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shift in the X ,.x scale is fitted to account for both experimental uncertainties and theoretical constraints
on the modeling of particle interactions. The obtained results are consistent with previous analyses and
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Measuring proton-proton interaction cross-sections at center-of-mass energies above 40 TeV re-
mains a significant challenge in particle physics. The Pierre Auger Observatory provides a unique
opportunity to study the interactions at the highest energies through the distribution of the depth of
maximum shower development (Xp,x) observed by its Fluorescence Detector. In previous studies,
the determination of the interaction cross-section at ultrahigh energies has relied on the assumption
that the tail of the Xy« distribution is proton-dominated, which restricts the analysis to a limited
energy range below the ankle and introduces related systematic uncertainties. In this contribu-
tion, we adopt a novel method for the simultaneous estimation of the proton-proton interaction
cross-section and the primary cosmic-ray mass composition using data from the Pierre Auger
Observatory, avoiding assumptions about one quantity to infer the other and thus improving the
accuracy and robustness of our analysis. In addition, a systematic shift in the X« scale is fitted to
account for both experimental uncertainties and theoretical constraints on the modeling of particle
interactions. The obtained results are consistent with previous analyses and provide additional
constraints on hadronic interaction models. The measured proton-proton inelastic cross-section
at ultra-high energies agrees well with extrapolations of accelerator data. The inferred cosmic-ray
composition and the Xp,«-scale shift are also compatible with previous estimates.
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1. Introduction

A key observable in the studies of ultrahigh-energy cosmic rays (UHECRs) is the atmospheric
depth at which the air shower reaches its maximum development, denoted Xp,.x. This quantity
is highly sensitive to both the mass composition of the primary cosmic rays and the hadronic
interaction properties of the shower development. Specifically, Xyax scales with the logarithm of
the mass of the primary particle, providing information on its nuclear mass while also reflecting
the depth of the first atmospheric interaction, which depends on the interaction cross-section of the
incoming particle with air nuclei. However, at ultrahigh energies, neither the mass composition nor
the hadronic cross-sections are directly or precisely measured, and estimating one often requires
assumptions about the other. This mutual dependence is further complicated by the fact that the
Xmax scale itself is not well constrained by current hadronic interaction models [1], introducing
additional uncertainty into the interpretation of both observables.

Addressing these interconnected uncertainties is critical. Studies of the mass composition help
constrain the possible astrophysical sources of UHECRs, while probing hadronic interactions at
these extreme energies offers insight into soft QCD processes that are well beyond the reach of
human-made accelerators. Traditionally, measurements of the proton-air or proton-proton cross-
sections, which is central to constraining hadronic models, have relied on the assumption that the
tail of the Xy, distribution is dominated by protons, with a given helium contribution treated as a
systematic uncertainty (typically limited to ~25%) [2, 3]. Simultaneously, predictions of the mass
composition rely on the same interaction models, making accurate cross-section estimates essential.

In this contribution, we refine the measurement of the proton-proton interaction cross-section
through a simultaneous fit of the cross-section, mass composition, and Xp,x scale using the data
collected by the Fluorescence Detector (FD) of the Pierre Auger Observatory between Decem-
ber 1, 2004, and December 31, 2021 [4]. With this improved approach, we address the drawbacks
of separate analyses and achieve a consistent estimation of the mass composition, the proton-proton
interaction cross-section, and the Xp.x scale while reducing reliance on the assumptions used in
standard analyses.

2. Method

We determine the proton-proton interaction cross-section and UHECR mass composition
through a simultaneous fit to the full Xy« distribution [5, 6], using predictions from air shower
simulations with modified hadronic interaction properties. This approach builds on the standard
mass composition fit [7], using the same data selection procedure, with updates to both the selection
and the reconstruction of the longitudinal air shower profile detailed in [4, 8]. A further extension
to the analysis is made by incorporating model predictions with modified interaction cross-sections.
Additionally, it allows the Xyax scale to vary freely, accounting for associated experimental and
theoretical uncertainties. The proton-proton cross-section is rescaled by introducing an energy-
dependent factor figg,, following the approach used in the original cross-section analysis by the
Pierre Auger Collaboration [2, 9]. The modifications are implemented within the SiByLL 2.3d
model [10] using the CONEX air shower simulation code [11]. Due to the E/A scaling charac-
teristic of the superposition model, the effective onset of cross-section modifications is shifted to
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Figure 1: Biases in the fitted cross-section rescaling factor flp; (left) and shift in the Xax scale 0 Ximax (right)
resulting from deviations in elasticity and multiplicity from the values assumed in the model prediction.

higher energies for nuclei with larger mass numbers. Consistently with the original analysis, the
reference energy E; is fixed at 10'” eV, which defines the energy at which the rescaling factor
reaches the constant parameter value f]pgp . The threshold energy, above which the modifications
in the cross-section are implemented, is set at the LHC center-of-mass energy. The nucleus-air
cross-sections, calculated within the modified hadronic interaction model, are obtained via Glauber
theory from the modified proton-proton cross-sections [12].

First, Ximax distribution templates, i.e., precomputed simulated distributions used for comparison
with data, are generated for discrete values of the rescaling factor ffg’ , ranging from 0.2 to 2.0 in steps
of 0.1. For each value of ffgp, an Xp.x template that includes the detector acceptance and resolution
effects is produced. Independently, a shift in Xj.x, denoted 6 Xpax, is applied to the data. This
results in a two-dimensional scan over ( flp9p , 0 Xmax ), yielding a best-fit mass composition for each
parameter pair. The quality of the fit is assessed using the deviance, defined as the logarithm of the
Poisson likelihood, which is approximately y2-distributed. We identify the values of f]pgp and 0 Xmax
that minimize the total y? across all energy bins, assuming both parameters are energy-independent.
This analysis assumes a mass-independent Xpax-scale shift. A fit including a In A-dependent term
showed no significant mass dependence, with the coefficient consistent with zero.

3. Uncertainties and Biases

Beyond statistical uncertainties, we account for relevant systematic effects, including those
related to the energy scale, detector response, and hadronic interaction properties, specifically
multiplicity and elasticity, as well as energy-dependent Xy« systematics. Detector and energy
scale systematics are evaluated via Monte Carlo simulations incorporating the detector response
of the Pierre Auger Observatory [13], following the standard Xy,,x mass composition analysis [7].
Uncertainties from extrapolating accelerator measurements of elasticity and multiplicity are assessed
using CONEX simulations, with these parameters being modified by following the same approach
as for the cross-section variations [9, 14]. The modified simulations are then refitted. In Figure 1,
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Figure 2: Validation of the fitting procedure on the simulations. Left: Proton-proton cross-section. Right:
Fitted composition fractions. To illustrate the impact of the discussed biases, results are additionally presented
for fits performed with a fixed Xax scale and without applying the correction for the X, bias.

the resulting biases in the estimated cross-section and Xy« scale are shown. The largest deviations
observed in ffg’ , 0 Xmax, and the associated fractions are reported as systematic uncertainties.

The Xmax scale is affected by several systematic sources, primarily reconstruction effects at low
energies and atmospheric variations at high energies [15]. Although these contributions combine
to produce a nearly constant total uncertainty, their energy dependence can introduce both a global
offset and an energy-dependent bias. To incorporate these dependencies, we generate multiple
realizations of correlated Xy, shifts across energy bins by random sampling within the uncertainty
ranges of each source, preserving their energy correlations.

A potentially overlooked factor in Xyqx-based analyses is a reconstruction bias that depends on
the Xax value itself. Monte Carlo simulations show that both the mean and width of the difference
between generated and reconstructed X,x increase with larger Xn.x, biasing the distribution tail
by up to 15 gem™2. Since the tail is sensitive to interaction properties, this bias can significantly
affect the fitted cross-section, while the central part remains stable with minimal bias. Because
true Xmax values are unknown, the correction is applied to simulation templates by adjusting the
double-Gaussian resolution parameters. The bias is modeled as a cubic function of Xp,x and
energy. It mainly affects the tail, with negligible impact on the mass composition, but it can bias
the cross-section estimate by up to 10%, thus, correcting for it is essential for accurate cross-section
determination. It is important to note that this bias, if present, also impacts the previously adopted
method of measuring cross-sections from the tail of the Xp,,« distribution, with its extent depending
on the profile reconstruction method. Neglecting this bias leads to an underestimation of A,,, which
consequently causes an overestimation of the cross-section. Therefore, applying the Xi.x-dependent
correction is essential for both approaches.

Unlike the standard method, which infers the interaction cross-section from the tail of the
Xmax distribution, the simultaneous fit of cross-section and mass composition yields an almost
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unbiased estimate that is largely independent of the helium fraction or overall mass composition,
as demonstrated previously [6]. In Figure 2, we show the fit results for simulations generated using
the composition observed in the Pierre Auger Observatory data and incorporating the detector
response. A negative 30 gcm™2 shift in the Xpax scale was included to test the impact of an
unaccounted deviation from the SiByLL 2.3d model. For comparison, the fit without correcting
the Xp.x-dependent bias is also shown. When both the scale shift and bias correction are applied,
the reconstructed values agree well with the simulated inputs, including composition, Xmax shift,
and cross-section. Small residual bias of approximately 6 gcm™2 in Xpa scale and an offset in
composition are corrected in the fitted fractions and accounted for as systematic uncertainties in
flpgp and 6 Xpax. If the Xp.x shift is omitted from the fit, the cross-section is overestimated, and the
composition is biased toward lighter elements, as the fit compensates for the differing Xp,.x scale
by adjusting the shape of the distribution.

4. Results

We applied the fit procedure described above to the most recent data of the Pierre AugerObser-
vatory, obtaining the cross-section, mass composition, and shift in the X;,« scale. These results are
then compared to those from the standard mass composition fit, the cross-section derived from the
tail of the Xy« distribution, and the latest Auger study evaluating hadronic model predictions for
the Xmax scale.

In Figure 3, we show the two-
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sition. Both observables are compared to  y? value at each parameter point and the minimum y? value

the predictions from the original (unmodi- across the full parameter space, with contours indicating the
confidence levels.

sections are presented, while in Figure 5,
we show the corresponding mass compo-

fied) SiByLL 2.3d model, as well as to those
from the recently released EPOS LHC-R [16] and QGSJET-IIL.01 [17] hadronic interaction models.
The estimated rescaling factor is flpgp = 0.97f%'.%97 (stat.)t%%% (syst.), and the corresponding shift in
the Xpax scale is 6 Xpax = —10.3t11'.75 (stat.)‘jlli‘.% (syst.) g cm~2. The quoted systematic uncertainties
account for the components and biases discussed in the previous section. Although the measured
cross-section and Xp,x values deviate from the predictions of the unmodified SiByLL 2.3d model,
they remain consistent within the total uncertainty. Notably, the direction of the observed deviations
aligns with the trend predicted by the EPOS LHC-R model, which suggests a lower cross-section

and a deeper Xyax compared to SiBYLL 2.3d. The comparison with the cross-sections derived from
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Figure 4: The inelastic proton-proton cross-section estimated from Pierre Auger Observatory data with a
simultaneous fit of mass composition, cross-section and a shift in Xyax scale. The results are compared with
predictions from contemporary hadronic interaction models, accelerator data, and measurements derived
from the tail of the X, distribution. The darker shaded band indicates the statistical uncertainty, while the
lighter band represents the total uncertainty.

the tail of the X ,x distribution shows good agreement in the energy range where the relative helium
fraction remains sufficiently low for the tail method to provide reliable estimates.

The overall Xp,ac-scale shift obtained here is about 20 g cm~2 smaller than the one reported in
the (S(1000), Xmax) analysis [1]. However, it is worth noting that the results presented in these
proceedings depend on the selected energy range. Restricting our fit to the same energy interval
used in that study yields a shift of 6 X = —15.6?3'_22 (stat.)’:lf8 (syst.) gcm‘z, consistent within
systematic uncertainties with the previously reported shift in the model predictions. The rescaling
factor flpgp = 0.74t%.]1‘; (stat.) suggests an additional negative shift and broader Xp,x distribution.
Differences in energy range and analysis assumptions, however, complicate a direct comparison
between the two analyses.

Relative to the composition-only fit with StByLL 2.3d, the mass composition obtained from
the simultaneous composition and cross-section fit is heavier, yet still lighter than that predicted
by EPOS LHC-R. In comparison with the unmodified SiByLL 2.3d model, the proton and iron

fractions remain nearly unchanged across most of the energy range, except at the highest energies
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Figure 5: The mass composition estimated from Pierre Auger Observatory data with a simultaneous fit of
mass composition, cross-section and a shift in X, scale. The results are compared with predictions from the
composition-only fit using the predictions of the unmodified SiByLL 2.3d, EPOS LHC-R, and QGSJET-III.01
interaction models. The inner caps represent statistical uncertainties, while the outer caps indicate the total
uncertainties, including both statistical and systematic contributions. The bottom panel displays the quality
of the fit.

where the iron fraction increases by up to 40%. The nitrogen and helium fractions, on the other
hand, show more noticeable deviations from the unmodified SiByLL 2.3d model, with the nitrogen
fraction increasing by up to 20% in the intermediate energy range, accompanied by a corresponding
decline in helium contamination. Overall, the new composition sits between the StByLL 2.3d and
EPOS LHC-R predictions and remains compatible with both within the quoted total uncertainties.
The improved agreement between the model and the data is reflected in the higher p-values, as
shown in the bottom panel of Figure 5.

5. Conclusions

In this work, we present a joint analysis of the cosmic-ray mass composition and the inelastic
proton-proton cross-section using the full Phase I dataset from the Pierre Auger Observatory. Both
quantities are extracted via a simultaneous fit to the Xy,ax distributions, with the X, scale included
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as a free parameter to address uncertainties in detector response and hadronic interaction models.
This integrated approach reduces dependence on fixed assumptions, such as a proton-dominated
Xmax tail or fixed model predictions, enhancing the internal consistency of the analysis. Compared to
previous measurements, the statistical uncertainty on the proton-proton cross-section has decreased
by about 20%, thanks to the larger dataset and methodological improvements. Systematic uncer-
tainties are also lowered by incorporating dominant error sources directly into the fit. The applied
method additionally improves the reliability of mass fraction estimates by explicitly including the
proton-proton cross-section, which significantly contributes to model-related uncertainties, within
the simultaneous fit. These advances enable a more precise and robust characterization of mass
composition and cross-section, allowing for the extension of cross-section measurements to higher
energies with reduced bias from heavier primaries, such as helium. The results obtained in this
work suggest a somewhat heavier mass composition, a slightly lower proton-proton cross-section,
and a small negative shift in the data relative to model predictions. In summary, the estimated
proton-proton interaction cross-section, as well as the mass composition and the X, scale, remain
consistent with previous measurements and theoretical model extrapolations within the quoted sys-
tematic uncertainties. This agreement supports the validity of the previous and current analyses
while acknowledging the existing uncertainties and limitations inherent in the data and models.
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