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Resumo— Uma nova técnica não-superrisionada de modelagem neural, chamada Memória Associativa. Tem-
porei via Quantizaçao Vetoriai (MATQV) é proposta neste artigo. MATQV é utilizada na identificação de
sistemas dinâmicos não-lineares a partir das séries temporais das variáveis de entrada e saída. Usando esta
abordagem, mostra-se que a rede auto-organizável de Kohonen (SOM, em inglês) produz resultados similares
aos gerados por redes MLP e melhores do que os gerados por redes RBF, ambas de treinamento supervisionado.
Além disso, a rede de Kohonen é mais robusta a variações nos valores iniciais dos pesos que as redes MLP e RBF.
As três redes são avaliadas por simulação computacional em tarefas de modelagem direta, modelagem inversa de

um atuador hidráulico e aprendizagem de trajetórias roboticas complexas. Todas elas são também comparadas
com métodos usuais de identificação linear. Sugestões para pesquisa futura são fornecidas ao final do artigo.

Abstract— In this paptíi- we propose an unsupervised ntíural modelling technique, called Vector- Qua.ntized
Temporal Associative Memory (VQTAM), to identifying dynamical nonlinear systems from time series of mea-
sured inpnt-oiilpnt. data. Using the VQTAM approach, the Kohonen's self-organizing map (SOM) is shown to
produc.e modelling resulís equivalent to those obtained by MLP networks; and be+ter than those produced by the
RBF networks. both the MLP and the RBF based on supervised training. In addition, the SOM is less sensitive
to weight initialization than the MLP and RBF networks. The three networks are evaliiated through simulations

involving learning of feedforward and inverse models of a hydraulic actuator and learning of complex robot tra-
jectories. Ali The neural networks are also compareci with the usual linear identification method. Directions for
fnrther research are provided at the end of the paper.
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l Introdução

Identificação de sistemas é o campo de pesquisa in-

teressado na const.rução de modelos matemáticos

de sistemas dinâmicos a partir das séries tem-

parais das variáveis de entrada e saída medi-

das (Aguü-re, 2000). Estes modelos podem ser

lineares ou não-lineares, dependendo do tipo de

processo ou planta que se quer identificar. Mais

recentemente, técnicas de identificação e controle

de sistemas não-lineares têm recebido especial

atenção em engenharia de controle porque muitos

sistemas, tais como plantas químicas e manipu-

ladores robóticos, exibem elevado grau de não-

linearidade. Para tais sistemas, a utilização de

modelos lineares se mostra ineficaz porque, em

geral, propriedades importantes da dinâmica do

sistema não são capturadas.

Modelos de redes ueurais artificiais (RNAs)
têm sido aplicados com sucesso na identificação

e controle de sistemas não-lineares (Nascimento

e Yoneyama, 2000). Isto se deve em parte ao

fato de certas arquiteturas de redes neurais, tais

como redes do tipo perceptron multicamadas

(MLP) e de função de base radial (RBF), am-
bas de treinamento supervisionado, podem repre-

sentar com precisão arbitrária qualquer mapea-

mento não-linear entre a entrada e a saída de um

sistema (Hunt et al., 1992). Tais redes podem

ser treinadas para, descrever a dinâmica não-linear

do processo em uma ampla faixa de operação,

provendo assim uma representação fiel do mesmo

sobre a qual pode-se projetar e desenvolver vários

esquemas de controle (Norgaard et al-, 2000).

Por se tratar de uma técnica de identificação

do tipo caixa-preta (black-box), o conhecimento a

respeito das características dinâmicas do mapea-

mento é representado implicitamente nos padrões

de conectividade e ativação dos neurônios da rede.

A performance desses esquemas de controle de-

penderá da precisão da aproximação fornecida

pelo modelo neural. O uso de RNAs em identi-

ficação e controle é justificado também por outras

propriedades, tais como a robustez a ruído e ca-

pacidade de generalização.

Neste artigo propõe-se uma nova técnica

neural de modelagem (ou identificação) caixa-

preta que utiliza redes de treinamento não-

supervisionado, ao contrário da abordagem con-

vencional que utiliza apenas redes de treina-

mento supervisionado (MLP e RBF). Por meio

desta técnica, chamada de Memória Associativa

Temporal via Quantizaçáo Vetorial (MATQV);
mostra-se que a rede auto-organizável proposta

por Kohonen (1997) (SOM, em inglês) pode ser
utilizada para aproximar mapeamentos entrada-

saída dinâmicos e não-lineares. Simulações de-

monstram a capacidade de aproximação da rede

SOM usando a técnica MATQV e comparam os

resultados obtidQ&.XQm-Aq.ude-áa.s.^edes.-SiflïR e
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RBF e de técnicas lüifiares.

O restantn do artigo está organizado como

segue. A Seção 2 traz um breve resumo da rede de

Kohonen e de como tal arquit.et.ura pode ser esten-

dida para processar séries temporais. A Seção 3
introduz a técnica MATQV e suas principais ca-

racterísticas, mostrando como ela pode ser usada

em conjunto com a. rede SOM na identificação

das dinâmicas direta e inversa de um atuador

hidráulico e na aprendizagem e reprodução de t.ra-

jetórias robóticas complexas. A Seção 4 mostra os

resultados da comparação da MATQV com as re-

dês MLP e RBF e com uma. técnica linear. A

Seção .5 conclui o artigo.

2 Introduzindo Dinâmica na Rede SOM

A rede auto-oi-jça.nizável de Kohonen é um algo-

ritmo neural de treinamento não-supervisionado

desenvolvido para representar relações de proxi-

midade espacial entre os vetores-amostras de um

conjunto (Kohonen, 1997). Os neurônios desta

rede estão dispostos em uma camada de saída, A.

em arranjos (arrays) de uma, duas e até três di-

mensões. Cada neurônio i ç. A possui um vetar de

pesos w, ç SR" com a. mesma dimensão do vetar

de entrada x £ K". O algoritmo de aprBndizagem

pode ser resumido em dois passos principais:

l. Busca pelo neurônio vencedor, i":

r(í)=argmm||x(í)-w,(t)|| (l)
t6.4

2. Ajuste dos pesos, "w;, da rede:

Aw,(í)=r/(í)ft(^;t)[x(í)-w,(í)] (2)

onde rj[t) é a taxa de aprendizagem e h(i*,i:t) é
a função vizinhança do tipo gaussiana:

h(i",i:t) == exp j -
|r.(í)-ri.«)lls

a^t) (3)

onde r;(í) e r,-(t) são, respectivamente, as

posições dos neurônios i. e i no arranjo. As

variáveis O < ?7(í),o-(t) < l decaem expo-

nencialment.e com o passar do tempo: r][t) =
??o(??T/'?o)(t/T) e o-(í) = o-o(crr/yu)(t/T), onde 770 e

O-Q são os valores iniciais e TIT e O-T os finais de r](t)

e o-(í); tra.nscorhdas T it.erações de treinamento.

Uma imporr.anr.e característica da rede SOM

original é que ela aprende apenas mapeamen-

tos entrada-saída estáticos (Walter e Ritter.

1996). Tais ma.peamen.tos são usualmente des-

critos matematicamente por y(í) = f(u(í)), onde
u(í) £ .i?n e y (í) 6 3ím denotam, respectivamente,

o vetor de. entrada R o VCTOI- de saída do sistema. O

interesse deste artigo é mostrar que,com pequenas

modificações, a rede SOM pode. também ser uti-

lizada para aproximar mapeamentos dinâmicos.

Assume-se que tais mapea.mentos podem ser des-

critos pela seguinte equação (Hunt et al., 1992):

y(t+l)=f[y(í),...,y(í-n,+l);

u(t),...,u(í-n^+l)] (4)

onde riu e riy são os tamanhos máximos (ordens)

da memória de entrada e de saída, respectiva-

mente. De acordo com (4), a saída do sistema

no instante í + l, depende dos riy valores passa-

dos da saída e dos nu valores passados da entrada.

Esta dependência, definida pela função f(-), é em

geral não-linear e desconhecida-

Em muitos problemas de identificação deseja-

se também identificar a dinâmica inversa da

planta:

u(í) = f-l[r(í + l),y(t), ... ,y(t -riy + l);

u(í-l),...,u(t-n^+l)] (5)

onde; para fins de controle, o sinal y(í + l)

é substituído pelo sinal de referência r(í + l).
Para a rede SOM ser capaz de aprender ma-

peamentos dinâmicos, ela deve possuir algum

tipo de mecanismo de memória de curta duração

(MCD) (Barreto e Araújo. 2001), ou seja; ela deve
ser capaz de armazenar informação passada sobre

os vetares de entrada e saída do sistema de in-

teresse. MCD permite que a rede SOM seja capaz

de processar dados de natureza temporal, também

chamados sequências ou séries temporais.

Atualmente quatro técnicas vêm sendo uti-

lizadaíi com este propósito. A primeira e mais

comum delas adiciona informação temporal à en-

trada da rede SOM por meio de atrasadores (áe-

lay Unes) ou integradores (leaky integrators). A

segunda técnica adiciona informação temporal in-

ternamente à rede SOM, nas regras de atívação

e/ou aprendizagem. A terceira técnica combina

a primeira e segunda técnicas em diversas redes

SOM dispostas em camadas; tentando aprender

relações temporais por meio de sucessivos refi-

namentos da informação de entrada. A quarta

técnica usa laços de realimentação para inserir

informação temporal na rede SOM. Na próxima

seção mostra-se como a rede SOM, graças a

mecanismos de MCD, pode aprender mapeamen-

tos entrada-saída dinâmicos. Para simplificar a

exposição; serão usados apenas atrasadores para

armazenar informação temporal.

3 Memória Associativa Temporal

Deseja-se utilizar a rede SOM para obter uma

aproximação da função f ou de sua inversa f-l de

posse apenas das séries temporais das variáveis de

entrada e saída, {u(t),y(í)}, t = ï,..., N. Para

tanto, modifica-se, o vetar de entrada da rede SOM

para que ele passe a ter duas partes. A primeira

parte, representada por xln(t). corresponde à m-

formação de entrada do mapeamento que se quer
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aproximar. A seg-unda, representada por x°ut(í),

corresponde à informação de saída desse mesmo

mapeamento. Como consequência, os vetares de

pesos dos neurômos i. têm também suas dimensões

aumentadas. Ma.T.emat.icamente. tem-se que:

x(í)=
xm(t)
xout(í) w,(í) =

wm(í)
w,°ut(t)

(6)

E importante no+.ar a diferença desta estratégia

em relação àquela usada no treinamento de re-

dês supervisionadas (MLP ou RBF). Nestas re-

dês o vetar XCT(<) é utilizado na entrada da rede,

enquanto o vetor xout(í) é utilizado na saída.

Quando se usa a rede SOM com as definições

dadas em (6) u vet.or x°uí(í) é apresentado na en-

irada, da rede juntamente com o vetar x™ (í).

Dependendo da escolha das variáveis que

compõem os vetares x'" (í) e xout(í) pode-se ut.i-

lizar a rede SOM para aprender tanto a dinâmica

direta quanto a inversa de uma planta não-linear.

Por exemplo, para o ca.so de se querer aproximar

a dinâmica, direra, representada em (4), define-se:

x'"(í)=[y(í)....,y(í-n,+l):

u(í),...,u(í-n,,+l)] (7)

xout(í)=y(í+l) (8)

Já para o caso da dinâmica inversa t.em-se as

seguintes definições:

xm(í)=[y(f+l),y(í),...,y(í-^+l);

u(í-l),...,u(í-n,+l)] (9)

xout(í) = u(/:) (10)

Durante o treinamento, os neurônios vencedores

são encontrados usando apenas a porção corres-

pondente a x"'(í):

r(í)-argmm{||xin(í)-wmH} (11)
i 6.4

Na atualização dos pesos, ambos xm(í) e xout(í)

são utilizados:

Awm(í) = r,(í)/i(F,i:í)[xm(í) - w|"(í)] (12)

Aw,ouí(í) = Ti(l.)h('r,i-,t)[xout(t) -w.°uf(í)] (13)

Com o transcorrer do treinamento, a rede SOM

aprende a associar os sinais de saída do mapea-

mento com os sinais de entrada correspondentes.

ao mesmo t.empi) que realiza a qua.nt.ização veto-

rial dos espaços de emrada e saída. Por isso, esta

técnica será chamada de Memória Associativa

Temporal via Quantizaçáo Ve.tori.al (MATQV).
Após o treinammto, a re.dfi SOM é utilizada para

obter estimariviis dos valores de saída dos ma-

peamentos; a partir do vetor dfi pesos wrut(í) do

neurônio vencedor. Assim, para o caso da apro-

xünação da dinâmica direta. tem-se que:

E para o caso de aproximação da dinâmica inversa,

tem-se:

ú(í) - w^uí(í) (15)

onde em ambos os casos o neurômo vencedor i" (t)

é determinado segundo (11). O processo de es-

t.imação é repetido por M passos até se obter uma

nova série temporal totalmente formada por valo-

rés estimados.

3.1 Aprendizagem de Trajetórias Robóücas

Usando a técnica MATQV é possível utüizar

a rede SOM na aprendizagem e reprodução de

trajetórias robóticas complexas (Araújo e Bar-

reto, 2002). O objetivo é fazer com que a

rede aprenda a estimar a próxima posição an-

guiar do braço do robô PUMA 560 durante
a execução de uma trajetória contendo esta-

dos repetidos. Assumindo aqui, como variáveis

de entrada, as posições cartesianas do efe-

t.uador do robô; x(í)=(2;i(í),a;2(í),a;3(í))- e
como variáveis de saída os ângulos das jun-

tas. 0(t~)=(9\[t},... ,6e(t)), ev.ta.o pode-se escre-

ver uma versão de (4), adaptada ao problema de

aprendizagem de trajetórias robóticas:

0(t+l)=f[9(t),...,9(t-n9+l):

x(í),...,x(í-^+l)] (16)

Para este caso, os vetares x'" (t) p. x°ut(t) são os

seguintes:

x":"(t)=[0(í),...,0(í-nfi+l);

x(í),...,x(í-n^+l)] (17)
.OÍÍÍ (í)=0(f+l) (18)

f/(í+l)-w.?"t(í) (14)

onde a determinação do neurônio vencedor obe-

dece (11) e o ajuste dos pesos segue (12) e (13).

A estimativa gerada, 6 [t + l) = w°ut(t). é usada
paia fins de controle do manipulador. Na próxima

seção são mostradas simulações com a rede SOM

na, identificação inversa e direta de um atua-

dor hidráulico e na aprendizagem de trajetórias

róboticas.

4 Simulações Computacionais

As redes SOM, MLP e RBF são aplicadas na
identificação de um atuador hidráulico, utilizado
por Sjõberg et al. (1995). Para esta planta, pressão

do óleo é controlada pela abertura da válvula

através da qual o óleo flui para dentro do atua-

dor. Assim, a posição do atuador é uma função

da pressão do óleo. Na Figura l sstão mostrados

os valores medidos da abertura da válvula, u € SR,

e da. pressão do óleo. y 6 SK, que fazem o papel de

sinais de entrada e saída respectivamente. Nota-se

um comportamento oscilante da variável de saída,

causado por ressonâncias mecânicas presentes no

atuador. Na tarefa de identificação da dinâmica
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Figura 2. Modelo ARX; Sinal simulado (linha sólida) e
valor real da pressão do óleo (linha tracejada,).

Figura l. Valores medidos da pressão do óleo (superior) e
da posição da válvula (inferior).

direta do atua.dor hidráulica, as três redes neu-

rais são também comparadas com o modelo linear

usual fonheddo como Modelo Autoregressivo com

Entradas Exógenas (ARX, em inglês): y[t + l) =

ES) aiy{t- - '') + E^''=i bj""(í - ;')• onde aie

bj são os coeficientes do modelo ARX e y{t + l)
é o valor estimado para a saída, para o instante

t + l. Os coeficientes são calculados pelo método

dos mínimos quadrados (Aguirre; 2000). A pre-

cisão da aproximação medida pelo raiz do erro

médio quadrático (RMSE. em inglês):

RMSE = ^
M -l

^ ^(o(t)-wru<(f))2 (19)
(=0

onde o(t) = y (t + l) (se identificação direta) ou
o(í) = u(í) (se identificação inversa), e M é o
tamanho da série estimada. Os dados são proces-

sados pêlos quatro modelos sem nenhum tipo de

normaliy.ação pm-ia, ou seja. na mesma escala em

que foram medidos. De um total de N = 1024

amostras para cada uma das séries de entrada e

saída; as 512 primeiras são utilizadas para ajuste

dos pesos das redes neurais e para cálculo dos coe-

ficientes do modelo AR,X. As .512 últimas amostras

são usadas para validação dos quatro modelos.

Para todas as simulações adotou-se n,y = 3 e

nu = 2. Outro? valores para riu e riy resultam

em erros de aproximação levemente maiores que

os apresentados a seguir. O resultado obtido pelo

modelo ARX esi.á mostrado na Figura 2, onde se

nota que os valores preditos não foram muito pre-

cisos (RMSE= 1,0133).
A rede MLP possui õ unidades de entrada.

uma camada escondida com dez neurônios e um

neurônio de saída. Os nem-ônios da camada escon-

dida têm função de transferência do tipo tangente

hiperbólica. e a do neurônio de saída é linear. O al-

goritmo de treinamento foi o de ret.ropopagação do

erro com fator de momento. Os valores da, taxa de

aprendizagem. B do fator de momento foram; res-

pectivamente, iguais a 0,2 e 0,9. O treinamento
é finalizado se RMSE < 10 ou se o número

máximo de 600 épocas de ti-RÍnamento é atingido.

Cada época corresponde a apresentação de mn

total de 512 — riy = 509 amostras extraídas da

primeira parte da série.

A rede RBF possui 5 unidades de en-

trada, uma camada intermediária com neurônios

de função de base do tipo gaussiana e um

neurômo de saída. Seguindo o esquema proposto

por Specht (1991); específico para problemas de
regressão não-linear, o número dfi neurônios da

camada intermediária é igual ao número de ve-

fores de treinamento, sendo que os centros destes

neurônios são as próprias vetares de treinamento.

Assim, um total de 509 neurônios foram usados

na camada intermediária. Não há treinamento

para este tipo de rede RBF; já. que as amostras

de treinamento são copiadas diretamente para os

centros. Aos pesos da camada intermediária para

a de saída são simplesmente atribuídos os valo-

rés desejados para a saída. O único parâmetro

ajustável nesta rede é o que regula a abertura da

função de base gaussiana. Este parâmetro foi vari-

ado de 0,1 a 1,0 para se avaliar seu efeito na pre-

cisão da aproximação.

Uma rede SOM com 500 neurônios (dispostos
em uma dimensão) é utilizada nas tarefas de iden-

tificação das dinâmicas direta e inversa do atuador

hidráulico. Os pesos sinápticos destes neurônios

recebem valores aleatórios entre O e l no início do

treinamento. O ajuste dos pesos é executado por

600 épocas e os parâmetros de treinamento são:

r]u = 0,9, rir == IO-5, o-o = 250 e o-r = IO-3.

Os resultados obtidos para as três redes na iden-

tificaçãfl das dinâmicas direta e. inversa do atu-

ador hidráulico, usando os dados de validação,

estão mostrados na Tabela l. Para as redes SOM

e MLP foram executadas 10 rodadas de treina-

mento, cada uma com diferentes valores iniciais

para os pesos. Como não há treinamento para a

rede RBF, o parâmetro que regula a abertura da
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Figura 3. Resultado obtido pela rede SOM na identificação
da dinâmica direta usando MATQV.

função de base gaussiana foi variado de 0,1 a 1.0

em incrfimentos de 0. l.

parâmetros da rede SOM, tais como o número

de neurônios e o número de épocas usadas para

treinamento (ambos variados de l a 500), na qua-

lidade do resultado da identificação está mostrado

na Figura 4. Note que em. ambos os casos o erro

tende a um valor em torno de RMSE = 0, 20.

Tabela l. Comparação entre as redes SOM, MLP e RBF
na identificação da dinâmica direta e inversa .

Identificação Direta
RMSE
MLP

"SOÏT
"RBF"

Min

0,1162
0,20.51

0,2067

Max

0,2493
0,266.5

0,4103

Média

0.1554
0,22.59

0,2994

v/uar

0,0457
0;Õ2Ï5~
0,0774

Identificação Inversa.

RMSE
'MLP-

~SOM-

RBF

Min

0,0.566

0,1189
0,1398

Max

0,4789
0,125o
0,2841

Média,

0,1446
0.1207

0.2032

v'ï;ar

Õ7Ï259-
0,0021
0,05.51

Nota-se que a rede MLP produz em geral

os melhores resultados. A rede SOM. por sua

vez, produz melhores resultados que uma rede

RBF com aproximadamente o mesmo número de

neurônios. A Figura 3 mostra o melhor resultado

obtido pela rede SOM na identificação diret.a. Um

resultado interessante está no fato de a rede SOM

ser menos sensível a variações dos valores inici-

ais dos pesos que a rede MLP, conforme pode ser

visto na quinta coluna da Tabela l. Esta. sen-

sibilidade é medida pelo desvio-padrão dos erros

obtidos para as 10 rodadas de treinamento. Ape-

sar de treinadas' para um número fixo de épocas,

observou-se também que a rede SOM converge

muitas vezes mais rapidamente que a. rede MLP.

Outra dificuldade encontrada com a rede

MLP está na ocorrência de overfitting durante

o treinamento (fortemente relacionado com a es-

colha, do número de neurônios da camada escon-

dida), resultando algumas vezes numa baixa per-

formance [RM'SE alto) durante a validação do

modelo. A rede SOM não padfics desse problema

por se tratar de um algoritmo de quantização ve-

torial, ou seja, quanto mais neurônios melhor será

a. aproximação. O efeito da variação de alguns

Figura 4. Efeito da variação do número de neurônios
(círculos) e do número de épocas de treinamento
(triângulos) da rede SOM na identificação direta.

O resultado obtido pelas redes SOM; RBF e
MLP na aproximação da dinâmica inversa estão

mostrados na Figura 5. Para este caso específico

os erros de estimação foram RMSE(SOM) =
0,1189, RMSEÍKBF) = 0, 1398 e RMSEÇMLP)
= 0.0566. Note que a aproximação da dinâmica

inversa pelas redes SOM e RBF apresentam erros

elevado em alg-uns trechos que a da dinâmica di-

reta. A própria rede MLP, que produz o melhor

resultado entre as três estudadas, apresenta al-

guns trechos em que o erro de estünação também

é alto. Isto se deve ao fato que alguns sistemas não

possuem um único mapeamento inverso, mas sim

vários, dificultando o processo de aproximação.

Para avaliar a rede SOM no problema

de aprendizagem e reprodução de trajetórias

robóticas treinou-se uma rede com 75 neurônios.

cujos pesos receberam valores iniciais aleatórios

entre O e l. Esta rede foi treinada durante 600

épocas de treinamento usando uma sequência de

97 estados que fazem o efetuador do robô descre-

ver uma trajetória em forma de oito no espaço

euclideano. Ao término do treinamento. testou-

se a capacidade de generalização da rede SOM

apresentando uma outra sequência de 49 pontos

que descreve a mesma trajetória em forma de oito.

A Figura 6 mostra a t.raj etária angular estimada

pela rede SOM' para a terceira junta (cotovelo) do

robô PUMA. Para este caso, o erro de estimação

foi RM.SE = 1,5453. E interessante comparar a

rfidfi SOM com a rede neural auto-organizável pro-

posta por Araújo e Barreto (2002), chamada de
rede Competitiva e Hebbiaaa Temporal (CHT),
especificamente projetada para aprender e repro-

duzir trajetórias robóticas. A rede CHT exige 97
neurônios para aprender a mesma trajetória usada

para treinar a rede SOM, enquanto a rede S01VT
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Figura 5. Resultado obtido pelas redes SOM (gráfico supe-
rior). RBF (gráfico ÍD.termediário) e MLP (gráfico inferior)
na identificação da dinâmica inversa do amador hidráulico.

treinada via MATQV usa apenas 75 neurônios.

Além disso, a rede CHT só é capaz de reproduzir

a trajetória que foi armazenada, não sendo capaz

de generalizar (interpolar) como a rede SOM.

5 Conclusão

As simulações mostradas nesre artigo são pre-

liminares, mas ilustram o potencial da técnica

MATQV. Testes adicionais necessitam ser exe-

cut.ados. tais como análise dos resíduos do erro

de estimação, tolfirância ao ruído, para demons-

trar efetívamente a vial)ilidade de se utilizar a

rede SOM em tarefas de identificação e controle

de sistemas dinâmicos nao-linp.arp.s- A pesquisa

em andamento envolve o projeto de um contro-

lador preditivo não-linear usando MATQV R na

demonstração teórica de que a rede SOM, usando

;.^

'•6r

ÏQ CG 70 B0 30

Figura 6. Valor produzido pela rede SOM (linha sólida) e
valor real (linha tracejada) da trajetória do ângulo da 3a.
junta do robô PUMA 560 para trajetória em oito.

MATQV, pode ser usada como aproximador uni-

versai de funções entrada-saída.
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