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Abstract 

ln what follows, we determine necessary and sufficient conditions for 
the set of torsion units of an alternative artinian algebra to be closed 
under multiplica.tion . 

1 Introduction 

Let R be a ring with unity. We shall denote by U(R) the group of units of 
that ring and by TU(R) the set of torsion units (i.e. , the set of elements of 
finite order in U(R)). We say that R has the torsion product property (or, 
briefly, that R has tpp) if the product of torsion units is again a torsion unit. 

Some years ago, it was a common trend to investigate group theoretical 
properties of U(R) in the case when R was a group ring over either the ring 

of rational integers or a given field. In particular, group rings having tpp 

were investigated in [1], (2), [9) and [10]. 
More recently, this property was studied also in the case of alternative 

loop rings over the integers [6] and then extendeded to alternative loop al­
gebras over fields [7] (see also [5]); in the course of this study, alternative 
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division rings of characteristic p > 0 with tpp were also characterized, but 
the case where the characteristic is equal to zero remained opened. 

In what follows, we shall give a. complete characterization of artinian 
alternative algebras having tpp . 

2 Simple Alternative Algebras 

We recall that given elements a, b, c in an algebra A, the commutator and 
associator of these elements are denned respectively by: 

[a, b) = ab - ba, 

(a,b,c) = (ab)c- a(bc). 

Accordingly, the commutative and associative centers of A are defined 
respectively as: 

K(A) = {a E A I [a, x] = 0, Vx E A}, 

N(A) = {a EA I (a,x,y) = (x,a,y);;::; (x,y,a) = 0, Vx,y EA}. 

Then, the center of A is defined as: 

Z(A) = K(A) n N(A). 

Alternative division rings of characteristic p > 0 having tpp , are already 
known. 

Proposition 2.1 ([7, Proposition 2.3)) Let D be an alternative division ring 
of characteristic p > 0. Then D has tpp if and only if any two elements of 
finite order in D commute. In this case, E = TU(D) U {O} is a central 
subfield of D. 

In the case where char(D) ;;::; 0 we obtain the following. 

Theorem 2.2 Let D be an alternative division ring of characteristic 0. 
Then D has tpp if and only if TU(D) is central in D. 

Proof. Given two non-zero elements x, y ED, let us denote by D(x,y) 
the largest associative subring of D containing x, y. Notice that since an 
alternative algebra is diassociative, the subring generated by x, y and the 
center of Dis associative, so it is easy to show that D(x,y) actually exists. 
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We claim that D(x, y) is a division ring. In fact, take an element a E D(x, y). 
Then, given any two other elements b, c E D(x, y) we have that the associator 
of a, b, c (in any order) is equal to 0, so by [12, Lemma 10.3.8) we have that 
the associator of a-1, b, c (in any order) is also equal to 0, showing that 
a- 1 E D(x, y). 

Given an element t E D of finite order, let y E D be any other non-zero 
element. Then D(t, y) is a division ring and (t) is a periodic subgroup of 
U(D(t,y)). Hence, [8, Theorem 8] shows that (t) is central in D(t,y) so 
ty = yt. Since y ED is arbitrary, this implies that TU(D) C K(A). 

Now, take an element t E TU(D) and a pair of arbitrary elements x, y E 
A. It follows from the proof of [12, Corollary 7.1.1, p.136) that 

3(t, x, y) == 3(x, t, y) = 3(x, y, t) = 0. 

Since char(D) = 0 we see that all three associators above are equal to 0. 
Hence t E N(A), showing that actually TU(D) c Z(A) o 

Let F be a field. Let Mz(F) be the so-called Zorn's vector matrix algebra 
with entries in F; i.e. the set of 2 x 2 matrices of the form: 

[ 
a x Jl 
y b , 

where a, b E F and x, y E F 3 , the set of ordered triples of elements of F. 
Adding this matrices entry by entry and multiplying according to the 

following rule 

[ 
a1 xi ] [ a2 X2 ] = [ a1 a2 + X1-Y2 a1 x2 + b2x1 - Yi X Y2 ] , 

YI bi Y2 b2 a2Y1 + b1x2 + xi x x2 b1b2 + Y1X2 

where x.y and xxy denote the dot and cross product of x, y E F3 respectively, 
Mz(F) becomes an alternative algebra. 

We recall that a Theorem due to E. Kleinfeld shows that a simple al­
ternative algebra over a field F which is not associative is either a divi­
sion algebra or is isomorphic to Zorn's vector matrix algebra Mz(F) (see 
[12, p.46 and Corollary 7.3.1] or [5, Corollary 1.4.7 and Proposition Vl.4.6)). 

Algebras of this kind over fields of characteristic p > 0, having tpp are 
known. 

Proposition 2.3 ([7, Theorem 2.5]) Let F be a field of characteristic p > 0. 
Then Zorn's vector matrix algebra Mz(F) over F has tpp if and only if F 
is algebraic over its prime field P. 
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Now, let F be any field of characteristic 0 and consider the following 
elements. 

a= [ O (-1,0, 0) ] , b=[ 0 (1~
1
,0) ] EM(R). 

(1,0,0) 0 (-110,0) 

Then, it is easy to see that a4 = b3 = I and 

b [ 
1 (1, 0, 0) ] a=o l ,so 

Hence, we get the following. 

Proposition 2.4 Let R be a commutative ring with unity, of characteristic 
0. Then, M(R) does not have tpp. 

Let A be a semisimple alternative artinian algebra over a field F. Then, 
A is the direct sum of simple alternative algebras, each of which is either a 
division algebra of finite dimension over F, or a simple associative algebra 
of the form Mn(D) for some n > 1 and some division algebra D finite 
dimensional over F, or isomorphic to Zorn's vector matrix algebra over a 
field which is a finite extension of F (see [12, Theorem 12.2.3]). Hence, an 
examination of its simple components in the light of the results just above, 
makes it possible to determine whether or not A has tpp . The case where 
char(F) = p > 0 is already implicit in [7]. 

Theorem 2.5 Let A be a semisimple alternative artinian algebra over a 
field I( of characteristic p > 0. Then A has tpp if and only if its simple 
componentes are either division rings whose torsion units are central, or 
isomorphic to full matrix rings or to Zorn's vector matrix algebras over 
fields which are algebraic over their corresponding prime fields. 

Theorem 2.6 Let A be a semisimple alternative artinian algebra over a 
field K of characteristic 0. Then A has tpp if and only if all its torision 
units are central. In this case A is a direct sum of division rings with this 
property. 

Now, we deal with alternative artinian algebras in general, showing how 
to reduce the problem to the semisim ple case. The proofs of our results are 
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very similar to those given for the associative case in (4]; we include them 
here only to show that they work also in the alternative case, with only minor 
changes. 

We recall that an element a in an alternative algebra A is called quasi­
regular if there exists a' E A such that a + a' + aa' = 0. An ideal is called 
quasi-regular is all its elements are quasi-regular. The Jacobson radical of 
A, denoted J(A), is the largest quasi-regular two-sided ideal of A. This 
radical is also known in the literature as the Smiley, Zhevlakov or Kleinfeld 
radical. It can be shown that, if A is artinian. then J(A) is nilpotent (see 
(12, Theorem 12.2.2]). 

Lemma 2. 7 Let A be an artinian algebra over a field K. Then L = l+J(A) 
is a multiplicative Moufang loop. If char(K) = p > 0 then L is a torsion 
loop of exponent a power of p and, if char(K) = 0 then L is torsion-free. 

Proof. It is clear that l+J(A) is closed under multiplication, Also, since 
J(A) is nilpotent it is easy to see that given an elementµ= l+a E l+J(A), 
there exists a positive integer n such that an = 0 so that µ,- 1 = 1- a+•··+ 
(-0:r-1 E 1 + J(A) is the inverse ofµ. As Lis contained in an alternative 
algebra, it is clear that it is a Moufang loop. 

If char(If) = p > Owe can choose a positive integer m such that p"' > n 
m ) m )m m so that o:P = 0 for all a E J(A and thus µP = (1 + o: P = I+ aP = I, 

showing that L is torsion, of exponent pm. 
If char(K) = 0, to see that L torsion-free, assume that there exists an 

element x E J(A) such that 1 + x is of finite order. Then, there exists a 
positive integer m such that: 

Thus: 

Since (1/m) Li=2 (7?)xi-t E J(A) we have that 1 + (;¾;-) Li=2 ('7)xi-l E 
1 + J(A) is invertible, so x = 0 D 

The case when the characteristic of the ground field is p > 0 admits a 
direct reduction. 
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Theorem 2.8 Let A be an semisimple alternative artinian algebra over a 
field K of characteristic p > 0. Then A has tpp if and only if A/J(A) ~as 
tpp. 

Proof. Assume A has tpp and let µ1, µ2 E A be elements such that the 
corresponding elements under the natural epimorphism µ1, µ2 E A/J(A) 
are units of finite order in A/J(A). Since A is artinian, we have that J(A) 
is nilpotent so it follows easily that both µ 1 and µ2 are units in A. We claim 
that they are also of finite order. In fact, since a; is of finite order, there 
exists a positive integer n; such thatµ;"• = 1, so µf' = 1 +a; with a, E J(A), 
i = 1, 2 and Lemma 2.7 shows that µ;"1• is of finite order so µ; itself is also 
of finite order,i = 1, 2. Since A has tpp , it follows that the product µ1µ2 is 
of finite order and thus also µ 1µ 2 is torsion. 

Conversely, assume that A/ J(A) has tpp and let a, (3 be arbitrary el­
ements of TU(A). Then we have that a, "1J E TU(A/J(A)) so a:(3 is of 
finite order and, by the argument above, it follows that also a:(3 is torsion, 
completing the proof. □ 

Theorem 2.9 Let A be an alternative artinian algebra over a field K of 
characteristic O. Then, A has tpp if and only if TU(A) is centml. In this 
case, all nilpotent elements of A belong to J(A). 

Proof. Let J(A) denote the Jacobson radical of A. Since char(K) = 0, 
we have, from Wedderburn's Principar Theorem (see [11, Theorem iii.3.13]) 
that we can write A as a direct sum (of vector spaces) A= S $ J(A), where 
Sis a semisimple subalgebra of A, though not a two-sided ideal. 

Since A has tpp we have that S also has tpp so, by Theorem 2.6, we 
have that TU(S) is central in S. We claim that the elements of TU(S) also 
commute with the elements of J(A) and are thus central in A itself. 

In fact, set x E TU(S) and a: E J(A). Since alternative algebras are 
diassociative, the subalgebra generated by x and a: is associative. Then 1 + a: 
is a unit and (1 + a:)x(l + 0:)-1 is a torsion unit of A. Since A has tpp , it 
follows that (1 + a:)x(l + a:)- 1x-1 E T(A) n (1 + J(A)), so Lemma 2.7 shows 
that (l+a)x(l+a)-1x- 1 = 1. Hence, x commutes with l+a and thus also 
with a:, as desired. 

To complete the proof, it will suffice to show that TU(A) = TU(S). To 
do so, take u E TU(A) and write it as u = s + n with s E S and n E J(A). 
Notice that, if mis a positive integer, it is easy to see that um is of the form 
um = sm + n1, with n1 E J(A), so it follows that s E TU(S). Since sis 
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central, we have that s-1u = 1 + s-1n E 1 + J(A) is a torsion unit, thus 
Lemma 2.7 shows again that s-1 u = 1 and we get that u = s ES. □ 
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