





division rings of characteristic p > 0 with tpp were also characterized, but
the case where the characteristic is equal to zero remained opened.

In what follows, we shall give a complete characterization of artinian
alternative algebras having tpp .

2 Simple Alternative Algebras

We recall that given elements a,b,c in an algebra A, the commutator and
associator of these elements are defined respectively by:

[a,0]) = ab — ba,
(a,b,¢) = (ab)c — a(be).

Accordingly, the commutative and associative centers of A are defined
respectively as:

K(A)={a€ A|la,z] =0, Vz € A},
N(d)={a€ A|(a,2,9) = (z,0,¢) = (z,y,0) = 0, Vz,y € 4}.
Then, the center of A is defined as:
Z(A)= K(4A)nN(A).

Alternative division rings of characteristic p > 0 having tpp , are already
known.

Proposition 2.1 ([7, Proposition 2.3])) Let D be an alternative division ring
of characteristic p > 0. Then D has tpp if and only if any two elements of
finite order in D commute. In this case, E = TU(D) U {0} is a central
subfield of D.

In the case where char(D) = 0 we obtain the following.

Theorem 2.2 Let D be an alternative division ring of characteristic 0.
Then D has tpp if and only if TU(D) is central in D.

Proof. Given two non-zero elements z,y € D, let us denote by D(z,y)
the largest associative subring of D containing z,y. Notice that since an
alternative algebra is diassociative, the subring generated by z,y and the
center of D is associative, so it is easy to show that D(z,y) actually exists.
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We claim that D(z,y) is a division ring. In fact, take an element a € D(z,y).
Then, given any two other elements b,¢ € D(z, y) we have that the associator
of a,b, ¢ (in any order) is equal to 0, so by [12, Lemma 10.3.8] we have that
the associator of a=!,b,¢ (in any order) is also equal to 0, showing that
a”! € D(z,y).

Given an element ¢ € D of finite order, let y € D be any other non-zero
element. Then D(¢,y) is a division ring and (f) is a periodic subgroup of
U(D(t,y)). Hence, [8, Theorem 8] shows that () is central in D(t,y) so
ty = yt. Since y € D is arbitrary, this implies that TU (D) C K(A).

Now, take an element ¢ € T (D) and a pair of arbitrary elements z,y €
A. It follows from the proof of [12, Corollary 7.1.1, p.136] that

3(t,z,y) = 3(z,t,y) = 3(z,y,t) = 0.

Since char(D) = 0 we see that all three associators above are equal to 0.
Hence t € N(A), showing that actually TH(D) C Z(A) o

Let F be a field. Let Mz(F) be the so-called Zorn’s vector matriz algebra
with entries in F; i.e. the set of 2 x 2 matrices of the form:

1
a z
Bt
where a,b € F and z,y € F3, the set of ordered triples of elements of F.

Adding this matrices entry by entry and multiplying according to the
following rule

a; ) a; 3 | _ ajaz + 1.9 a3+ by — Y X 12
n b y2 b2 ayr +bhiza + T X T2 b1by + 172

where z.y and zxy denote the dot and cross product of z, y € F° respectively,
Mgz(F) becomes an alternative algebra.

We recall that a Theorem due to E. Kleinfeld shows that a simple al-
ternative algebra over a field F' which is not associative is either a divi-
sion algebra or is isomorphic to Zorn’s vector matrix algebra Mz (F) (see
{12, p.46 and Corollary 7.3.1] or [5, Corollary 1.4.7 and Proposition VI.4.6]).

Algebras of this kind over fields of characteristic p > 0, having tpp are
known.

Proposition 2.3 ([7, Theorem 2.5)) Let F be a field of characteristic p > 0.
Then Zorn’s vector matriz algebra Mgz (F) over F has tpp if and only if F
is algebraic over ils prime field P.



Now, let F' be any field of characteristic 0 and consider the following
elements.

0o (1,000] , [ o (1,00
“=[(1,o,0) 0 }”"[(—1,0,0) -1 }EM(R‘)‘

Then, it is easy to see that a* = % = I and

ab:[(l) (1"1”0)}, 5 (ab)"=“ ("’f"’)]au, ¥n > 1.

Hence, we get the following.

Proposition 2.4 Let R be a commutative ring with unity, of characteristic
0. Then, M(R) does not have tpp.

Let A be a semisimple alternative artinian algebra over a field F. Then,
A is the direct sum of simple alternative algebras, each of which is either a
division algebra of finite dimension over F, or a simple associative algebra
of the form M,(D) for some n > 1 and some division algebra D finite
dimensional over F, or isomorphic to Zorn’s vector matrix algebra over a
field which is a finite extension of F (see [12, Theorem 12.2.3]). Hence, an
examination of its simple components in the light of the results just above,
makes it possible to determine whether or not A has tpp . The case where
char(F) = p > 0 is already implicit in [7].

Theorem 2.5 Let A be a semisimple alternative artinian algebra over a
field K of characteristic p > 0. Then A has ipp if and only if its simple
componentes are either division rings whose torsion units are central, or
isomorphic to full matriz rings or to Zorn’s vector matriz algebras over
Jields which are algebraic over their corresponding prime fields.

Theorem 2.6 Let A be a semisimple alternative artinian algebra over a
field K of characteristic 0. Then A has tpp if and only if all its torision
units are central. In this case A is a direct sum of division rings with this

property.

Now, we deal with alternative artinian algebras in general, showing how
to reduce the problem to the semisimple case. The proofs of our results are



very similar to those given for the associative case in [4]; we include them
here only to show that they work also in the alternative case, with only minor
changes.

We recall that an element a in an alternative algebra A is called quasi-
regular if there exists a’ € A such that a + a’ + aa’ = 0. An ideal is called
quasi-regular is all its elements are quasi-regular. The Jacobson radical of
A, denoted J(A), is the largest quasi-regular two-sided ideal of A. This
radical is also known in the literature as the Smiley, Zhevlakov or Kleinfeld
radical. It can be shown that, if A is artinian. then J{A) is nilpotent (see
[12, Theorem 12.2.2]).

Lemma 2.7 Let A be an artinian algebra over a field K. Then L = 1+J(A)
s a multiplicative Moufang loop. If char(K) = p > O then L is a torsion
loop of exponent a power of p and, if char(K) = 0 then L is torsion-free.

Proof. It is clear that 1+ J(A) is closed under multiplication, Also, since
J(A) is nilpotent it is easy to see that given an element p = 14a € 1+ J(A),
there exists a positive integer n such that a® = 0sothat p~! =1 —a+---+
(—a)®~! € 1+ J(A) is the inverse of u. As L is contained in an alternative
algebra, it is clear that it is a Moufang loop.

If char(K) = p > 0 we can choose a positive integer m such that p™ > n
so that o?™ = 0 for all a € J(A) and thus pP" = QA+ =1+a" =1,
showing that L is torsion, of exponent p™.

If char(K) = 0, to see that L torsion-free, assume that there exists an
element z € J(A) such that 1+ z is of finite order. Then, there exists a
positive integer m such that:

Z (m\ .
m o__ L
(1+2) —1+mx+z (i):c—l.

=2
Thus: .
L\ (m i-1
o5 (-
Since (1/m) T2, (T)z*~! € J(A) we have that 1 + (1) 1, (T)zi~1 €
14 J(A) is invertible, so 2 = 0 o

The case when the characteristic of the ground field is p > 0 admits a
direct reduction.



Theorem 2.8 Let A be an semisimple alternative artinian algebra over a
field K of characteristic p > 0. Then A has tpp if and only if A/J(A) has

tpp.

Proof. Assume A has tpp and let py, uz € A be elements such that the
corresponding elements under the natural epimorphism &y, fz € A/J(A)
are units of finite order in A/J(A). Since A is artinian, we have that J(A)
is nilpotent so it follows easily that both u; and g2 are units in A. We claim
that they are also of finite order. In fact, since @; is of finite order, there
exists a positive integer n, such that ;™ = 1, so i = 1+a; with oy € J(4),
1= 1,2 and Lemma 2.7 shows that ;" is of finite order so I itself is also
of finite order,i = 1,2. Since A has tpp , it follows that the product u;us is
of finite order and thus also fy7 is torsion.

Conversely, assume that A/J(A) has tpp and let @, § be arbitrary el
ements of TU(A). Then we have that &, B € TU(A/J(A)) so af is of
finite order and, by the argument above, it follows that also af is torsion,
completing the proof. o

Theorem 2.9 Let A be an alternative artinian algebra over a fleld K of
characteristic 0. Then, A has tpp if and only if TU(A) is central. In this
case, all nilpotent elemenis of A belong to J(A).

Proof. Let J(A) denote the Jacobson radical of A. Since char(K) =0,
we have, from Wedderburn’s Principar Theorem (see [11, Theorem iii.3.13])
that we can write A as a direct sum (of vector spaces) A = S& J(A4), where
§ is a semisimple subalgebra of A, though not a two-sided ideal.

Since A has tpp we have that S also has tpp so, by Theorem 2.6, we
have that TU(S) is central in 5. We claim that the elements of TZ{(S) also
commute with the elements of J(A4) and are thus central in A itself.

In fact, set z € TU(S) and a € J(A). Since alternative algebras are
diassociative, the subalgebra generated by z and o is associative. Then 1+«
is a unit and (1 + a)z(1 + @)~! is a torsion unit of A. Since A has tpp , it
follows that (1+a)z(1+ea) 'z~! € T(A)N(1+J(A)), so Lemma 2.7 shows
that (14+a)z(1+a)~*z~! = 1. Hence,  commutes with 1+ a and thus also
with o, as desired.

To complete the proof, it will suffice to show that TU(A) = TU(S). To
do so, take u € TU(A) and write it as u = s + n with s € § and n € J(4).
Notice that, if m is a positive integer, it is easy to see that u™ is of the form
u™ = 8™ 4 ny, with n; € J(A), so it follows that s € TU(S). Since s is



central, we have that s™'u = 1+ s7'n € 1+ J(A) is a torsion unit, thus
Lemma 2.7 shows again that s71u = 1 and we get that u = s € §. O
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