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1. Introduction

A Digital Twin provides a digital representation of an 
individual physical entity employing data and models enabled 
by information and communication technologies [1–4]. Digital 
Twins can be applied to support product real-time remote 
monitoring, simulation, and predictive maintenance, among 
other functions [5–11]. These applications typically represent 
advanced value-added services that, combined with physical 
products, constitute Product-Service Systems, or shortly PSS 
[12–15]. A PSS is defined as “an integrated product and service 
offering that delivers value in use” [15]. Thus, Digital Twins 
can be considered relevant enablers of PSS [16, 17].

The relationship between Digital Twin and PSS is an 
emerging topic in the literature. Recent literature reviews show 

that the publications focusing on Digital Twin have rapidly 
grown, especially after 2015 [18–20], reflecting an increasing 
interest from industry and academia. Works to date have 
extensively explored the Digital Twin conceptual and 
technological aspects [3, 17, 18, 21]. Moreover, there has been 
a strong focus on reporting single Digital Twin case 
applications [18]. The relationship between Digital Twin and 
PSS started to receive more attention only recently [16, 22–25].

Although the literature on the intersection between Digital 
Twin and Product-Service Systems has been expanding, there 
is still a gap related to the required data and systems integration. 
Current works typically do not address the role of traditional 
manufacturing information systems (Product Lifecycle 
Management – PLM, Enterprise Resouce Planning – ERP, and 
Manufacturing Execution System – MES) in providing 
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and manufacturing environment. Learning Factories can be 
defined as close to real manufacturing environments applied for 
educational, technology assessment, and demonstration 
purposes [36, 37]. The Learning Factory in this research has a 
comprehensive, fully operational IT environment equipped 
with commercial off-the-shelf PLM, ERP, and MES software 
packages running on the University cloud infrastructure. The 
employed Learning Learning Factory uses a skateboard for 
product and process demonstration. As a durable consumer 
product for mobility, sport, and entertainment, a skateboard 
needs services along the lifecycle, such as in-field product 
monitoring and maintenance. Therefore, it can be considered to 
compose a Product-Service System. The demonstration and 
evaluation of the implemented architecture are presented in 
Section 5. 

4. Solution architecture 

The proposed Digital Twin data architecture for Product-
Service Systems was designed considering the solution 
requirements derived from the literature review (Section 2). 
The proposal is presented in Figure 1. 

 

Fig. 1. Proposed Digital Twin data architecture for Product-Service Systems 

 
First, the proposed solution was conceived to facilitate and 

support value-added services based on information processing. 
The Digital Twin provides a digital representation of the 
physical product. The digital representation is constructed 
based on the information gathered from various sources, as 
detailed next. Thus, the Digital Twin manages information that 
can be further processed by predefined algorithms and 
applications to predict the future status of the product and 
provide services. The processing within the Digital Twin 
element generates a response that can be stored in the Digital 
Twin itself (represented in the central and lower part of Figure 
1) or directed to other elements of the architecture. 

Second, a Digital Twin for PSS needs to acquire customer 
data from field operations. Therefore, the architecture considers 
the application of IoT devices to equip the product allowing 
data acquisition and communication. This data is stored in a 
specific database and integrated to form the Digital Twin 
representation (Figure 1, on the right side). The customer data 
management system provides the service element interface for 
this type of user. 

Third, a Digital Twin for PSS must also integrate design and 
manufacturing data such as quality records (e.g., actual 
measurement data) and the as-built BOM. Usually managed by 
the manufacturer’s PLM, ERP, and MES systems, this 
information is also integrated to form the Digital Twin for PSS 
(Figure 1, on the left side). 

Fourth, the Digital Twin for PSS should guarantee real-time 
monitoring, data integration, and data fidelity. Real-time data 
collection is allowed by a well-established communication 
process based on IoT technology. The Digital Twin should 
explore different synchronization options with the event points 
of the product, especially in the case of connectivity instability 
on the customer side. The solution based on the architecture can 
be adapted according to the application, leveraging the existing 
infrastructure. For instance, the deployment of 5G technology 
can provide new alternatives to real-time data integration. 
Moreover, it should be able to import background data, 
component information, and configuration information from 
the physical components. Data integration is established by 
merging various data formats. The Digital Twin accesses two 
distinct data environments. The first is company internal 
manufacturer data (e.g., PLM, ERP, and MES). In this 
environment, design and production data are typically stored in 
structured databases that can be accessed when traditional 
communication protocols require. The second environment is 
real-time customers’ information captured through IoT 
technologies. The connectivity reliability to the database and 
the variety of data is essential for generating relevant insights. 
Finally, data fidelity is achieved by assuring that every piece of 
information processed by the Digital Twin is valid and 
consistent over its lifecycle. 

5. Application and assessment 

The application and assessment were performed at a 
Learning Factory providing a technology demonstration 
environment. 

5.1. Case context 

The studied Learning Factory has a comprehensive IT 
manufacturing environment comprising commercially 
available PLM, ERP, and MES software. The PLM system was 
implemented on a high-performance (8vCPU, 16GB RAM) 
Virtual Machine (VM) running an SQL Server and structured 
on a relational database. The ERP system was implemented on 
a high-performance extra memory machine (8vGPU, 32GB 
RAM) on a VM running SQL Server. A java-based product 
configurator interface was developed to receive individualized 
customers’ orders to the ERP. The ERP backend runs a 
relational database on a Progress environment. Finally, the 
MES system was implemented on a regular (2vCPU, 8GB 
RAM) VM running SQL Server and having a relational 
database on a SQL Server environment. Besides, the MES 
software has an integration script with the ERP that 
automatically captures an XML file from the ERP and converts 
the data into its database format. The Virtual Machines were 
hosted in the university cloud infrastructure. The software 
vendors supported the software installation, configuration, and 
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information to Digital Twin to support PSS. Hence, this 
research aims to propose a comprehensive Digital Twin data 
architecture to support PSS operation. Therefore, a Design 
Science Research (DSR) approach is applied. The proposed 
architecture has been implemented in a Learning Factory. 

The remainder of this paper is structured as follows. Section 
2 presents the literature background. Section 3 discusses the 
research methods. Section 4 details the proposed Digital Twin 
data architecture to support PSS. Section 5 presents the case 
application and assessment. Section 6 discusses the theoretical 
and practical implications. Finally, Section 7 summarizes the 
main conclusions, discusses the research limitations, and 
provides recommendations for further research. 

2. Literature background 

The research stream relating Digital Twin to PSS has gained 
more attention recently. Table 1 presents an overview of 
relevant research with this focus. 

Table 1. Selected literature combining Digital Twin and PSS. 

Reference Main focus and contribution 

Brissaud 
et al. 
(2022) 
[16] 

Review the literature and advancements in PSS in the last 10 
years, focusing on Industrial Product-Service Systems (IPS2). 

Position Digital Twin – among other technologies – as an 
enabler for IPS2. 

Bertoni 
and 
Bertoni 
(2022) 
[22] 

Present a literature review focusing on Digital Twin 
application for PSS (DT PSS). 

Propose a mapping definition for the DT PSS. 

Identify gaps in the literature, such as the lack of models and 
tools. 

Leng et 
al. 
(2021) 
[25] 

Propose a novel Digital Twin optimization approach for a 
large-scale automated PSS warehouse. 

The proposed solution was tested in a prototype. 

Mourtzis 
et al. 
(2022) 
[23] 

Propose a framework to include customers in the PSS design 
process leveraging Digital Twin and Virtual Reality 
technologies. 

The proposed framework was implemented in a software 
platform and assessed in a case application. 

Mourtzis 
et al. 
(2022) 
[24] 

Propose a Digital Twin framework and application for smart 
grid (energy) PSS applications. 

The proposed solution was implemented in a software 
platform and tested on the university campus. 

 
The first two works listed in Table 1 [16, 22] are literature 

reviews. [16] present a review of the Industrial Product-Service 
System (IPS2) developments in the last ten years compared to 
the beforehand expectations. The topic is explored extensively, 
and Digital Twin emerges as a critical technology for the next 
IPS2 developments. [22] specifically focus on the intersection 
between Digital Twin and PSS. The results indicate the need 
for more research providing models and tools. 

The remaining three works listed in Table 1 [23–25] present 
specific Digital Twin applications in PSS for warehousing 
systems, design processes, and smart grids. The proposed 
frameworks are prototyped and assessed in testing 
environments. Despite the important advancements, none of the 
works listed in Table 1 explore the Digital Twin data 

architecture to support PSS. Additionally, the extant literature 
does not relate the Digital Twin to software packages (e.g. 
PLM, ERP, and MES) that are usually required to operate PSS. 

Beyond the works specifically relating Digital Twin to PSS, 
a consolidated research stream focuses on information models 
for Digital Twins. Existing research covers various 
perspectives, including ontologies [26], information 
architecture [27, 28], big data [29], and communication 
protocols [30]. However, these works do not address the 
required information integration to allow Digital Twins to 
support PSS. The complexities of digital twins to support 
services may require a hierarchical system of aggregated digital 
twins coupled with a services network [31]. 

The PSS literature presents relevant requirements for 
information integration. A data architecture for PSS should 
facilitate the service offering [16]. As services must be provided 
during the product usage phase, data for PSS must be acquired 
from the field operation – this is typically enabled by Internet 
of Things (IoT) solutions providing data acquisition and 
transmission through sensors, processing, and communication 
functionalities [32]. Moreover, PSS offerings need access to 
design and manufacturing data – e.g., as-designed, and as-built 
Bill of Materials (BOMs) – to offer predictive maintenance and 
spare parts services. This information is frequently available in 
software packages, including PLM, ERP, and MES [33]. 
Finally, a data architecture for a Digital Twin for PSS should 
also fulfill the general requirements for Digital Twins, mainly 
real-time data, data integration, and data fidelity [34].  

In summary, the development of a Digital Twin data 
architecture for PSS needs to: 1) facilitate and support the 
service offering; 2) acquire and transmit field operation and 
customer data; 3) integrate design and manufacturing data; 4) 
guarantee real-time monitoring, data integration, and data 
fidelity. 

3. Methods 

A Design Science Research (DSR) methodology is applied 
to propose and assess a Digital Twin data architecture to 
support Product-Service Systems operation. A DSR research is 
appropriate when the research aims to generate new artifacts 
(e.g., constructs, models, methods, and instantiations) to 
address a given problem [35]. 

The DSR methodology adopted in this research has six steps: 
1) problem identification, 2) objectives definition, 3) design and 
development, 4) demonstration, 5) evaluation, and 6) 
communication [35]. The problem identification and the 
existing research gap are discussed in the introduction (Section 
1) and further detailed by the literature review (Section 2). In 
the emergent literature on the intersection of Digital Twin and 
PSS, there is a need to develop further models and tools [22]. 
Based on the current gaps, this research aims to propose a 
comprehensive Digital Twin data architecture to support 
Product-Service Systems operation. The requirements for the 
solution are derived from the literature review (Section 2). The 
design and development of the proposed solution – the next 
DSR methodology step – is summarized in Section 4. 

The proposed solution architecture was implemented in a 
Learning Factory providing the Information Technology (IT) 
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and manufacturing environment. Learning Factories can be 
defined as close to real manufacturing environments applied for 
educational, technology assessment, and demonstration 
purposes [36, 37]. The Learning Factory in this research has a 
comprehensive, fully operational IT environment equipped 
with commercial off-the-shelf PLM, ERP, and MES software 
packages running on the University cloud infrastructure. The 
employed Learning Learning Factory uses a skateboard for 
product and process demonstration. As a durable consumer 
product for mobility, sport, and entertainment, a skateboard 
needs services along the lifecycle, such as in-field product 
monitoring and maintenance. Therefore, it can be considered to 
compose a Product-Service System. The demonstration and 
evaluation of the implemented architecture are presented in 
Section 5. 

4. Solution architecture 

The proposed Digital Twin data architecture for Product-
Service Systems was designed considering the solution 
requirements derived from the literature review (Section 2). 
The proposal is presented in Figure 1. 

 

Fig. 1. Proposed Digital Twin data architecture for Product-Service Systems 

 
First, the proposed solution was conceived to facilitate and 

support value-added services based on information processing. 
The Digital Twin provides a digital representation of the 
physical product. The digital representation is constructed 
based on the information gathered from various sources, as 
detailed next. Thus, the Digital Twin manages information that 
can be further processed by predefined algorithms and 
applications to predict the future status of the product and 
provide services. The processing within the Digital Twin 
element generates a response that can be stored in the Digital 
Twin itself (represented in the central and lower part of Figure 
1) or directed to other elements of the architecture. 

Second, a Digital Twin for PSS needs to acquire customer 
data from field operations. Therefore, the architecture considers 
the application of IoT devices to equip the product allowing 
data acquisition and communication. This data is stored in a 
specific database and integrated to form the Digital Twin 
representation (Figure 1, on the right side). The customer data 
management system provides the service element interface for 
this type of user. 

Third, a Digital Twin for PSS must also integrate design and 
manufacturing data such as quality records (e.g., actual 
measurement data) and the as-built BOM. Usually managed by 
the manufacturer’s PLM, ERP, and MES systems, this 
information is also integrated to form the Digital Twin for PSS 
(Figure 1, on the left side). 

Fourth, the Digital Twin for PSS should guarantee real-time 
monitoring, data integration, and data fidelity. Real-time data 
collection is allowed by a well-established communication 
process based on IoT technology. The Digital Twin should 
explore different synchronization options with the event points 
of the product, especially in the case of connectivity instability 
on the customer side. The solution based on the architecture can 
be adapted according to the application, leveraging the existing 
infrastructure. For instance, the deployment of 5G technology 
can provide new alternatives to real-time data integration. 
Moreover, it should be able to import background data, 
component information, and configuration information from 
the physical components. Data integration is established by 
merging various data formats. The Digital Twin accesses two 
distinct data environments. The first is company internal 
manufacturer data (e.g., PLM, ERP, and MES). In this 
environment, design and production data are typically stored in 
structured databases that can be accessed when traditional 
communication protocols require. The second environment is 
real-time customers’ information captured through IoT 
technologies. The connectivity reliability to the database and 
the variety of data is essential for generating relevant insights. 
Finally, data fidelity is achieved by assuring that every piece of 
information processed by the Digital Twin is valid and 
consistent over its lifecycle. 

5. Application and assessment 

The application and assessment were performed at a 
Learning Factory providing a technology demonstration 
environment. 

5.1. Case context 

The studied Learning Factory has a comprehensive IT 
manufacturing environment comprising commercially 
available PLM, ERP, and MES software. The PLM system was 
implemented on a high-performance (8vCPU, 16GB RAM) 
Virtual Machine (VM) running an SQL Server and structured 
on a relational database. The ERP system was implemented on 
a high-performance extra memory machine (8vGPU, 32GB 
RAM) on a VM running SQL Server. A java-based product 
configurator interface was developed to receive individualized 
customers’ orders to the ERP. The ERP backend runs a 
relational database on a Progress environment. Finally, the 
MES system was implemented on a regular (2vCPU, 8GB 
RAM) VM running SQL Server and having a relational 
database on a SQL Server environment. Besides, the MES 
software has an integration script with the ERP that 
automatically captures an XML file from the ERP and converts 
the data into its database format. The Virtual Machines were 
hosted in the university cloud infrastructure. The software 
vendors supported the software installation, configuration, and 
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information to Digital Twin to support PSS. Hence, this 
research aims to propose a comprehensive Digital Twin data 
architecture to support PSS operation. Therefore, a Design 
Science Research (DSR) approach is applied. The proposed 
architecture has been implemented in a Learning Factory. 

The remainder of this paper is structured as follows. Section 
2 presents the literature background. Section 3 discusses the 
research methods. Section 4 details the proposed Digital Twin 
data architecture to support PSS. Section 5 presents the case 
application and assessment. Section 6 discusses the theoretical 
and practical implications. Finally, Section 7 summarizes the 
main conclusions, discusses the research limitations, and 
provides recommendations for further research. 

2. Literature background 

The research stream relating Digital Twin to PSS has gained 
more attention recently. Table 1 presents an overview of 
relevant research with this focus. 

Table 1. Selected literature combining Digital Twin and PSS. 

Reference Main focus and contribution 

Brissaud 
et al. 
(2022) 
[16] 

Review the literature and advancements in PSS in the last 10 
years, focusing on Industrial Product-Service Systems (IPS2). 

Position Digital Twin – among other technologies – as an 
enabler for IPS2. 

Bertoni 
and 
Bertoni 
(2022) 
[22] 

Present a literature review focusing on Digital Twin 
application for PSS (DT PSS). 

Propose a mapping definition for the DT PSS. 

Identify gaps in the literature, such as the lack of models and 
tools. 

Leng et 
al. 
(2021) 
[25] 

Propose a novel Digital Twin optimization approach for a 
large-scale automated PSS warehouse. 

The proposed solution was tested in a prototype. 

Mourtzis 
et al. 
(2022) 
[23] 

Propose a framework to include customers in the PSS design 
process leveraging Digital Twin and Virtual Reality 
technologies. 

The proposed framework was implemented in a software 
platform and assessed in a case application. 

Mourtzis 
et al. 
(2022) 
[24] 

Propose a Digital Twin framework and application for smart 
grid (energy) PSS applications. 

The proposed solution was implemented in a software 
platform and tested on the university campus. 

 
The first two works listed in Table 1 [16, 22] are literature 

reviews. [16] present a review of the Industrial Product-Service 
System (IPS2) developments in the last ten years compared to 
the beforehand expectations. The topic is explored extensively, 
and Digital Twin emerges as a critical technology for the next 
IPS2 developments. [22] specifically focus on the intersection 
between Digital Twin and PSS. The results indicate the need 
for more research providing models and tools. 

The remaining three works listed in Table 1 [23–25] present 
specific Digital Twin applications in PSS for warehousing 
systems, design processes, and smart grids. The proposed 
frameworks are prototyped and assessed in testing 
environments. Despite the important advancements, none of the 
works listed in Table 1 explore the Digital Twin data 

architecture to support PSS. Additionally, the extant literature 
does not relate the Digital Twin to software packages (e.g. 
PLM, ERP, and MES) that are usually required to operate PSS. 

Beyond the works specifically relating Digital Twin to PSS, 
a consolidated research stream focuses on information models 
for Digital Twins. Existing research covers various 
perspectives, including ontologies [26], information 
architecture [27, 28], big data [29], and communication 
protocols [30]. However, these works do not address the 
required information integration to allow Digital Twins to 
support PSS. The complexities of digital twins to support 
services may require a hierarchical system of aggregated digital 
twins coupled with a services network [31]. 

The PSS literature presents relevant requirements for 
information integration. A data architecture for PSS should 
facilitate the service offering [16]. As services must be provided 
during the product usage phase, data for PSS must be acquired 
from the field operation – this is typically enabled by Internet 
of Things (IoT) solutions providing data acquisition and 
transmission through sensors, processing, and communication 
functionalities [32]. Moreover, PSS offerings need access to 
design and manufacturing data – e.g., as-designed, and as-built 
Bill of Materials (BOMs) – to offer predictive maintenance and 
spare parts services. This information is frequently available in 
software packages, including PLM, ERP, and MES [33]. 
Finally, a data architecture for a Digital Twin for PSS should 
also fulfill the general requirements for Digital Twins, mainly 
real-time data, data integration, and data fidelity [34].  

In summary, the development of a Digital Twin data 
architecture for PSS needs to: 1) facilitate and support the 
service offering; 2) acquire and transmit field operation and 
customer data; 3) integrate design and manufacturing data; 4) 
guarantee real-time monitoring, data integration, and data 
fidelity. 

3. Methods 

A Design Science Research (DSR) methodology is applied 
to propose and assess a Digital Twin data architecture to 
support Product-Service Systems operation. A DSR research is 
appropriate when the research aims to generate new artifacts 
(e.g., constructs, models, methods, and instantiations) to 
address a given problem [35]. 

The DSR methodology adopted in this research has six steps: 
1) problem identification, 2) objectives definition, 3) design and 
development, 4) demonstration, 5) evaluation, and 6) 
communication [35]. The problem identification and the 
existing research gap are discussed in the introduction (Section 
1) and further detailed by the literature review (Section 2). In 
the emergent literature on the intersection of Digital Twin and 
PSS, there is a need to develop further models and tools [22]. 
Based on the current gaps, this research aims to propose a 
comprehensive Digital Twin data architecture to support 
Product-Service Systems operation. The requirements for the 
solution are derived from the literature review (Section 2). The 
design and development of the proposed solution – the next 
DSR methodology step – is summarized in Section 4. 

The proposed solution architecture was implemented in a 
Learning Factory providing the Information Technology (IT) 
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Twin captures relevant data and runs analyses to predict 
incoming events for the manufacturer and customer – i.e., 
predictive maintenance, demand for spare parts to be replaced, 
and potential product failures. The analysis results are stored in 
an application log and communicated to the impacted product 
stakeholders. 

 

Fig. 3. Implementation of the proposed Digital Twin data architecture to 
support PSS. 

 
An algorithm to recommend wheel replacement was 

implemented to demonstrate the use of Digital Twin 
information to provide a service for the customer in a PSS 
setting. This algorithm captures, from the customers’ database, 
the product initiation date, the total traveled distance, and the 
average speed. Then, this information is analyzed considering 
the actual wheels’ maintenance parameters. The wheels’ 
characteristics are obtained from the product structures of the 
PLM and ERP systems. The exact manufacturing batch 
parameters are captured from the MES system. The algorithm 
combines user and manufacturing parameters and forecasts 
when each user will achieve the recommended traveled distance 
to replace the skateboard wheels. The algorithm then indicates 
whether the maintenance schedule is approaching or overdue 
and provides feedback to the customer and the manufacturer 
about the need to order new wheels and schedule maintenance. 

5.3. Case assessment 

The case assessment was performed considering the solution 
requirements established from the literature: 1) facilitate and 
support the service offering; 2) acquire and transmit field 
operation and customer data; 3) integrate design and 
manufacturing data; 4) guarantee real-time monitoring, data 
integration, and data fidelity. 

As demonstrated, the implemented data architecture was 
able to support a value-added service (predicting the need for 
wheels maintenance). The implemented solution also acquires 
data from both the manufacturing and customer usage 
environments. The proposed architecture provides data 
integration and fidelity logic. The integration between 
environments is possible because the proposed Digital Twin 
model is conceived for heterogeneous operation and preserves 
the original data structure. The database is structured 
considering an individual monitor for each product ID, 
supporting scalability. A hash code is created associating the 
product’s ID and its correspondent usage information. Hence, 

the application connects data from different stages of the 
product lifecycle, processes data, and generates new 
information, providing conditions for creating a PSS. The 
proposed architecture structure based on distinct data 
environments is necessary to prevent data redundancy. The use 
of the existing systems to store the data ensures data fidelity and 
data governance. Finally, the fast connection time (0.0075s to 
the ERP, 0.0089s to the MES, 0.051s to the PLM) and the IoT 
device on the customer side allows for real-time data 
connection. 

6. Discussion and implications for the theory and practice 

The proposed Digital Twin data architecture for Product-
Service Systems contributes to the theory and practice. 
Regarding the theory, the proposal adds to the emerging 
research stream on the intersection of Digital Twin and PSS. 
This proposal also responds to Bertoni and Bertoni (2022) call 
for developing models and tools for the Digital Twin PSS. 
Moreover, the present proposal presents another reference case 
to the evolving body of knowledge in the field, complementing 
previous initial works [23–25]. From the Digital Twin research 
stream perspective, current results add a novel data architecture 
integrating PLM, ERP, and MES systems to the Digital Twin. 
From the PSS research perspective, the results address the need 
for technological enablers to support wider PSS adoption [16]. 

The contributions to the practice are twofold. First, the 
presented results illustrate how a Digital Twin can be 
implemented in practice to support PSS. The case application 
in the Learning Factory featuring a close-to-real IT 
environment (including operational ERP) grants a valuable 
experience account for the industry. Second, the wheel 
replacement service offering exemplifies how Digital Twin and 
PSS can interoperate to provide value-added services. Based on 
this example, other business applications can be considered. For 
instance, collecting information from the customers’ use can 
provide information for the designers to analyze the actual 
product use in the field. Data from use can be combined with 
manufacturing information to simulate product behavior, 
predict product events, and thus provide valuable insights to 
customers. The proposed solution may be useful for multiple 
stakeholders along the value chain and product lifecycle, such 
as designers, manufacturing operators, customer relations 
professionals, suppliers, and customers. In the current 
implementation, this will require the stakeholders to access the 
Digital Twin system interface. For instance, the Digital Twin 
data repository may provide insightful information for 
designers by defining the next product generations. 

7. Conclusions 

This work presents a novel Digital Twin data architecture to 
support Product-Service Systems operation. The proposed 
architecture was conceptualized and implemented in a Learning 
Factory providing a case application. The case assessment 
indicates that the proposed architecture fulfills the established 
requirements from the literature. The results contribute to the 
emerging research stream combining Digital Twin and PSS and 
may further support PSS dissemination in practice. 

 

management. Table 2 summarizes the IT infrastructure 
characteristics. 

Table 2. IT infrastructure characteristics at the Learning Factory 

Software Hardware Database Application 

PLM 8vCPU, 16GB RAM SQL 
Server 

Product design 
specifications 

ERP 8vCPU, 32GB RAM Progress Customers’ 
order data 

MES 2vCPU, 08GB RAM SQL 
Server 

As-
manufactured 
information 
(e.g. quality 
events, as-built 
BOM) 

Product 
monitoring 

8-bit ATmega328P 
microcontroller (Arduino 
Uno) 

No-SQL 

Customers’ 
individual use 
data from the 
field 

 
As part of this research effort, an IoT hardware and software 

(backend and frontend) were developed and installed in the 
Learning Factory physical product (skateboard) to collect 
users’ data from the field. The IoT device was developed on an 
Arduino Uno firmware with a Wi-Fi module and different 
sensors to capture real-time data from the product use. The 
application of an Arduino Uno aimed to facilitate prototyping 
and testing. The collected data is sent to a No-SQL cloud 
storage and can be accessed through a REST API when 
authorized by the customer and requested by other applications. 

Furthermore, two software applications were developed to 
manage the customers’ activity on product use. The first 
application is responsible for showing the product’s usage 
aggregate information from the product activation until the 
present moment. This application collects the No-SQL data 
through a JavaScript request and presents the information on an 
HTML page (interface). It also works the other way around, 
sending low-level commands from the HTML page that are 
manifested in the physical product – e.g., turning on the 
skateboard led-lightning. The second application collects 
accelerometers’ data on the skateboard to reconstruct the 
movements of the product. With this PHP application, it is 
possible to represent and visualize the kinematic digital 3D 
model of the physical product (Figure 2). Details of the IoT 
implementation are reported in a previous publication [38]. 

 

Fig. 2. Dashboard interface and kinematic 3D representation of the product 
equipped with IoT hardware [38] 

 
The available IT environment (Table 2) and IoT connected 

product (Figure 2) were applied to demonstrate and assess the 
proposed Digital Twin data architecture to support PSS. 

5.2. Case application 

The proposed Digital Twin data architecture for PSS was 
applied and tested in the Learning Factory environment. The 
case application followed four main steps: 1) systems 
integration; 2) development of the Digital Twin software; 3) 
development of service algorithms; 4) assessment. Each one of 
these steps is detailed and discussed next. 

Data integration required understanding each system’s 
export file formats and how to access information continuously. 
For the manufacturer data environment, the connection was to 
a SQL database through server connections. For the customer 
data environment, the connection was made through a REST 
API on a No-SQL database. 

The PLM, ERP, and MES software were installed on the 
Learning Factory cloud server. A remote connection to the 
databases was established through a TCP-IP protocol on port 
1443 connection. The ERP and MES systems were already 
connected through XML on an integration developed by the 
systems’ providers, so access to both systems’ data was 
established through a TCP-IP protocol at the MES. The 
integration between the ERP and MES is based on a Java 
application on the MES that captures information from an XML 
file available at a specific address on the ERP. The MES 
acquires from the ERP the BOM, the work order information, 
the manufacturing lead times, the project code, and the 
customer information. On the other hand, the MES provides to 
the ERP the work order status, production status, and resources 
status. 

An application was developed on the customers’ side to 
collect customers’ usage data and store it on a private partition 
of users’ cloud space to be accessed through an API. The user 
has control of its information, being capable of canceling the 
API access at any given time. The data is captured using sensors 
connected to a dedicated board that transfers the information 
through internet protocols to the customers’ private database. 
The data captured are the x, y, and z position of the product, the 
timestamp of the event, and the status of the products’ led-
lightning. The non-structured database, to improve connection 
time and decrease storage space, can be accessed from a client-
service perspective and serve as a multiple-viewer platform. 

The Digital Twin connects information from both the 
manufacturer and customer environments, processes this 
information, and provides cross-validated insights to lifecycle 
phases and stakeholders. The Digital Twin was implemented on 
a Python/SQL platform that accesses the system’s database by 
an ODBC and API connection. It was deployed on a 1vCPU, 
1.7GB RAM virtual machine. Figure 3 details the 
implementation of the proposed data architecture.  

After establishing the integration environment, algorithms 
were developed to simulate value-added services based on 
individual customer and product data. These algorithms were 
developed in Python and SQL to provide new inputs for the 
system, connecting the different lifecycle phases. The Digital 
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Twin captures relevant data and runs analyses to predict 
incoming events for the manufacturer and customer – i.e., 
predictive maintenance, demand for spare parts to be replaced, 
and potential product failures. The analysis results are stored in 
an application log and communicated to the impacted product 
stakeholders. 

 

Fig. 3. Implementation of the proposed Digital Twin data architecture to 
support PSS. 

 
An algorithm to recommend wheel replacement was 

implemented to demonstrate the use of Digital Twin 
information to provide a service for the customer in a PSS 
setting. This algorithm captures, from the customers’ database, 
the product initiation date, the total traveled distance, and the 
average speed. Then, this information is analyzed considering 
the actual wheels’ maintenance parameters. The wheels’ 
characteristics are obtained from the product structures of the 
PLM and ERP systems. The exact manufacturing batch 
parameters are captured from the MES system. The algorithm 
combines user and manufacturing parameters and forecasts 
when each user will achieve the recommended traveled distance 
to replace the skateboard wheels. The algorithm then indicates 
whether the maintenance schedule is approaching or overdue 
and provides feedback to the customer and the manufacturer 
about the need to order new wheels and schedule maintenance. 

5.3. Case assessment 

The case assessment was performed considering the solution 
requirements established from the literature: 1) facilitate and 
support the service offering; 2) acquire and transmit field 
operation and customer data; 3) integrate design and 
manufacturing data; 4) guarantee real-time monitoring, data 
integration, and data fidelity. 

As demonstrated, the implemented data architecture was 
able to support a value-added service (predicting the need for 
wheels maintenance). The implemented solution also acquires 
data from both the manufacturing and customer usage 
environments. The proposed architecture provides data 
integration and fidelity logic. The integration between 
environments is possible because the proposed Digital Twin 
model is conceived for heterogeneous operation and preserves 
the original data structure. The database is structured 
considering an individual monitor for each product ID, 
supporting scalability. A hash code is created associating the 
product’s ID and its correspondent usage information. Hence, 

the application connects data from different stages of the 
product lifecycle, processes data, and generates new 
information, providing conditions for creating a PSS. The 
proposed architecture structure based on distinct data 
environments is necessary to prevent data redundancy. The use 
of the existing systems to store the data ensures data fidelity and 
data governance. Finally, the fast connection time (0.0075s to 
the ERP, 0.0089s to the MES, 0.051s to the PLM) and the IoT 
device on the customer side allows for real-time data 
connection. 

6. Discussion and implications for the theory and practice 

The proposed Digital Twin data architecture for Product-
Service Systems contributes to the theory and practice. 
Regarding the theory, the proposal adds to the emerging 
research stream on the intersection of Digital Twin and PSS. 
This proposal also responds to Bertoni and Bertoni (2022) call 
for developing models and tools for the Digital Twin PSS. 
Moreover, the present proposal presents another reference case 
to the evolving body of knowledge in the field, complementing 
previous initial works [23–25]. From the Digital Twin research 
stream perspective, current results add a novel data architecture 
integrating PLM, ERP, and MES systems to the Digital Twin. 
From the PSS research perspective, the results address the need 
for technological enablers to support wider PSS adoption [16]. 

The contributions to the practice are twofold. First, the 
presented results illustrate how a Digital Twin can be 
implemented in practice to support PSS. The case application 
in the Learning Factory featuring a close-to-real IT 
environment (including operational ERP) grants a valuable 
experience account for the industry. Second, the wheel 
replacement service offering exemplifies how Digital Twin and 
PSS can interoperate to provide value-added services. Based on 
this example, other business applications can be considered. For 
instance, collecting information from the customers’ use can 
provide information for the designers to analyze the actual 
product use in the field. Data from use can be combined with 
manufacturing information to simulate product behavior, 
predict product events, and thus provide valuable insights to 
customers. The proposed solution may be useful for multiple 
stakeholders along the value chain and product lifecycle, such 
as designers, manufacturing operators, customer relations 
professionals, suppliers, and customers. In the current 
implementation, this will require the stakeholders to access the 
Digital Twin system interface. For instance, the Digital Twin 
data repository may provide insightful information for 
designers by defining the next product generations. 

7. Conclusions 

This work presents a novel Digital Twin data architecture to 
support Product-Service Systems operation. The proposed 
architecture was conceptualized and implemented in a Learning 
Factory providing a case application. The case assessment 
indicates that the proposed architecture fulfills the established 
requirements from the literature. The results contribute to the 
emerging research stream combining Digital Twin and PSS and 
may further support PSS dissemination in practice. 
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management. Table 2 summarizes the IT infrastructure 
characteristics. 

Table 2. IT infrastructure characteristics at the Learning Factory 

Software Hardware Database Application 
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Server 

Product design 
specifications 

ERP 8vCPU, 32GB RAM Progress Customers’ 
order data 

MES 2vCPU, 08GB RAM SQL 
Server 

As-
manufactured 
information 
(e.g. quality 
events, as-built 
BOM) 

Product 
monitoring 

8-bit ATmega328P 
microcontroller (Arduino 
Uno) 

No-SQL 

Customers’ 
individual use 
data from the 
field 
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timestamp of the event, and the status of the products’ led-
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time and decrease storage space, can be accessed from a client-
service perspective and serve as a multiple-viewer platform. 
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manufacturer and customer environments, processes this 
information, and provides cross-validated insights to lifecycle 
phases and stakeholders. The Digital Twin was implemented on 
a Python/SQL platform that accesses the system’s database by 
an ODBC and API connection. It was deployed on a 1vCPU, 
1.7GB RAM virtual machine. Figure 3 details the 
implementation of the proposed data architecture.  

After establishing the integration environment, algorithms 
were developed to simulate value-added services based on 
individual customer and product data. These algorithms were 
developed in Python and SQL to provide new inputs for the 
system, connecting the different lifecycle phases. The Digital 
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The research conducted also has some limitations that need 
to be observed. The application was limited to a single case in 
a close to real environment. Although the Learning Factory 
demonstration was constructed based on commercially 
available software packages, a Learning Factory does not have 
the same level of complexity present in actual manufacturing 
operations. 

This work opens interesting opportunities for future research 
efforts. The proposed data architecture may be expanded and 
detailed into corresponding data and process models. Novel 
algorithms can be explored to generate customer and product 
insights in the interface between Digital Twin and PSS. The 
scalability of the solution still needs to be resolved. 
Additionally, there is an opportunity to expand the solution 
application and assessment to other cases and contexts, such as 
different types of Product Service Systems. 
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