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Abstract
Vortex-lattice patterns with transitions from regular to other variety vortex shapes are predicted
in rotating binary mixtures of dipolar Bose–Einstein condensates loaded in squared optical
lattices (OLs). We focus our investigation on the experimentally accessible dipolar isotopes of
dysprosium (162,164Dy), erbium (168Er), chromium (52Cr), and rubidium (87Rb), by considering
the binary mixtures (164Dy-162Dy, 168Er-164Dy, 164Dy-52Cr and 164Dy-87Rb), which are confined
in strong pancake-shaped traps and loaded in squared two-dimensional (2D) OLs, where we vary
the polarization angle of the dipoles, the inter-species contact interactions and the rotation
frequency. The ratio between inter- to intra-species contact interaction is used for altering the
miscibility properties, with the polarization of the dipolar species used for tuning the dipole–
dipole interactions to repulsive or attractive. For enough higher rotation, where the inter- to intra-
species scattering length ratio is larger than one, in which a richer variety of vortex-lattice
patterns are predicted, including vortex sheets and 2D rotating droplet formations. The patterns
can be controlled by changing the OL parameters, as shown for the symmetric 164Dy-162Dy
dipolar mixture. For mixtures with stronger differences in the dipole moments, such as
164Dy-52Cr and 164Dy-87Rb, only half the quantum vortices and circular ones have been
observed, which will depend on the dipole orientations.

Keywords: Dynamic properties of condensates, Bose–Einstein condensates, vortices, periodic
potentials, superfluid flow

(Some figures may appear in colour only in the online journal)

1. Introduction

Bose–Einstein condensate (BEC) systems loaded in optical-
lattice (OL) potentials are relevant in the investigation of
fundamental problems in condensed matter physics [1], such
that different accessible experimental possibilities are of
interest and merit further study. For instance, by considering a
gas of ultra-cold atoms with repulsive interactions held in a
three-dimensional (3D) OL, a quantum phase transition from
superfluid to a Mott insulator was observed as the potential
depth of the lattice is increased [2]. For a considerably large
number of atoms localized in single wells of an OL, the mean-

field theory can be more safely applied. When there are only a
few numbers of atoms in each lattice, the phase coherence
between the condensed atoms in the different lattice sites can
be lost with the system undergoing a Mott-insulating phase
transition [3]. By exploring the phase coherence of coupled
quantum gases in two-dimensional (2D) OLs, the lifetime of
the condensate and the dependence of the interference pattern
on the lattice configuration have been investigated in [4].
Also, BECs loaded in OLs can be used as testing grounds for
strongly correlated condensed matter systems [5]. The phase
transition between a superfluid-Mott insulator was observed
experimentally in a rubidium 87Rb cold-atom gas [6].
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Mixtures of atomic BECs with different species can
provide a broader range of possibilities to study quantum
phenomena. Since 1997, there have been experimental
investigations with two-component mixtures of hyperfine
states of 87Rb [7]. Further, different heteronuclear atomic
species have been combined to produce BEC mixtures. The
mass imbalance between the heteronuclear species and their
particular intra- and inter-species interaction and the selective
tuning of the intra- and inter-species interaction have allowed
the investigation of several interesting phenomena. Recent
experimental progress with 168Er and 164Dy condensates, as
well as with their mixtures are challenging and stimulating
present investigations on the properties of dipolar BECs
[8–14]. Experiments reported on the stability and collapse of
single-component dipolar BECs loaded in an OL can be
found in [15]. Also, single-component dipolar gases in a 2D
OL have been studied theoretically by using the Bose–Hub-
bard model and mean-field approximation, from which new
quantum phases are predicted, such as checkerboard or
supersolid phases [16, 17].

From experiments reported in [18], vortices pinning in
rotating BECs have been observed, in which an orientation
locking between the vortices and the OLs was verified. By
considering the effects of 2D triangular and squared OLs, it
was also shown that a sufficiently high squared OL will
induce a structural crossover in the vortex lattice. In [18], it is
also explained how vortex nucleations depend on the depth of
the OL potential and on the rotation frequency. Later, in [19],
the existence of a linear dependence of the number of vortices
was demonstrated with respect to the rotation frequency in the
case of a deep OL. It is common to observe square vortex
lattices in binary mixtures of rotating BECs in a harmonic trap
[20, 21]. But, a single BEC loaded in a rotating OL can show
a rich variety of vortex structural transitions, including square
vortex structures [22–24], when playing with other para-
meters of the condensed atomic gas. An increasing depth of
the OL potential helps to reduce the critical rotation frequency
necessary to appear as a single vortex. This potential is
considered deep when it is greater than the chemical potential
of the system.

Previous studies dealing with vortices in dipolar BECs
have explained the role of dipole–dipole interactions (DDIs)
in the formation of vortices [25]. In particular, the theoretical
analysis dealt with the calculation of the critical rotation
frequency and vortex structures under the action of the DDI
[26–28]. Two-component dipolar BECs in pancake-type traps
have been shown to feature several types of vortex lattices,
which can be observed by controlling parameters such as the
rotation frequency, the ratio between inter- to intra-species
scattering lengths, as well as the magnetic moment orienta-
tions of the dipoles. In this regard, by considering an opposite
polarized two-component BEC with strong DDI in three
dimensions, a dynamical study on stability and pattern for-
mation was recently reported in [29]. In these kinds of studies,
the addition of OL potentials is also expected to show some
relevant effects in vortex-lattice structures, which are worthy
of investigation. In this direction, we notice some recent
theoretical simulations in [30], by considering OL effects in

BEC with the dipolar atomic elements 52Cr, 164Dy and 168Er.
These works, besides being limited to an OL in just one of the
directions of the pancake-type harmonic trap, are already
indicating that rich structures can be obtained by extending
the OL in a symmetric way to the two directions of the 2D
trap. It is also of interest to explore the region of parameter
space, by varying the inter- to intra-species scattering ratios,
which can be performed via Feshbach techniques [31], as well
as dipolar parameters by also studying other experimentally
accessible dipolar condensed mixtures. For a general
approach to computing a vortex lattice in rotating condensed
systems with strong repulsive two-body interaction and lattice
potentials, we can also point out [32].

Another property that plays a relevant role in dipolar
mixtures is the miscibility of two-component BEC systems
[33–35]. This property was recently studied by considering
the atomic isotopes 162,164Dy and 168Er [36]. With respect to
the miscibility of dipolar binary mixtures, the rotational
properties differ and show distinct vortex-lattice structures
[21]. In view of more recent experiments on tuning the
magnetic DDI using a dysprosium condensate, we understand
the appeal of investigating the properties of BECs with dif-
ferent coupled dipolar species. In particular, it is appropriate
to include dysprosium as one of the coupled species in
investigations with dipolar mixtures, in view of its large
dipole moment [37].

In the present work, our main interest is to provide a
more extended investigation on vortex-lattice structures,
focusing on binary dipolar mixtures of cold atoms which are
accessible for experimental realization, exploring the possi-
bilities of tuning the DDI under rotating squared OLs. This
study is of particular interest in terms of indicating regions of
parameters which can be tuned in experimental investigation,
as well as in the analysis of density patterns of binary dipolar
mixtures, in which some new unusual soliton formations and/
or quantum lattice phases can emerge [38]. In addition to the
previous binary mixtures that have been studied in [21, 36]
(164Dy-162Dy and 168Er-164Dy), here we also discuss two
cases of coupled systems that are less symmetric in their DDI
as well as in their respective masses, which are 164Dy-52Cr
and 164Dy-87Rb. For the mixture with 87Rb, which is an
atomic element with quite a weak magnetic dipole, we found
it unnecessary to explore in detail, once it was verified that the
corresponding relevant results follow from cases such as with
52Cr, where one of the dipole moments is not strong. By
analyzing mixtures that are partly and completely immiscible,
we show a variety of vortex structures that are controlled by
larger inter-species contact interactions. Besides the fact that
an increasing depth of the OL potential helps to reduce the
critical rotation frequency to produce vortices, in our study we
assume this potential is not too deep, as limited by the validity
of the mean-field model. Supported by our numerical simu-
lations, we provide phase diagrams indicative of the expected
vortex-lattice patterns, in a plane defined by the rotation fre-
quency Ω and the ratio between inter- and intra-species
scattering lengths δ for two different orientation angles of the
dipoles, such that the DDI can be repulsive or attractive.
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In the next section 2, we present the formalism that we
consider for the treatment of coupled dipolar condensed
mixtures, confined by a pancake-shaped harmonic trap with a
rotating OL. In section 3, we present our results for the dif-
ferent kinds of coupled mixtures we are considering, together
with details on the numerical approach and corresponding
parameters. Finally, in section 4 we summarize the main
findings with our conclusions.

2. Binary dipolar condensate under rotation loaded
in a squared OL

In our present study of coupled two-species dipolar con-
densates, our main objective is to investigate a rotating con-
densate under the effect of a squared OL, which is acting
together with a strong pancake-shaped harmonic trap in the
system. This matter demands to be theoretically studied in
view of recent experimental interests with condensed quant-
um gases with DDI and rotating magnetic fields [38]. By
tuning the alignment angle of the two-dipole species, the DDI
interaction can be changed from repulsive to attractive. For
the 3D DDI kernels, we assume the relative positions of the
two-dipole moments make an angle θ relative to a defined z-
direction. With that, by considering the condensate in a
pancake geometry defined in the (x, y)–plane, with the relative
positions between the dipoles being near 90°, we have mainly
a repulsive DDI for a static magnetic field fixed in the z-
direction.

For the DDI, we follow the scheme as described in
[39, 40], with the polarization of both aligned dipoles being
under rotation due to a time-dependent rotating external
magnetic field. So, we consider the orientations of both
dipoles making an angle j with respect to the z-axis, such that
the DDI is repulsive when j=0, becoming attractive for
j>54.7°. As detailed in [40], the tunability of the magnetic
dipolar interaction is performed by using time-dependent
magnetic fields with dipoles rapidly rotating around the
z-axis. The magnetic field is given by the combination of a
static part along the z-direction and a fast rotating part in the
(x, y)–plane, having a frequency which is chosen such that the
atoms are not significantly moving during each period. Under
these conditions, once a time averaging of the DDI in a period
is performed, the corresponding 3D averaged interaction for
the coupled two dipolar species, with the magnetic dipole
moments μ1 and μ2 given in terms of the Bohr magneton μB,
can be written as

V r r
r r
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where μ0 is the free-space permeability. The factor within
parenthesis in (1) is the result of the time-averaging procedure
on the dipole orientation around the z-axis. The angle j
provides the effective strength and sign of the interaction,
with the magnetic dipoles being completely polarized along
the z-direction for j=0 (whenV 0ij

d >( ) ), with the sign being

inverted for 54.7j  when the interaction becomes attrac-
tive. It is worth noticing in equation (1) that the DDI effect
can be canceled out at two specific orientations: when the
polarization is such that cos 1 32 j = , or when the relative
position of the two dipoles in relation to the z-axis is such that
cos 1 32 q = . However, in our following approach we
assume θ∼90°, as we consider the binary system in a
strongly pancake-shaped format.

One of our present aims is to study the effect of a squared
OL potential in dipolar mixtures under rotation. This OL
potential is added together with the external 3D harmonic
trap, which is confining both atomic species j=1, 2 in a
strong pancake-shaped symmetry, given by the trap aspect
ratio λ=50, such that
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where mj and ωj are, respectively, the mass and trap frequency
of the species j. The strength of the OL potential is given by
Vol, with π/k defining the lattice periodicity which is assumed
to be identical in the x and y directions.

The strong pancake-shaped symmetry (λ=50) assumed
along this study, is considered due to stability requirements.
With such strong asymmetry, together with the symmetry of
the OL potential and the DDI, the corresponding 3D coupled
equation is reduced to a 2D format, by the usual factorization
of the 3D wave function Ψj(r, t) into the ground state of the
transverse harmonic oscillator trap and a 2D wave function
[21, 41–44], with
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Next, we perform the 2D reduction by introducing the above
ansatz in the original 3D Gross–Pitaevskii (GP) formalism
with DDI, integrating over the variable z. The final coupled
equations are cast in a dimensionless format by measuring the
energy in units of ÿω1, with the length in units of
l m1 1 wº ( ) . For this purpose, the space and time vari-
ables are given in units of l and 1/ω1, respectively, with

lr r and t 1t w . Within this procedure, the corresp-
onding dimensionless wave-function components are given
by x y l x y t, , , ,j jy t º F( ) ( ). The two-body contact interac-
tions related to the scattering lengths aij, as well as the DDI
parameters for the species i, j=1, 2 are defined as
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where Nj=1,2 is the number of atoms in the species j. With the
assumption that both components are confined by pancake-
shaped harmonic traps with the same aspect ratio λ and such
that the relation between the corresponding trap frequencies is
given by m m2 2

2
1 1

2w w , in terms of the above notation for the
units and parameters, the corresponding coupled 2D GP
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equations (with i, j=1, 2 and j i¹ ) can be written as
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where V( d)(x, y) is the 2D expression for the DDI, which is to
be derived from the corresponding 3D counterpart given in
equation (1), and x y, ,i iy y tº ( ) and x y, ,i iy y t¢ º ¢ ¢( ) are
the components of the total 2D wave function, normalized to
one, dxdy 1.i

2ò y =
-¥

¥
∣ ∣ Lz is the angular momentum

operator with Ω the corresponding rotation parameter (in units
of ω1), which is common for two components. In this 2D
reduction, the external potential provided by the harmonic
trap, together with the squared OL, in dimensionless units is
given by

V x y x y V kx ky,
1

2
sin sin , 62 2

0
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where V Vol0 1wº gives the strength of the OL in dimen-
sionless units, with k being the laser wave vector (also
dimensionless and being the same in both x and y directions).

The 2D DDI is presented in equation (5) can be
expressed by means of the convolution theorem, which is
given by the inverse 2D Fourier transform for the product of
the DDI and densities, as
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where n k k,j x y ( ) is the 2D Fourier transform of the density,
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j
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with V k k,d
x y ( )( ) being the Fourier transform of the DDI,

which is expressed by the combination of two terms,
corresponding to parallel and perpendicular polarizations of
the dipoles in relation to the z-direction [45]:
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The DDI is perpendicular when the two dipoles are polarized
in the z-direction (j=0),
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and longitudinal when the dipoles are polarized in the (x, y)

plane (j=90°),
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where k k kx y
2 2º +r , with θk being an arbitrary direction in

the momentum plane defined by
k k k k, cos , sinx y k kq q= r r( ) ( ). As all θk are equally possible,
by averaging cos k

2 q we obtain a factor 1/2. So, the total DDI
is averaged to zero for j=54.7°, being repulsive for
j<54.7° and attractive for j>54.7°. As the system trap-
ped in an OL potential can become unstable when the dipolar
BEC is tuned to larger angles, the attractive part of the DDI is
restricted to j�60°.

3. Vortex-pattern results: dipolar mixtures in OLs

Our main results are reported in this section, by considering
different kinds of coupled dipolar systems. An isotope of the
dysprosium was chosen as a common element in the mixtures
in view of its large magnetic moment, as well as due to the
fact that this element was considered in recent experimental
BEC realizations in ultra-cold laboratories. We select a few
sample results indicating the rich variety of vortex-lattice
patterns, which are obtained with dipolar mixtures under
rotation with squared OLs. For the more illustrative cases of
symmetric- and asymmetric-dipolar mixtures, we present
diagrams considering the rotation parameter as a function of
the ratio between inter- to intra-species contact interactions,
for repulsive and attractive DDI. These diagrams, which
summarize the kind of vortex-lattice patterns that we have
obtained, are followed by characteristic examples.

Before reporting the specific dipolar systems we have
obtained, next we provide some details on the corresponding
physical parameters and numerical approach.

3.1. Parameter space and numerical approach

Of particular relevance to the present study on dipolar binary
mixtures is to consider atomic species accessible to exper-
imental realizations in ultra-cold atom laboratories, which
have significant magnetic dipole moments. By considering
the dipole moments of each species, the corresponding
dipolar parameter of the DDI will be fixed for each specific
mixture. In this regard, for the binary mixtures we are using,
the corresponding magnetic dipole moments given in terms of
the Bohr magneton μB, are the following: μ=10μB for
162,164Dy, μ=7μB for 168Er, μ=6μB for 52Cr and 1 Bm m=
for 87Rb. In particular, considering the corresponding dipole
moments, the strengths of the DDI are given as a a131ij

d
0=( )

(i,j=1, 2), for the 164Dy-162Dy mixture;
a a a a66 , 131d d

11 0 22 0= =( ) ( ) and a a a94d d
12 21 0= =( ) ( ) , for the

168Er-164Dy mixture; and a a a a131 , 16d d
11 0 22 0= =( ) ( ) and

a a a25d d
12 21 0= =( ) ( ) , for the 164Dy-52Cr mixture. Once the
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DDI is fixed, in order to explore various families of vortex
patterns we vary the rotation frequency Ω, the polarization
angle j, as well as the ratio δ between inter- and intra-species
contact interaction.

Apart from dipolar parameters, other intrinsic properties
of binary systems are related to the two-body contact inter-
actions, which in principle can be varied by using Feshbach
techniques [31]. In order to keep our study to stable systems,
all the two-body scattering lengths are assumed to be positive,
with the intra-species ones being identical and given by
a a a4011 22 0= = (a0 is the Bohr radius), with the inter-spe-
cies one, a12, obtained from the ratio a a12 11d = . Relevant
for the vortex patterns that we are studying, we allow δ to be
changed in a region of interest in the parameter space, from
smaller to larger values, together with the parameter Ω related
to the rotation of the condensate and parameters of the
squared OL.

The contact and DDI parameters, which appear in
equation (5) as dimensionless (gij and dij, respectively) are
given in units of the Bohr radius a0 by (4). By varying these
parameters we contemplate several conditions of interest in
view of miscibility properties of the binary mixtures (see a
previous study in [36] without an OL). For the usual har-
monic trap, in all the following simulations and analysis of
the results we consider a strong pancake-shaped trap in the (x,
y)–plane, with an aspect ratio λ=50, fixing the number of
atoms for both species as N1=N2=104. These choices are
appropriate for experimental realistic settings due to stability
requirements. The assumed angular frequencies of the har-
monic axial traps are such that m m2 2

2
1 1

2w w , implying that
2 60 sj

1w p= ´ - for the 168Er and 2 61 sj
1w p= ´ - for

the 162,164Dy.
The external trap is modified by the addition of a squared

OL, defined in the same (x, y)-plane. By choosing the spacing
of the OL given by dlat=λL/2≈534 nm, as in the
experiments reported in [46], the corresponding wavelength
of the laser is λL=1064 nm. So, with the time and space
units such that 1/ω1=2.65 ms and l=1 μm, the

corresponding dimensionless parameters for the OL spacing
is π/k=0.534; or k=1.87π. In the results that we are
presenting the OL depth was fixed to V0=15. However, by
investigating other strengths, going up to V0=25, we have
observed that the vortex structural properties remain essen-
tially unchanged.

In order to solve equation (5), we employ the split-step
Crank–Nicolson method, as in [43, 47, 48], combined with a
standard method for evaluating DDI integrals in the
momentum space [39, 43]. In order to search for stable
solutions, the numerical simulations were carried out in
imaginary time on a grid with maximum of 640 points in x
and y directions, with spatial steps x y 0.05D = D = and time
step Δt=0.000 5. Both component wave functions are
renormalized to one at each time step. In order to obtain
stationary vortex states, we solve equation (5) with different
initial conditions. In view of previous tests on the initial
suitable conditions, we use a combination of angular har-
monics, followed by verifying the convergence of the solu-
tions for the inputs, as discussed in [21, 49–51].

3.2. Symmetric-dipolar mixture 164Dy-162Dy in a squared OL

Our analysis on dipolar mixtures starts by considering the
symmetric case with a coupled dipolar mixture of two dys-
prosium isotopes, 164Dy and 162Dy, such that the strengths of
the DDI are the same, given by a a131ij

d
0=( ) (i, j=1, 2).

The main characteristics of this system, verified in previous
studies, is that it is completely miscible as verified in a study
without an OL, having the same value close to one for the
miscibility parameter defined in [36], implying in an almost
complete overlap between the densities of the two compo-
nents. In view of the miscibility of the two components, the
parameter δ, which gives the ratio between the inter- and
intra-species scattering length, plays the main role for the
observation of quite different vortex patterns, for a given
rotation Ω.

Figure 1. Diagrammatical representations of vortex-lattice patterns obtained for the 164Dy-162Dy dipolar mixture, with the rotation frequency
Ω as a function of the contact interaction ratio δ≡a12/a11 in a plane defined by Ω (in units of ω1) and contact interaction ratio δ≡a12/a11.
Both dipoles are polarized: along the z-axis (j=0) in (A); and at an angle j=60° in (B). The symbols filling specific intervals indicate the
approximate observed vortex-lattice patterns in these regions: squares for squared lattices; triangles for triangular lattices; circles for double-
core or striped vortices; crossed circles for domain walls or vortex sheets; and solid circles for 2D rotating droplets.
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In figure 1, by considering our results with different
values of Ω (from 0.5 to 0.9) and δ (from 0.5 to 1.5), we
present two diagrams which indicate the main characteristic
of vortex patterns that are obtained for the 164Dy-162Dy
dipolar mixture, confined by a strong pancake-type harmonic
trap with a squared OL (having strength V0=15). In this
figure, we consider two different orientations for the dipoles
of the coupled mixture, in relation to the z-axis. In the dia-
gram (A) we have the dipoles oriented parallel to z, such that
j=0° for the corresponding angle. With this orientation the
DDI is repulsive. For the results shown in the diagram (B),
the dipole polarizations are tuned to an angle j=60° in
relation to the z-axis, supporting an attractive DDI. In both the
panels, for a given region (Ω, δ), the kind of observed vortex
patterns are being identified by the symbols filling the
respective region: (i) with squares, for squared-vortex lattices;
(ii) with empty circles, for double-core or striped vortex
patterns; (iii) with triangles, for triangular-vortex lattices; (iv)
crossed circles, for domain-wall or vortex-sheet patterns; and
(v) solid circles, for lattice patterns with quantum rotating
droplet formations4.

As observed for this symmetric mixture, when the
dipoles are aligned along the z-axis, for δ�1, the OL is
changing the lattice patterns from triangular ones, which have
been verified when no OL is active, to squared lattice patterns.
This kind of pattern has been observed even for δ=0.1, with
the effect of the OL being more evident in the regions where
inter-species contact interaction is considerably smaller than
intra-species interaction. As shown in the phase diagram (A),
for the case that j=0 (when the dipoles are aligned with z),

for 1<δ1.2 the patterns change to double-core and
striped vortices; and domain walls for δ>1.2. These pattern
results are almost independent of the value of the frequency
parameter Ω, which was varied for 0.9>Ω>0.5. However,
among the patterns with domain walls observed for δ>1.4,
we have also verified lattice patterns with rotating droplets, in
case that Ω<0.65.

By tuning the dipoles to an angle j=60° in relation to
the z-axis, we are providing an attractive dipolar interaction.
In the binary mixture, repulsive two-body interactions deter-
mine the miscibility properties. So, the attractive dipolar
interactions are going to make the system more miscible,
reducing the effect of the OL, in particular for smaller values
of Ω. Consequently, part of the squared-vortex structures
observed when δ<0.7 in the phase diagram (A) (when
j=0), will change to triangular ones, as shown in the phase
diagram (B) of figure 1. We can also observe that this
attractive dipolar interaction is playing a role in the droplet
regime when δ>1, as the attractive interactions increase the
critical rotation frequency for a single vortex. So, the reduc-
tion in the number of vortices becomes explicit due to the
attractive dipolar interaction. As the rotation velocity
Ω<0.85 is not sufficient to produce the droplet regime, the
rotating droplets are observed for δ>1.3 and Ω>0.85.

Typical examples of pattern results corresponding to
diagram (A) of figure 1, for Ω=0.5 and 0.9, are displayed in
the next figures 2 to 4, in which the dipoles are aligned along
the z-axis (j=0). In figure 5 we have results for attractive
DDI (j=60°) with rotation frequency Ω=0.9.

3.2.1. 164Dy-162Dy mixture, with repulsive DDI. For the
repulsive case, we start in figure 2 to show the
corresponding densities of the two components of the
coupled dipolar system, by considering the ratio between
two-body inter- and intra-species δ scattering lengths

Figure 2. The 2D densities j
2y∣ ∣ for the symmetric-dipolar mixture 164Dy-162Dy (when a a i j131 , , 1, 2ij

d
0= =( ) ) are shown in the (x,y) plane

for different stable lattice-vortex patterns, with 0.1<δ<1.45 (as indicated inside the panels), considering Ω=0.5 (units of ω1). Both
dipole orientations are parallel to the z-axis (j=0, repulsive DDI), with the OL parameters being V0=15 (ÿω1 units) and π/k=0.534 (μm
units). The other parameters are N 10 , 50j

4 l= = , and a a40jj 0= . Starting from zero (darker), the maximum density levels (clearer) are
0.009 for (aj) and 0.012 for the other panels, in (μm)−2 units.

4 For ‘rotating droplets’ we meant droplet-like density oscillations, similar as
the ones discussed in [52, 53]. In our present study we are not considering
quantum fluctuations, such that these droplets cannot be associated to the
self-bound droplets reported in [8, 10] for single-component experiments.
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changing from 0.1 to 1.45, which are given in five pairs of
panels for the coupled elements of the mixture, in the
presence of a squared OL (with V0=15), for a given rotation
frequency Ω=0.5. The effect of the squared OL in this case
that we have repulsive DDI can be verified by comparing the
results with previous results performed without an OL, for
Ω<0.6 and δ<0.6. We noticed that vortex-lattice patterns
with triangular formats observed in [21] are modified to
squared formats, when adding a squared OL with a grid size
given by k=1.87π, as exemplified by the panels (aj=1,2).
Further, irrespective of the values of Ω, for 1d , we have
observed only square-shaped vortex structures, as shown in
the panels (aj) and (bj). However, when δ becomes larger than
one, with the inter-species contact interactions becoming
dominant, the miscibility of the two components starts to play
a more relevant role, resulting in lattice-vortex structures
more favorable to immiscible bosonic systems. These results
are represented by the panels (cj), (dj) and (ej), for δ=1.1,
1.25 and 1.45, respectively. The closely located vortices of
each species start to join together forming patterns with
domain walls separating the species, resulting in vortex sheets
or with serpentine shapes. This behavior in pattern transitions
can be seen from (bj) to (cj), and from (cj) to (dj).

Transition to less regular patterns is observed by
enhancing the immiscibility of the mixture, further increasing
the relation between inter- to intra-species scattering length δ,
as indicated by the panels (ej). The two dipolar species start to
become almost separated, but sharing the same region of
space as they are symmetric in their dipolar properties with
masses slightly different. Therefore, patterns with different
shapes can be observed as we increase the value of δ, where
2D rotating droplet formations can emerge. This behavior is
characterized by the panels (ej), in which it is noticed that the
more central region is mainly occupied by the more massive
species.

3.2.2. Vortex-lattice changes by varying the OL spacing. The
OL spacing used along this work, π/k=0.534
(corresponding to k=1.87π) is motivated by our main
purpose to investigate an experimentally accessible region for
coupled dipolar systems, as in [46]. However, in order to
verify the effect of the spacing grid given by the OL
parameter k in the pattern transitions, we include figure 3 by
considering a fixed large value of δ=1.45 (the same as in the
panels (ej) of figure 2), with k varying from zero to 4π; the
first implying there is no OL potential, as shown by
equation (6); with the second having a grid spacing so
small that the net effect is reduced to a constant in the trap.
The panels presented in figure 3 are arranged in an array with
six columns and four rows, by contemplating the densities
together with their corresponding phases. The first and third
rows of panels present the densities j

2f∣ ∣ for the first ( j=1)
and second ( j=2) components of the mixture, respectively;
with the second and fourth rows presenting the corresponding
phases (for the panels identified in the first and third rows).
The values of k (= 0, 4π, 1.87π, 1.5π, π and 0.5π) are fixed at
each column, being identified in the first row, such that in the

first column we have the case without OL potential. Next, in
the other panels we consider the squared OL grid starting
from a smaller size (π/k=0.25) to a larger size (π/k=2). In
this regime with δ=1.45, when switching off the OL with
k=0, the patterns are dominated by the repulsive dipolar
interactions and rotation frequency (Ω=0.5), with the
results, for densities and phases, being shown in the first
column of figure 3. By considering very large values of k,
such as k=4π (implying in smaller grid sizes) the results
have some similarities with the ones obtained for the case
without the OL (k=0), indicating that the OL effect is
averaged out. However, by increasing the grid of the OL
potential, as shown in the panels with columns identified by
(dj) to (fj), we notice that the role of the OL is more evident
when considering intermediate values of k. With the panels
(dj) for k=1.5π to (fj) for k=0.5π, it is observed that the
effect of the OL is dominating, resulting in more geometric
patterns, whereas near k=1.87π a transition regime is
verified, with the formation of 2D rotating droplets in the
mixture.

Without the OL and symmetric binary mixtures, rotating
droplets have already been observed in [20], with instabilities
and pattern formations having been recently studied in [29],
by considering oppositely polarized dipoles in a two-
component BEC. Here, by applying a shallow squared OL
for the rotation given by Ω=0.5 2D droplet shaped densities
are formed in the particular regime with δ>1.4, as indicated
in the phase diagrams of figure 1 and exemplified in the
panels (dj) of figure 2, as well as in the column identified by
(cj) of figure 3. Due to the immiscibility, rotating droplet-like
density peaks are formed near to the surface of the BEC in the
first component; being located near the middle of the
condensate for the second component.

For the row of panels with the densities given in the first
and third rows of figure 3, we show the corresponding phases
in the second and fourth rows of the same figure. These plots
with the phases feature the corresponding vorticity, such that
we can see the vorticity corresponding to the droplets in the
column with (cj). In the structure of the droplets that are being
shown for the phases, we observe about vorticity two in the
small-size droplets, and about four in the large-size droplets.
These structures are similar to the double-core structures,
where droplets in any one of the components are formed by
multiple vortices with the same circulation, with vortices in
any of those components being surrounded by those multiple
vortices.

For the same 164Dy-162Dy mixture, in figure 4 we are
verifying the vortex-pattern structure when increasing the
rotation parameter, from the 0.5 that was used in figures 2 and
3 to Ω=0.9. By comparing both the cases given by figures 2
and 4 in the regime with δ>1.45, we noticed that rotating
droplets are no longer supported and we particularly observed
the formations of domain walls in the binary mixture. As the
rotation becomes stronger, the binary mixture expands in the
plane, being distributed in a larger radius. In this regime with
δ>1, the droplet density peaks change to domain walls due
to the large number of vortices, which become connected with
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each other. However, as we decrease δ below one, we return
to vortex-lattice structures having square formats.

3.2.3. 164Dy-162Dy mixture, with attractive DDI. The
orientation of the dipoles is expected to be relevant,
considering that by changing the both aligned dipoles from
j=0° to j=60° we are also changing the strength of the
DDI from a repulsive to an attractive one. Therefore, with the
objective of verifying how much the vortex-lattice patterns
could be affected by changing the orientation of the dipoles in
this symmetric case, we present in figure 5 results
corresponding to the ones we have verified in figures 2 to
4. Now, we consider the polarization of the dipoles making an
angle j=60° in relation to the orientation of the z-axis, such
that the DDI becomes attractive. In order to compare with
previous results, in figure 5 we consider the same rotation
frequency Ω=0.9 as in figure 4. Again, we consider three
values of the inter- to intra-species scattering lengths, given
by δ (smaller, equal and larger than one). The main changes
that we observe by comparing figures 4 and 5 are that the
attraction in the DDI reduces the radius from ∼14 to ∼6 and,
due to the increasing miscibility between the components, the
patterns observed for δ>1 are somewhat similar to the ones
verified in figures 2 and 3, with domain walls and with some

rotating droplet formations (more restricted in this case due to
more attraction between the components).

3.3. Asymmetric-dipolar mixture 168Er-164Dy in a squared OL

In this part of our study, we consider a condensed system with
the asymmetric-dipolar coupled species 168Er-164Dy, which
are confined in a pancake-shaped trap (λ=50), with the
addition of a squared OL. The parameters of the DDI in this
case are given by a a a a66 , 131d d

11 0 22 0= =( ) ( ) and
a a a94d d

12 21 0= =( ) ( ) . The main characteristics of this system
in the absence of OLs is that the two components are less
miscible, as studied before in [36]. The diagrams presented in
figure 6 summarize the results we have obtained for the kind
of vortex patterns that are found, considering the rotation of
the system, given by the parameter Ω, and the inter- to intra-
species contact interaction, δ. In diagram (A), we have con-
sidered the orientation of the two dipoles parallel to z, with
j=0, implying a repulsive DDI. For the diagram (B), the
orientation of the dipoles makes an angle j=60° with
respect to z, such that we have an attractive DDI.

As shown in diagram (A), the vortex patterns in the case
of repulsive DDI are mainly with triangle shapes for δ�0.9
when we assume Ω0.8, changing to squared shapes for
larger Ω. And, for δ>0.9 the patterns are mainly circular

Figure 3. The effect of the OL in the vortex-lattice patterns shown in figure 2 is verified by an array of panels where the densities are given in
the 1st and 3rd rows ( j=1, 2, respectively), followed by the corresponding phases, in the 2nd and 4th rows. For that, we fix δ=1.45 and
vary the OL parameter k (OL is switched off for k=0), keeping all the other parameters as in figure 2. As shown, the OL potential has
stronger impact in the patterns in the interval k0.5 2 p p. The mapping levels are from zero (darker) to 0.012 (clearer) for the densities
and from −π to π for the phases.
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lattices, independently of the values of Ω. Patterns with
rotating droplets are observed only for larger values of δ,
close to ∼1.5 with Ω close to 0.9. In diagram (B), we have
results considering attractive DDI, with j=60°. By com-
paring with diagram (A), we noticed that the triangle patterns
remain only for smaller values of δ, as most of the results
shown with δ<1 have squared pattern formats. Also, for
δ>1, the attractive DDI increases the region where we can
have patterns with droplets, which can happen when Ω∼0.9.
Sample results are given in the following three figures.

3.3.1. 168Er-164Dy mixture, with repulsive DDI. The results
presented in figure 7 are for the densities of the two
components, considering three values of δ, which give the
ratio between inter- to intra-species scattering lengths. In this
case, we are using the dipole orientations parallel to the z-axis
(j=0), such that we have repulsive DDI. The rotation
frequency is fixed to Ω=0.5. Due to the characteristics of
this coupled system, we observe that in general we have
circular patterns for the densities, where the less massive
species (164Dy, in this case) is distributed in a radius larger
than the other one (168Er). The repulsive DDI enhances the
separation between the coupled species, in particular for
larger values of δ (when the inter-species contact interaction is
dominating). The vortex patterns are mostly triangular for
δ<1 and with circular ring shapes for δ�1. The
168Er-164Dy mixture in a squared OL shows a triangular
lattice within the regime where δ�0.9 and Ω<0.85. This
coupled mixture, in the absence of an OL, presents a square

vortex lattice for δ>0.9. The presence of the OL shows
different vortex phase regimes. The circular shaped lattices
are formed due to the complete phase separation of the
condensates when δ>0.9, without being affected by the
values of the rotation parameter Ω.

With the results presented in figure 8, we verify how the
results given in figure 7 are affected by increasing the
rotation. Therefore, we increase to 0.9 the value of Ω (in
figure 7 is 0.5). As one can notice, by increasing the rotation
the coupled system becomes more miscible, such that for
δ>1 the circular patterns are not well defined as in figure 7
(see, for example, figure 11 of [21]). We can also verify the
increasing number of rotating droplets and density peaks,
which are formed due to multiple vorticity, as also discussed
in the case of figure 3 for the 164Dy-162Dy mixture.

3.3.2. 168Er-164Dy mixture, with attractive DDI. Next, in
figure 9, we change the orientation of the dipoles from
j=0 (used in figure 8) to j=60°, such that the DDI
becomes attractive. The effect of more attraction, and also by
keeping the rotation high with Ω=0.9, is that the radius is
reduced, as well as the number of vortices, with different
vortex patterns being observed.

3.4. 164Dy-52Cr and 164Dy-87Rb dipolar mixtures in a
squared OL

In this subsection we consider the coupled mixtures which
have a stronger asymmetry, given by 164Dy-52Cr and

Figure 4. Effect of increasing the rotation frequency to Ω=0.9 in the densities shown in figure 2, where the DDI is repulsive (j=0). For
the components j=1 (upper) and 2 (lower), the panels are for δ=0.1, 0.9 and 1.45 (indicated inside the upper panels). The patterns have
squared formats in (aj) and (bj), with striped and domain wall structures in (cj). Other parameters and units are as in figure 2. Starting from
zero (darker), the maximum density levels (clearer) are 0.005 4 for the panels (aj) and (bj), and 0.006 8 for the panels (cj).
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164Dy-87Rb. Besides their dipole properties, these systems
have also a larger mass difference than the ones considered
before. In these cases, considering the dysprosium as the first
component, the corresponding parameters of the DDI are
a a a a131 , 16d d

11 0 22 0= =( ) ( ) and a a a25d d
12 21 0= =( ) ( ) for

164Dy-52Cr; with a d
22
( ) and a d

12
( ) almost zero for 164Dy-87Rb.

We choose to give more details on the mixture with chro-
mium, as in this case we have large asymmetry but with all
non-zero dipolar parameters. The vortex-pattern results are

shown through figures 10, 11 and 12, in analogy with the
previous cases. With figure 13, we conclude this section with
the corresponding vortex-pattern results for the densities
obtained for the 164Dy-87Rb mixture, in which just one of the
intra-species dipolar parameters is non-zero.

In each of the figures we display a set of three panels,
considering three characteristic values of the parameter δ, for
fixed rotations and dipole orientations. We start in figure 10,
by considering Ω=0.5 and j=0 (repulsive DDI). As

Figure 5. By keeping Ω=0.9, as in figure 4, we show the effect of changing the dipole orientations to an attractive DDI with j=60°. The
panels are for δ=0.5, 1.0, and 1.45 (as indicated inside the upper panels), with other parameters as in figure 4. By comparing with figure 4,
we noticed the vortex-lattice patterns change from squared formats to other geometric formats in (aj) and (bj) (going to hexagon-like formats)
and from striped to domain walls with rotating droplets in (cj). Starting from zero (darker), the maximum density levels (clearer) are 0.021 in
all the panels.

Figure 6. Diagrammatical representations of observed vortex-lattice patterns for the asymmetric 168Er-164Dy dipolar mixture, with the
rotation frequency Ω as function of the contact interaction ratio δ≡a12/a11. Both dipoles are polarized: along the z-axis (j=0) in (A); and
at an angle j=60° in (B). The symbols filling specific intervals indicate the approximate observed vortex-lattice patterns in these regions:
triangles for triangular shaped, squares for squared shaped, concentric circles for circular lattices, and solid circles for 2D rotating droplets.
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Figure 7. 2D densities of stable vortices for the dipolar mixture 168Er-164Dy (when a a a a66 , 131d d
11 0 22 0= =( ) ( ) and a a a94d d

12 21 0= =( ) ( ) ) are
shown in three sets of panels, for δ=0.5, 1.0 and 1.45 (as indicated inside the upper panels). The dipole orientations are parallel to z (j=0,
repulsive DDI), with the rotation parameter Ω=0.5 (units ω1). The OL parameters are V0=15 (units ÿω1) and π/k=0.534 (units μm).
Starting from zero (darker), the maximum density levels are 0.014 for (a1); 0.016 for (b1) and (c1); and 0.007 for the panels in the 2nd row.

Figure 8. Effect of increasing the rotation frequency with Ω=0.9 in the density patterns shown in figure 7 for the 168Er-164Dy mixture, by
considering the contact-ratio δ=0.1, 0.9 and 1.45 (as indicated inside the upper panels). Other parameters are the same as in figure 7.
Starting from zero (darker), the maximum density levels are 0.007 3 for (a1) and (b1); 0.009 0 for (c1); 0.004 5 for (a2) and (b2); and 0.005 8
for (c2).

11

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 025302



Figure 9. 2D density patterns are shown for the coupled mixture 168Er-164Dy in three sets of panels, with δ from 0.5, 1.2 and 1.45 (as
indicated inside the upper frames), considering Ω=0.9 (as in figure 8) and the dipole orientations tuned to j=60° (attractive DDI). Other
parameters are as in figures 7 and 8. The density levels are from zero to 0.019 for (a1); 0.018 for (b1); and 0.020 for the other panels.

Figure 10. 2D densities j 1, 2
2y =∣ ∣ of stable vortices for the dipolar mixture 164Dy-52Cr (when a a a a131 , 16d d

11 0 22 0= =( ) ( ) and

a a a25d d
12 21 0= =( ) ( ) ) are shown for δ=0.5, 0.9 and 1.45 (as indicated inside the upper frames), with Ω=0.5 and for repulsive DDI with
j=0°. The OL and other parameters are as in figure 7. The density levels are from zero to 0.010 for (a1); 0.011 for (b1); 0.013 for (c1); and
0.009 for the other panels.
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Figure 11. Effect of changing the rotation frequency to Ω=0.9 in the density patterns as given in figure 10, for the 164Dy-52Cr dipolar
mixture with j=0° (other parameters are as in figure 10). Starting with zero (darker), the maximum density levels are 0.013 0 for (a1); 0.006
4 for (b1); 0.007 8 for (c1); 0.008 0 for (a2) and (b2); and 0.009 0 for (c2).

Figure 12. The 2D component densities of the mixture 164Dy-52Cr are shown with the same parameters as in figure 10, but with Ω=0.9 and
j=60° (attractive DDI). Starting from zero (darker), the maximum density levels are 0.011 for the 1st row and 0.012 for the 2nd row of
panels.
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verified, the density and number of vortices are distributed in
a larger radius higher than 10 for the first component, the
dysprosium, with the chromium density distributed in a
smaller radius. In this case, this distribution of the density (in
a larger space for the more massive species) is related to the
repulsive intra-species dipolar interaction for the first comp-
onent, a a131d

11 0=( ) , which is about eight times larger than
the intra-species interaction of the second component,
a a16 ;d

22 0=( ) and about five times larger than the inter-spe-
cies interaction, a a25d

12 0=( ) . As is also shown in this figure,
the number of vortices in the second component is more
affected by the changes in the inter- to intra-species para-
meter, increasing for δ>1.

Next, in figure 11, we increase the rotation parameter to
Ω=0.9, keeping the same orientation of the dipoles parallel
to z (repulsive DDI). As expected the radial distribution of the
densities increases, in particular for the first component,
where we also notice an increase in the number of vortices.
The maximum localization of the distribution of this first
component moves outside the center as the inter-species
contact interaction is increased. For the second component,
which has the density distributed closer to the center, we
notice that an increasing rotation has the effect of increasing
the number of vortices, which is clear for smaller values of δ.
However, by increasing δ, with such Ω=0.9, the vortices
merge together, as seen in the three panels.

With figure 12, we show the effect in the vortex patterns
obtained for the 164Dy-52Cr dipolar mixture, by changing the

DDI to an attractive one, with j=60°. In this case, we keep
the same rotation parameter as in figure 11. By changing the
DDI to attractive, the two densities become more con-
centrated, with almost all the density corresponding to the first
component distributed in a ring around the 2nd component.

Finally, we present sample results of the densities for
stable vortex-lattice distributions considering the 164Dy-87Rb
dipolar mixture, in the three panels of the figure 13. As this
case is similar to the case where we have chromium instead of
rubidium, with larger asymmetry in the dipolar properties of
the two species, we consider a case where the other para-
meters (except the dipolar ones) are the same as the ones
considered in figure 10, with a repulsive DDI (j=0) and
rotation given by Ω=0.5. As in the other cases, δ varies
from 0.5 to 1.45.

The net difference between the two cases in this com-
parison is the decrease in the vorticity. The comparison
between the results obtained for coupled dipolar mixtures
with one of the species having a strong dipole strength, the
164Dy, with two cases where the second components have
weak or zero dipole strengths, such as 52Cr and 87Rb, is quite
indicative of the behavior of mixtures when we have a non-
dipolar component.

Figure 13. The 2D densities of stable vortices for the dipolar mixture 164Dy-87Rb (when a a131d
11 0=( ) , with a d

22
( ) and a d

12
( ) negligible) are

shown for δ=0.1, 1.0 and 1.45 (as indicated inside the upper frames), with Ω=0.5, and considering repulsive DDI (j=0°). The other
parameters are as in figure 11. Starting from zero (darker), the maximum density levels are 0.010 for the 1st row and 0.009 for the 2nd row of
panels.
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4. Summary and conclusions

In our study of structural vortex-lattice transitions with binary
mixtures of dipolar BECs trapped in a strong pancake-type
symmetry and loaded in a rotating squared OL, we consider
the following mixtures of dipolar isotopes: 164Dy-162Dy,
168Er-164Dy, 164Dy-52Cr and 164Dy-87Rb. As the strength of
the corresponding dipolar interactions are fixed for these
systems, we consider two possible orientations of both
aligned dipoles, by tuning the polarization angle to j=0 or
60° with respect to the z-axis. By using these two orientations,
we consider repulsive DDIs (j=0), as well as attractive
ones (j=60°). Once the intrinsic dipolar properties of the
binary mixture have been considered, together with the trap
conditions (pancake-type with aspect ratio λ=50) and OL
parameters, the other main physical variables in our study to
produce different lattice-vortex patterns are the ratio between
inter- to intra-species two-body interaction δ and the rotation
frequency Ω (in units of the trap frequency ω1).

By considering the kind of patterns which are obtained in
our numerical investigation, for different pairs of parameters
Ω and δ, all the results for the symmetric 164Dy-162Dy and
asymmetric 168Er-164Dy dipolar mixtures are summarized in
two diagrams given in figures 1 and 6, respectively. The
diagrams are followed by specific examples of vortex-pattern
results. For the other binary mixtures, we just choose repre-
sentative results of the vortex-lattice structures. In the specific
results, which are being displayed along this work, we con-
sider two representative values for the rotation parameter,
Ω=0.5 and 0.9, corresponding to low- and high-rotation
speed. For the squared OL, the strength is fixed to V0=15
with a lattice grid given by π/k=0.534 (units of μm),
suggested by existing experimental possibilities. The lattice
parameter k was varied in the specific case of the symmetric-
dipolar mixture, showing a way to control the vortex-lattice
patterns and indicating the grid interval where the OL
potential is dominant. Besides that, the vortex-lattice struc-
tures are changed by varying the inter-species contact inter-
actions, with the assumption that the corresponding intra-
species interactions are kept equal for both species.

The symmetric 164Dy-162Dy dipolar mixture was first
analyzed—as it is more appropriate to verify the OL effect—
in both the cases that we have a repulsive or attractive DDI,
by tuning the dipole orientations j. As compared with studies
having no OL potential, we noticed that the addition of a
squared OL potential (in the plane defined by the pancake-
type trap) has the effect of changing triangle vortex-lattice
patterns to squared formats when δ  1. However, for δ�1,
a structural transition in the patterns is observed, with the OL
reinforcing patterns with stripes, with domain walls and
vortex sheets. In particular, interesting 2D rotating droplet
vortex structures are observed by increasing the asymmetry
between inter- and intra-species interaction (such as we have
exemplified, with δ∼1.45). A relatively shallow OL facil-
itates the appearance of droplet vortex structures in some
particular regimes of the parameters δ and Ω. For the strength
of the OL we select V0=15, after verifying that the vortex-
lattice structures are in general similar. We have also

observed that droplets lattice patterns are not supported with a
deeper OL such as with V0>25, when considering rotation
frequency is not high, near Ω=0.5. As the frequency is
increased, with Ω>0.65, more vortices are established,
which start to connect together forming domain-wall struc-
tures, with droplet vortex patterns no longer being verified.

We change the DDI strength from a repulsive (when
j=0) to an attractive one, by tuning the dipole orientation to
j=60°. In this case, anisotropic effects due to the dipolar
interaction are visualized with the radius of the condensed
mixture being significantly reduced in relation to the case that
j=0 (see figures 4 and 5). When the DDI becomes attrac-
tive, we also note that the effect of the OL is less pronounced.
The attractive two-body interactions, either by contact or
DDI, reduce the number of vortices, with the phase diagram
becoming similar to the case of dipolar mixtures in harmonic
traps. The main different characteristic is that the OLs support
rotating droplet vortex structures for δ>1.3 and Ω>0.875.
As the interactions are attractive, the number of vortices is not
enough to create droplets for Ω<0.875. In the regime with
δ>1.3 and Ω<0.875, we have only separated phase mix-
tures with few vortices.

Next, we study the asymmetric-dipolar mixture
168Er-164Dy, which is verified to be less miscible in previous
studies where there are no OL interactions. Again we consider
two phase diagrams in a plane defined by Ω and δ, given in
figure 6, for summing up our results for the lattice-vortex
patterns. As verified in such a case, there is no relevant effect
verified in the vortex-lattice patterns by varying the rotation
frequency Ω, which are mainly squared-vortex lattices for
δ<1, with a circular vortex lattice for δ>1. On the other
hand, after applying the squared OL on this asymmetric
mixture, we can verify that the vortex-lattice patterns are more
affected by changing the rotation frequency. As indicated in
the δ−Ω phase diagram presented in the left frame of
figure 6, for the case that the polarized dipoles are aligned
with the z-axis (j=0), when δ<0.9, the vortex-lattice
patterns produced are mainly with triangular formats when
Ω<0.85, changing to squared formats when Ω>0.85. For
δ>0.9 the vortex-lattice structures are predominantly with
concentric circles, with rotating droplet vortex-lattice patterns
being verified in the limited regime for large values of δ

(∼1.45) and Ω (∼0.9). Sample illustrative vortex-lattice pat-
terns are shown in figure 9. Further, by changing the DDI to
be attractive, with j=60°, as shown in the right frame of the
figure 6, for 0.7<δ<1, most of the patterns change from
triangular (when the DDIs are repulsive) to squared formats
(when the DDIs are repulsive), except for smaller values of δ
where the triangular formats remain. Droplet vortex structures
can also be observed in the high-rotation regime, where Ω is
close to 0.9, when δ>1.2. See, for example, the patterns (ci)
shown in figure 8, in this case.

More briefly we consider the highly asymmetric mix-
tures, with larger differences in the mass and dipole moments,
as 164Dy-52Cr and 164Dy-87Rb. These mixtures show only
triangular and half-quantum vortex lattices. The dipole
moment of 164Dy is comparatively much larger than the
dipole moments of the other component. So, the first
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component (164Dy) produces more vortices than the second
one. Besides that, we have observed that both 164Dy-52Cr and
164Dy-87Rb present similar characteristics.

In our present investigation, we have studied dipolar-
symmetric and dipolar-asymmetric binary systems, which are
confined in stable pancake-shaped configurations with fixed
OL parameters, where most of the results are shown for two
moderate low and high-rotation frequencies (Ω=0.5 and
0.9). Apart from that, for the vortex-pattern structures, the
inter- to intra-species repulsive contact interactions δ and the
polarization angle of the DDI j are the main relevant para-
meters to be considered. The miscibility of the two compo-
nents is reduced by increasing δ, provides the different
domain-wall shaped vortex structure in the dipolar-symmetric
case; and in radial space separations of the components in the
dipolar-asymmetric case. The polarization angle can change
the system from repulsive to attractive, by going to larger
angles, which will reduce the radius, having relevant effects
on the pattern structures, particularly for larger δ, in the
interplay between repulsive contact interactions (increasing
the immiscibility) and the attractive DDI (reducing the radial
distribution of the densities).

The OL parameters are adjusted when considering pos-
sible experimental setups, so as to not strongly affect the
behavior of other relevant quantities we are studying. A
specific example is presented in figure 3, where we show how
the OL can affect the vortex-lattice patterns by changing the
OL grid-spacing parameter. As observed, for values of k near
zero (very large grid spacing), there are almost no oscillations
along the trap, with practically no OL effect. Also, in the
other limit, for large values of k (very small grid spacing), the
trap is practically not affected, because the oscillations will
average to a constant. However, for intermediate values of k,
we can have dramatic changes of patterns with further loss of
cylindrical symmetry due to the alignment of the lattice and
corresponding BEC localization.

Finally, we understand that the present results can be
useful to calibrate on-going experiments with dipolar mix-
tures, such as the recent ones, 164Dy-162Dy and 168Er-164Dy,
which are under active investigation, when considering pan-
cake-type trap symmetries and loaded in-squared OLs.

Acknowledgments

We thank the Brazilian agencies FAPESP—Fundação de
Amparo à Pesquisa do Estado de São Paulo (Procs. 2014/
01668-8, 2016/17612-7 and 2017/05660-0), CNPq—Con-
selho Nacional de Desenvolvimento Científico e Tecnológico
(Procs. 306191/2014-8 and 304468/2014-2) and CAPES—
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (LT), for partial financial support.

ORCID iDs

Ramavarmaraja Kishor Kumar https://orcid.org/0000-
0003-2898-2002

Lauro Tomio https://orcid.org/0000-0002-2811-9797

References

[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys.
80 885

[2] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I
2002 Nature 415 39

[3] Fisher M P A, Weichman P B, Grinstein G and Fisher D S
1989 Phys. Rev. B 40 546

[4] Greiner M, Bloch I, Mandel M O, Hänsch T and Esslinger T
2001 Phys. Rev. Lett. 87 160405

[5] Öttl A, Ritter S, Köhl M and Esslinger T 2005 Phys. Rev. Lett.
95 090404

[6] Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I,
Fölling S, Pollet L and Greiner M 2010 Science 329 547

[7] Myatt C J, Burt E A, Ghrist R W, Cornell E A and
Wieman C E 1997 Phys. Rev. Lett. 78 586

[8] Ferrier-Barbut I, Kadau H, Schmitt M, Wenzel M and Pfau T
2016 Phys. Rev. Lett. 116 215301

[9] Schmitt M, Wenzel M, Böttcher F, Ferrier-Barbut I and Pfau T
2016 Nature 539 259

[10] Chomaz L, Baier S, Petter D, Mark M J, Wächtler F,
Santos L and Ferlaino F 2016 Phys. Rev. X 6 041039

[11] Ferrier-Barbut I, Wenzel M, Böttcher F, Langen T, Isoard M,
Stringari S and Pfau T 2018 Phys. Rev. Lett. 120 160402

[12] Chomaz L, van Bijnen R M W, Petter D, Faraoni G, Baier S,
Becher J H, Mark M J, Wächtler F, Santos L and Ferlaino F
2018 Nature Phys. 14 442

[13] Ilzhöfer P, Durastante G, Patscheider A, Trautmann A,
Mark M J and Ferlaino F 2018 Phys. Rev. A 97 023633

[14] Trautmann A, Ilzhöfer P, Durastante G, Politi C, Sohmen M,
Mark M J and Ferlaino F 2018 Phys. Rev. Lett. 121 213601

[15] Müller S, Billy J, Henn E, H Kadau H, Griesmaier A,
Jona-Lasinio M, Santos L and Pfau T 2011 Phy. Rev. A 84
053601

Billy J, Henn E A L, Müller S, Maier T, Kadau H,
Griesmaier A, Jona-Lasinio M, Santos L and Pfau T 2012
Phys. Rev. A 86 051603(R)

[16] Lahaye T, Menotti C, Santos L, Lewenstein M and Pfau T
2009 Rep. Prog. Phys. 72 126401

[17] Baranov M A, Dalmonte M, Pupillo G and Zoller P 2012
Chem. Rev. 112 5012

[18] Tung S, Schweikhard V and Cornell E A 2006 Phys. Rev. Lett.
97 240402

[19] Williams R A, Al-Assam S and Foot C J 2010 Phys. Rev. Lett.
104 050404

[20] Kasamatsu K, Tsubota M and Ueda M 2003 Phys. Rev. Lett. 91
150406

[21] Kumar R K, Tomio L, Malomed B A and Gammal A 2017
Phys. Rev. A 96 063624

[22] Reijnders J W and Duine R A 2004 Phys. Rev. Lett. 93 060401
Reijnders J W and Duine R A 2005 Phys. Rev. A 71 063607

[23] Pu H, Baksmaty L O, Yi S and Bigelow N P 2005 Phys. Rev.
Lett. 94 190401

[24] Kasamatsu K and Tsubota M 2006 Phys. Rev. Lett. 97 240404
[25] Martin A M, Marchant N G, O’Dell D H J and Parker N G

2017 J. Phys.: Condens. Matter 29 103004
[26] Yi S and Pu H 2006 Phys. Rev. A 73 061602(R)
[27] Malet F, Kristensen T, Reimann S M and Kavoulakis G M

2011 Phys. Rev. A 83 033628
[28] Kumar R K and Muruganandam P 2012 J. Phys. B: At. Mol.

Opt. Phys. 45 215301
Kumar R K and Muruganandam P 2014 Eur. Phys. J. D 68 289
Kumar R K, Sriraman T, Fabrelli H, Muruganandam P and
Gammal A 2016 J. Phys. B: At. Mol. Opt. Phys. 49 155301

[29] Xi K-T, Byrnes T and Saito H 2018 Phys. Rev. A 97 023625

16

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 025302

https://orcid.org/0000-0003-2898-2002
https://orcid.org/0000-0003-2898-2002
https://orcid.org/0000-0003-2898-2002
https://orcid.org/0000-0003-2898-2002
https://orcid.org/0000-0003-2898-2002
https://orcid.org/0000-0002-2811-9797
https://orcid.org/0000-0002-2811-9797
https://orcid.org/0000-0002-2811-9797
https://orcid.org/0000-0002-2811-9797
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/415039a
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevLett.87.160405
https://doi.org/10.1103/PhysRevLett.95.090404
https://doi.org/10.1126/science.1192368
https://doi.org/10.1103/PhysRevLett.78.586
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1038/nature20126
https://doi.org/10.1103/PhysRevLett.120.160402
https://doi.org/10.1038/s41567-018-0054-7
https://doi.org/10.1103/PhysRevA.97.023633
https://doi.org/10.1103/PhysRevLett.121.213601
https://doi.org/10.1103/PhysRevA.84.053601
https://doi.org/10.1103/PhysRevA.84.053601
https://doi.org/10.1103/PhysRevA.86.051603
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1021/cr2003568
https://doi.org/10.1103/PhysRevLett.97.240402
https://doi.org/10.1103/PhysRevLett.104.050404
https://doi.org/10.1103/PhysRevLett.91.150406
https://doi.org/10.1103/PhysRevLett.91.150406
https://doi.org/10.1103/PhysRevA.96.063624
https://doi.org/10.1103/PhysRevLett.93.060401
https://doi.org/10.1103/PhysRevA.71.063607
https://doi.org/10.1103/PhysRevLett.94.190401
https://doi.org/10.1103/PhysRevLett.97.240404
https://doi.org/10.1088/1361-648X/aa53a6
https://doi.org/10.1103/PhysRevA.73.061602
https://doi.org/10.1103/PhysRevA.83.033628
https://doi.org/10.1088/0953-4075/45/21/215301
https://doi.org/10.1140/epjd/e2014-40787-1
https://doi.org/10.1088/0953-4075/49/15/155301
https://doi.org/10.1103/PhysRevA.97.023625


[30] Zhang X-F, Han W, Jiang H-F, Liu W-M, Saito H and
Zhang S-G 2016 Ann. of Phys. 375 368

Wang L-X, Dong B, Chen G-P, Han W, Zhang S-G,
Shi Y-R and Zhang X-F 2016 Phys. Lett. A 380 435

[31] Inouye S et al 1998 Nature 392 151
[32] Zeng R and Zhang Y 2009 Comp. Phys. Commun. 180 854
[33] Ao P and Chui S T 1998 Phys. Rev. A 58 4836
[34] Wen L, Liu W M, Cai Y, Zhang J M and Hu J 2012 Phys. Rev.

A 85 043602
[35] Pattinson R W, Billam T P, Gardiner S A, McCarron D J,

Cho H W, Cornish S L, Parker N G and Proukakis N P 2013
Phys. Rev. A 87 013625

Pattinson R W 2014 Two-component Bose–Einstein
condensates: equilibria and dynamics at zero temperature
and beyond PhD Thesis Newcastle University,
Newcastle, UK

[36] Kumar R K, Muruganandam P, Tomio L and Gammal A 2017
J. Phys. Commun. 1 035012

[37] Lu M, Burdick N Q, Youn S H and Lev B L 2011 Phys. Rev.
Lett. 107 190401

[38] Tang Y, Kao W, Li K and Lev B L 2018 Phys. Rev. Lett. 120
230401

[39] Góral K and Santos L 2002 Phys. Rev. A 66 023613
[40] Giovanazzi S, Görlitz A and Pfau T 2002 Phys. Rev. Lett. 89

130401
[41] Salasnich L 2002 Laser Phys. 12 198

Salasnich L, Parola A and Reatto L 2002 Phys. Rev. A 65
043614

[42] Salasnich L and Malomed B A 2009 Phys. Rev. A 79 053620

[43] Kumar R K, Young-S L E, Vudragović D, Balaž A,
Muruganandam P and Adhikari S K 2015 Comput. Phys.
Commun. 195 117

[44] Wilson R M, Ticknor C, Bohn J L and Timmermans E 2012
Phys. Rev. A 86 033606

[45] Ticknor C, Wilson R M and Bohn J L 2011 Phys. Rev. Lett.
106 065301

[46] Müller S, Billy J, Henn E A L, Kadau H, Griesmaier A,
Jona-Lasinio M, Santos L and Pfau T 2011 Phys. Rev. A 84
053601

[47] Gammal A, Frederico T and Tomio L 2001 Phys. Rev. A 64
055602

Gammal A, Tomio L and Frederico T 2002 Phys. Rev. A 66
043619

Brtka M, Gammal A and Tomio L 2006 Phys. Lett. A 359 339
[48] Muruganandam P and Adhikari S K 2009 Comp. Phys.

Commun. 180 1888
Vudragović D, Vidanović I, Balaž A, Muruganandam P and
Adhikari S K 2012 Comp. Phys. Commun. 183 2021

[49] Butts D A and Rokhsar D S 1998 Nature 397 327
[50] Bao W, Wang H and Markowich P A 2005 Comm. Math. Sci.

3 57
[51] Jeng B W, Wang Y S and Chien C S 2013 Comput. Phys.

Commun. 184 493
[52] Kasamatsu K, Tsubota M and Ueda M 2005 Int. J. Mod.

19 1835
[53] Saarikoski H, Reimann S M, Harju A and Manninen M 2010

Rev. Mod. Phys. 82 2785

17

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 025302

https://doi.org/10.1016/j.aop.2016.10.018
https://doi.org/10.1016/j.physleta.2015.11.017
https://doi.org/10.1038/32354
https://doi.org/10.1016/j.cpc.2008.12.003
https://doi.org/10.1103/PhysRevA.58.4836
https://doi.org/10.1103/PhysRevA.85.043602
https://doi.org/10.1103/PhysRevA.87.013625
https://doi.org/10.1088/2399-6528/aa8db5
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1103/PhysRevLett.120.230401
https://doi.org/10.1103/PhysRevLett.120.230401
https://doi.org/10.1103/PhysRevA.66.023613
https://doi.org/10.1103/PhysRevLett.89.130401
https://doi.org/10.1103/PhysRevLett.89.130401
https://doi.org/10.1103/PhysRevA.65.043614
https://doi.org/10.1103/PhysRevA.65.043614
https://doi.org/10.1103/PhysRevA.79.053620
https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.1103/PhysRevA.86.033606
https://doi.org/10.1103/PhysRevLett.106.065301
https://doi.org/10.1103/PhysRevA.84.053601
https://doi.org/10.1103/PhysRevA.84.053601
https://doi.org/10.1103/PhysRevA.64.055602
https://doi.org/10.1103/PhysRevA.64.055602
https://doi.org/10.1103/PhysRevA.66.043619
https://doi.org/10.1103/PhysRevA.66.043619
https://doi.org/10.1016/j.physleta.2006.05.067
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1016/j.cpc.2012.03.022
https://doi.org/10.1038/16865
https://doi.org/10.4310/CMS.2005.v3.n1.a5
https://doi.org/10.1016/j.cpc.2012.10.001
https://doi.org/10.1142/S0217979205029602
https://doi.org/10.1103/RevModPhys.82.2785

	1. Introduction
	2. Binary dipolar condensate under rotation loaded in a squared OL
	3. Vortex-pattern results: dipolar mixtures in OLs
	3.1. Parameter space and numerical approach
	3.2. Symmetric-dipolar mixture 164Dy-162Dy in a squared OL
	3.2.1.164Dy-162Dy mixture, with repulsive DDI
	3.2.2. Vortex-lattice changes by varying the OL spacing
	3.2.3.164Dy-162Dy mixture, with attractive DDI

	3.3. Asymmetric-dipolar mixture 168Er-164Dy in a squared OL
	3.3.1.168Er-164Dy mixture, with repulsive DDI
	3.3.2.168Er-164Dy mixture, with attractive DDI

	3.4.164Dy-52Cr and 164Dy-87Rb dipolar mixtures in a squared OL

	4. Summary and conclusions
	Acknowledgments
	References



