

PRODUÇÃO ELETROQUÍMICA DE H₂O₂ COMO ALTERNATIVA SUSTENTÁVEL PARA A REMEDIAÇÃO DE CONTAMINANTES EMERGENTES EM MEIO AQUOSO

Heloisa Nicoletti

Raul José Alves Felisardo

Beatriz Tavoloni Marin

Marcos Roberto de Vasconcelos Lanza

Instituto de Química de São Carlos (IQSC), Universidade de São Paulo (USP)

heloisa.nicoletti@usp.br

Objetivos

Este estudo teve como objetivo sintetizar eletrodos de difusão gasosa (EDG) à base de carbono Printex-L6 e aplica-lo na geração eletroquímica de peróxido de hidrogênio (H_2O_2) , visando avaliar a eficiência de processos de oxidação avançada (POA) na degradação da cafeína em meio aquoso.

Métodos e Procedimentos

A síntese dos eletrodos de difusão gasosa contendo carbono Printex-L6 foi conduzida conforme metodologia empregada no grupo de [1]. Utilizou-se uma eletroquímica de compartimento único em que o EDG foi instalado na base e O2 era injetado diretamente sob fluxo constante. Para avaliar a produção de peróxido de hidrogênio, realizaram-se experimentos em soluções de K₂SO₄ a 0,05 mol L⁻¹. Foram avaliados diferente s (5, 7 e 9), e variadas densidades de corrente (10, 20 e 30 mA cm⁻²) durante 90 minutos de eletrolise. A quantificação do H₂O₂ gerado foi quantificada por espectrofotometria UV-Vis, utilizando o reagente de molibdato de amônio como indicador analítico [2].

Sob condições otimizadas de pH e densidade de corrente, quanto a concentração eletrogerada de H_2O_2 , a degradação de 30 mg L^{-1} cafeína em K_2SO_4 foi avaliada. Diferentes POA, incluindo oxidação Anódica (OA), OA/H_2O_2 e $AO/H_2O_2/UVC$ foram investigados. O decaimento da concentração foi determinado por Cromatografia Líquida de Alta Eficiência (CLAE) e a mineralização das soluções foram acompanhadas a partir do Teor de carbono orgânico total (COT).

Resultados

Os resultados obtidos evidenciaram que a produção de H_2O_2 foi mais favorecida em condições de pH mais elevado e sob maiores densidades de corrente elétrica aplicadas, indicando a forte influência desses parâmetros operacionais no desempenho eletroquímico do sistema. Nessas condições otimizadas, o processo mostrou-se altamente eficiente para a degradação da cafeína, com redução significativa da concentração do contaminante ao longo do período experimental de 90

minutos. Além disso, foi constatada a ocorrência de mineralização parcial. evidenciando não apenas a transformação da molécula alvo, mas também a quebra de parte de seus subprodutos intermediários. Entre os ensaios conduzidos, o processo assistido por radiação UVC apresentou os melhores resultados, potencializando tanto a taxa de degradação da cafeína quanto o grau de mineralização alcançado. Esse comportamento pode ser atribuído ao sinergismo entre a geração eletroquímica de H₂O₂ e a fotólise induzida pela radiação, favorecendo formação de espécies oxidantes mais reativas, como os radicais hidroxila (•OH).

Conclusões

Os resultados obtidos demonstram que a geração eletroquímica *in situ* de H_2O_2 em eletrodos de difusão gasosa à base de carbono Printex-L6 é uma estratégia promissora para a degradação de contaminantes emergentes em meio aquoso. As condições operacionais otimizadas permitiram a formação eficiente de H_2O_2 e resultaram em degradação significativa da cafeína, acompanhada de mineralização parcial da molécula. Esses resultados reforçam o potencial do processo como alternativa sustentável aos métodos convencionais de tratamento de águas, indicando perspectivas de aplicação em escala real no combate à poluição por contaminantes emergentes.

Os autores declaram não haver conflito de interesses.

H. Nicoletti e M. R. V. Lanza: conceberam e planejaram o estudo. H. Nicoletti, R. J. A. Felisardo e B. T. Marin: realizaram a coleta e análise dos dados. Todos os autores participaram da redação e revisão final do manuscrito e aprovam a versão final do resumo.

Agradecimentos

Este estudo foi financiado, em parte, pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brasil (Processos nº 2022/12895-1, nº 2023/13260-2 e nº 2024/10645-3) e pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (bolsa nº 127507/2024-8).

Referências

[1] Souto, R.S., Souza, L.P., Cordeiro Junior, P.J.M., Ramos, B., Teixeira, A.C.S.C., Rocha, R.S., Lanza, M.R. V, 62, Ind. Eng. Chem. Res. (2023).

[2] Moreira, J. (2018). Eletrogeração de peróxido de hidrogênio (H_2O_2) em eletrodos de difusão gasosa (EDG) modificados com quinonas (metil-p-benzoquinona, antraquinona-2-ácido carboxílico e ácido antraflávico) e azocomposto (Sudan Red 7B) (Doctoral dissertation, Universidade de São Paulo).

https://doi.org/10.11606/T.75.2019.tde-1403201 9-100953