#### Domain Perturbation for PDEs and Applications

Organizer: Alessandra Verri (UFSCar/Brazil) & Marcone C. Pereira (USP/Brazil)

## Dirichlet's Laplacian in a straight, stretched and locally twisted waveguide

**Diana Carolina Suarez Bello**, Alessandra Verri Universidade Federal de São Carlos

In this seminar we will present results based on the study of the Dirichlet's Laplacian operator spectrum in a straight, stretched and locally twisted waveguide. We will show sufficient conditions that imply the existence of discrete spectrum of the operator in this type of domains.

#### Dynamics of parabolic equations in domains with a small hole

Elaine Andressa Tavares de Lima, German Lozada Cruz

Universidade de São Paulo

In this lecture we will see the asymptotic dynamics for a class of semilinear parabolic problems with Dirichlet boundary conditions in domains with a small hole of size proportional to a positive parameter  $\epsilon$ . In other words, we prove that the family of attractors behaves continuously as  $\epsilon \to 0$ . We will also provide the convergence rates in terms of the parameter.

### Homogenization of the heat equation in a time-oscillatory moving thin domain

**Jean Carlos Nakasato**, Tatsu-Hiko Miura University of São Paulo

We study the asymptotic behavior of solutions of the heat equation in a time oscillatory thin domain. We start by determining estimates of solutions in the perturbed domain and then find the effective problem. This is a joint work with Tatsu-Hiko Miura (University of Hirosaki).

# On eigenvalue generic properties of the Laplace-Neumann operator

José N. V. Gomes, Marcus A. M. Marrocos UFSCAR - Departamento de Matemática

We establish the existence of analytic curves of eigenvalues for the Laplace-Neumann operator through an analytic variation of the metric of a compact Riemannian manifold M with boundary by means of a new approach rather than Kato's method for unbounded operators. We obtain an expression for the derivative of the curve of eigenvalues, which is used as a device to prove that the eigenvalues of the Laplace-Neumann operator are generically simple in the space of all  $C^k$  Riemannian metrics on M. This implies the existence of a residual set of metrics in this space, which make the spectrum of the Laplace-Neumann operator simple. We also give a precise information about the complementary of this residual set, as well as about the structure of the set of the deformation of a Riemannian metric which preserves double eigenvalues.