to frequentist statistics, confirming the effectiveness of our improvements. Our 
future research may include extending the method to study PLM-SNAR(p) models 
and PLMs with errors following a skew-t autoregressive structure of order p, i.e. 
PLM-STAR(p) models.

Appendix

A1: Deviation of model reduction

Proof  By Lemma 2, model (3) can be further expressed as:

In model (9), h0i and h1i are mutually independent standard normal random vari-
ables. Let hi = ||h0i|| and �i = �h1i . Then, we can further simplify the model to:

Ruppert et  al. (2003) addressed the semiparametric modeling problem by demon-
strating the equivalence of penalized splines and additive mixed models. In this 
paper, similar to Ruppert, we aim to use the low-rank thin-plate spline to represent 
the non-parametric part of the model in a different manner. We will expand the 
smooth function g(t) as follows:

(9)
yi = xi

⊤� + g(ti) + 𝜌(yi−1 − xi−1
⊤� − g(ti−1)) + ei,

ei = −

√
2∕𝜋𝜆 + 𝜆��h0i�� + 𝜎h1i, i = 1, 2, 3… n.

(10)
yi = xi

⊤� + g(ti) + 𝜌(yi−1 − xi−1
⊤� − g(ti−1)) −

√
2∕𝜋𝜆 + 𝜆hi + 𝜂i,

𝜂i
iid
∼N(0, 𝜎2

), i = 1, 2, 3… n.
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where tmin ≤ �1 ≤ �2 … ≤ �K ≤ tmax , and they are fixed knots. In spline expansion, 
the selection of knots is crucial. Typically, these knots are determined as the sample 
quantiles of the covariate t’s corresponding to probability k/(K + 1) , where K is the 
number of knots. Having too many or too few knots can lead to poor spline estima-
tion. In this paper, we adopt the knots selection method proposed by Ruppert et al. 
(2003) and choose 20 knots ( K = 20 ) for the spline expansion of the non-paramet-
ric part. After a series of matrix transformations (Crainiceanu et al. 2005), we can 
express Eq. (7) in the following form:

where g(t) = (g(t1), g(t2),… , g(tn))
⊤ , t = (t1, t2,… , tn)

⊤ , � = (�0, �1)⊤ , T = (1n×1, t) , 
u = (u1, u2,… , uK)

⊤ , ZK is a matrix with i-th row ZKi = {|ti − �1|3,… , |ti − �K|3} , 
�K is a penalty coefficient matrix with k-th row �Kk = {|�k − �1|3,… , |�k − �K|3} 
(to avoid overfitting), Z = ZK�

−
1

2

K
 , b = �

1

2

K
u is assumed to be normally distributed 

with mean zero and variance �2
b
.

Then we get

which gives model (4). 	�  ◻

A2: Perturbation of priors

We established perturbations of the parameters.

where �p+5+20 = (�� ,�� ,��,��,��2 ,�b) , and �0
p+5+20

= 0 represents the scenario 

without any perturbation, B(⋅) means beta function, Γ(⋅) means gamma function. The 

(11)g(t) = �0 + �1t +

K∑
s=1

us|t − �s|3,

g(t) = T� + ZKu

= T� + (ZK𝛀K
−

1

2 )(𝛀K

1

2 u)

= T� + Zb,

(12)
Yi = wi

⊤� + z⊤
i
b + 𝜌(yi−1 − wi−1

⊤� − zi−1b) −
√
2∕𝜋𝜆 + 𝜆hi + 𝜂i,

𝜂i
iid
∼N(0, 𝜎2

), i = 1, 2, 3… n,

p(y,�|�p+5+20) ∝
p
∏

i=1
�
( �i − �0i − ��i

��i

)

× �
(�0 − ��0

��0

)

× �
(�1 − ��1

��1

)

× �
(� − �� − ��

��

)

× 1
B(a�0 + ��0, b�0)

�
a�0+��0−1
0 (1 − �0)

b�0−1

×
( 12q1 + ��2 )

1
2 q0

Γ( 12 q0)
�−q0−2 exp

{

−
q1 + ��2

2�2
}

×
20
∏

j=1
�
( bj − �bj

�bj

)

,
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perturbation model M = {p(y,�|�) ∶ � ∈ Rp+5+20
} yields a Riemannian manifold 

and the tangent space T� spanned by M is given by

Then, we obtain

where

A3: Perturbation of variances

By incorporating the perturbations, we obtain a refined posterior distribution that 
helps in better understanding the model’s behavior under different variance scenar-
ios. We have that:

l̇(y,�|�) =
(𝛽1 − 𝛽01 − 𝜔𝛽1

𝜎2
𝛽1

,… ,
𝛽p − 𝛽0p − 𝜔𝛽p

𝜎2
𝛽p

,
𝛼0 − 𝜔𝛼0

𝜎2
𝛼0

,
𝛼1 − 𝜔𝛼1

𝜎2
𝛼1

,
𝜆 − 𝜇𝜆 − 𝜔𝜆

𝜎2
𝜆

,

−

∫ 1

0
ln𝜌0(1 − 𝜌0)

b𝜌0−1𝜌
a𝜌0+𝜔𝜌0−1

0
d𝜌0

B(a𝜌0 + 𝜔𝜌0, b𝜌0)
+ ln𝜌0,

q0

q1 + 2𝜔𝜎2

−

1

2𝜎2
,
b1 − 𝜔b1

𝜎2
𝛽1

,

… ,
b20 − 𝜔b20

𝜎2
b20

)
.

G(�0
) = diag

(
1

�2
�1

,… ,
1

�2
�p

,
1

�2
�0

,
1

�2
�1

,
1

�2
�

,D(ln�0),
2q0

q1
,
1

�2
b

,… ,
1

�2
b20

)
,

D(ln�0) =∫
1

0

ln2�0
1

B(a�0, b�0)
(1 − �0)

b�0−1�
a�0−1

0
d�0

−

(
∫

1

0

ln�0
1

B(a�0, b�0)
(1 − �0)

b�0−1�
a�0−1

0
d�0

)2

.

p(y,���) = p(�) ⋅ L(���)
∝ L(���)

= exp[−
1

2
ln
𝜎2

𝜔1

−

𝜔1

2𝜎2
(y1 − m1 +

√
2∕𝜋𝜆 − 𝜆h1)

2
−

n�
i=2

1

2
ln
𝜎2

𝜔i

−

n�
i=2

𝜔i

2𝜎2
(yi − 𝜇i +

√
2∕𝜋𝜆 − 𝜆hi)

2
],

l̇(y,���) =
�

1

2𝜔1

−

(y1 − m1 +

√
2∕𝜋𝜆 − 𝜆h1)

2

2𝜎2
,

1

2𝜔2

−

(y2 − 𝜇2 +

√
2∕𝜋𝜆 − 𝜆h2)

2

2𝜎2
,… ,

1

2𝜔n

−

(yn − 𝜇n +

√
2∕𝜋𝜆 − 𝜆hn)

2

2𝜎2

�
,
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Then, we obtain:

A4: Perturbation of data

A4A: Response variable
Establishing perturbations on the response variable y

We have that

Then, we obtain:

where

A4B: Explanatory variable
Establishing perturbations on the explanatory variable �� (assumed continuous)

G(�0
) =

1

2
In×n.

(13)

⎡
⎢⎢⎢⎢⎣

y1 + �1

y2 + �2

y3 + �3

⋮

yn + �n

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

m1

m2

m3

⋮

mn

⎤
⎥⎥⎥⎥⎦
+ �

⎡
⎢⎢⎢⎢⎣

0

y1 + �1 − m1

y2 + �2 − m2

⋮

yn−1 + �n−1 − mn−1

⎤
⎥⎥⎥⎥⎦
− �

⎡
⎢⎢⎢⎢⎢⎣

√
2∕� − h1√
2∕� − h2√
2∕� − h3

⋮√
2∕� − hn

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

�1
�2
�3
⋮

�n

⎤
⎥⎥⎥⎥⎦
.

p(y,�|�) = p(�) ⋅ L(�|�)
∝ L(�|�)

∝ exp[−
1

2𝜎2
(R2

1
+

n∑
i=2

R2
i
)],

l̇(y,�|�) =
(𝜌R2 − R1

𝜎2
, … ,

𝜌Ri+1 − Ri

𝜎2
, … ,

𝜌Rn − Rn−1

𝜎2
, −

Rn

𝜎2

)
.

G(�0
) = diag

(
E�0[

�2 + 1

�2
],… , E�0 [

�2 + 1

�2
],E�0[

1

�2
]

)
,

R1 = (y1 + �1) − m1 +

√
2∕�� − �h1,

Ri = (yi + �i) − mi − �[(yi−1 + �i−1) − mi − 1)] +
√
2∕�� − �hi, i = 2, 3,… , n.

(14)��(�) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 x21 … xn1
x12 x22 … xn2
⋮ ⋮ ⋱ ⋮

x1k + �1 x2k + �2 … xnk + �n

⋮ ⋮ ⋱ ⋮

x1p x2p … xnp

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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As a result, we obtain

Then, it follows that

where

A5: Metropolis‑Hastings algorithm

As a widely used MCMC method, the Metropolis-Hastings (MH) algorithm gener-
ates samples from complex probability distributions where direct sampling is chal-
lenging. For detailed introductions, we refer to two books Albert (2007) and Gelman 
et al. (2013), which provide a comprehensive overview of Bayesian statistical meth-
ods, including WinBUGS, covering both theory and practical applications. Here’s 
how the MH algorithm works:

Step 1. Initialization: Start with an initial sample from the target distribution, 
preferably drawn from a distribution similar to the target.

Step 2. Proposal Distribution: Choose a proposal distribution for suggesting new 
samples, often selected for convenience and ease of sampling.

Step 3. Proposing a Candidate: Generate a new sample (candidate sample) by 
drawing from the proposal distribution.

Step 4. Acceptance Probability: Calculate the acceptance probability for the can-
didate sample based on the ratio of the target distribution at the candidate sample 
and the current sample.

Step 5. Acceptance or Rejection: Accept the candidate sample with a probability 
determined by the acceptance probability; otherwise, reject it and remain at the cur-
rent sample.

Step 6. Iteration: Repeat Steps 3-5 for numerous iterations until convergence cri-
teria are met.

p(y,�|�) = p(�) ⋅ L(�|�)
∝L(�|�)

∝ exp

[
−

1

2𝜎2
(U2

1
+

n∑
i=2

U2
i
)

]
,

l̇(y,�|�) =
( 𝛽k

𝜎2
(U1 − 𝜌U2), … ,

𝛽k

𝜎2
(Ui − 𝜌Ui+1), … ,

𝛽k

𝜎2
(Un−1 − 𝜌Un),

𝛽k

𝜎2
Un

)
.

G(�0
) =diag

(
E�0

[
�k
�2 + 1

�2

]
,… , E�0

[
�k
�2 + 1

�2

]
,E�0

[
�k

1

�2

])
,

U1 = y1 − (x1k + 𝜔1)𝛽k − x⊤
1(−k)

𝛽
(−k) − t⊤

1
𝛼 − z⊤

1
b +

√
2∕𝜋𝜆 − 𝜆h1

Ui = yi − (xik + 𝜔i)𝛽k − x⊤
i(−k)

𝛽
(−k) − t⊤

i
𝛼 − z⊤

i
b − 𝜌[yi−1 − (xi−1,k + 𝜔i−1)𝛽k

− x⊤
i−1,(−k)

𝛽
(−k) − t⊤

i−1
𝛼 − z⊤

i−1
b] +

√
2∕𝜋𝜆 − 𝜆hi, i = 2, 3,… , n.
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The algorithm constructs a Markov chain with the desired target distribution as 
its stationary distribution, leading to convergence of the generated samples over 
iterations.

To address low acceptance rates in MCMC sampling, careful selection of the 
proposed distribution g(x) is crucial. This distribution should encompass the 
support set of the target distribution; be easily samplable, often chosen from 
known distributions like the normal or student distributions; facilitate easy cal-
culation of the acceptance probability; have a thicker tail compared to the tar-
get distribution; and minimise the frequency of rejecting new candidate points. 
Adhering to these conditions ensures that the resulting Markov chain satisfies 
normalisation conditions and possesses a stationary distribution f(x), crucial for 
effective sampling from complex target distributions.

Given f(x) as the target distribution (posterior distribution), g(x) as the pro-
posed distribution, and h(x) as the acceptance rate, we iteratively generate a sam-
ple sequence �0

0
, �1

0
,⋯ , �N

0
 from the target probability distribution f(x). Below is our 

pseudo-code outlining the MH algorithm:
Algorithm 1   Metropolis-Hastings algorithm

A6: The sampling process of parameters in parameter estimation (simulation)

In the iterative process of parameter estimation, it is evident that the vast majority of 
parameters have reached a convergent state. The primary emphasis of our paper lies 
in statistical diagnostics rather than extensive parameter estimation. Therefore, our 
requirement may be limited to obtaining a parameter estimate that closely approxi-
mates the true value.

Figures 11, 12, 13, 14 and 15 depict the iterative process of three Markov chains 
through curves represented in three distinct colors. These curves illustrate three 
independent parameter estimation sampling processes, offering valuable insights 
into the fluctuation range of each sampling procedure.
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Fig. 11   The iterative process of parameter �
1

Fig. 12   The iterative process of parameter �
2

Fig. 13   The iterative process of parameter �

Fig. 14   The iterative process of parameter �
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