
Boletim Técnico da Escola Politécnica da USP

Dept9 de Eng! de Computação e Sistemas Digitais

BT/PCS/9305

Uma Ferramenta para o
Desenvolvimento de Protótipos de

Programas Concorrentes
9Pf

Jorge Kinoshita
João José Neto

São Paulo - 1993

406z3 q'’s



\

O presente trabalho é baseado na dissertação de mestrado apresentada. em 1991, pelo Eng9
Jorge Kinoshita. sob orientação do Prof. Dr. João José Neto: “Uma Ferramenta para a Construção
de Programas Concorrentes'

A íntegra da dissertação encontra-se à disposição com o autor e na biblioteca de Engenharia de
Eletricidade da Escola Politécnica da USP.

Kinoshita, Jorge
Uma ferramenta para o desenvolvimento de prot..Ót_i

pos de programas concorrentes / J . Kinoshita, J. Ji
se Neto . -- Sao Paulo : EPUSP , 1993 . –

p . -- (Boletim Tecnico da Escola Politécnica d&
USP p Departamento de Engenharia de Computação e Sis
temas Digitais , BT/PCS/9305) –

1• Programaçao concorrente (Computadores) 2 . Re-
des de Petri (Computadores) 1, José Neto , Joio 11.
Universidade de são Paulo , Escola polit..icnit...ao De_
partamento de Engenharia de Computaçio e Sistemas
Digitais III + TÍtulo IV. Série (..'DD 005643

003



UMA FERRAMENTA PARA O DESENVOLVIMENTO DE PROTÓTIPOS DE
PROGRaMAS CONCORRENTES

Autores : Jorge Kinoshita e João José Neto
Escola Politécnica - Depto . de Eletricidade .

Cidade Universitária CEP 5508 São Paulo – SP .
Cx . Postal 11455 fone 815–9322 ramal 3392

Resumo
Este trabalho apresenta uma ferramenta de auxílio ao

projeto de programas concorrentes , baseada em especificações
através de Redes de Petri . A ferramenta foi desenvolvida em
microcomputador compatível com IBM–PC , em ambiente Smalltalk–V.
São mostrados alguns exemplos de utilização dos recursos da
ferramenta , ilustrando seu emprego no desenvolvimento de
protótipos .

Abstract
The present work shows a Petri net based tool intended to

help designing concurrent software . It has been built under the
Sma IIt alk-V environment , running on an IBM- PC compatible
machine . Some significant examples are presented, illustrating
the use of the tool ’s facilities in developping concurrent
software prototypes .

Palavras-chave : Programação concorrente , Smalltalk e redes dePetr i

1. Introducão
Neste artigo é apresentada uma ferramenta de apoio à fase

de projeto de um programa concorrente , onde são descritos os
processos que o compõem e como eles interagem entre si . A
ferramenta permite a simulação e análise da descrição em
questão com o objetivo de se prever erros no programa final,
como " deadlocks " ou protocolos mal definidos . Este artigo
tratará com ênfase a operação de simulação

d 2 . A Ferramenta
A ferramenta , desenvolvida como trabalho de mestrado

[Kino–91 ] , é gráfica e permite a edição , simulação e análise de
protótipos de programas concorrentes . Baseia–se essencialmente
nos conceitos de programação concorrente , redes de Petri
[Murata–89 ] , e Smalltalk [Gold–83 ] .

Foi construída no ambiente Smalltalk–V e é vista como uma
das janelas deste ambiente ( fig . 1 ) .



IEdi cao

insepe
is para

via

A edição de protótipos é efetuada em dois passos .
primeiro passo consiste em descrever os processos que compõem o
programa concorrente e a forma como eles estão relacionados ,
através de uma rede de processos . O segundo passo consiste em
associar uma rede de Petri a cada processo que compõe a rede de

0

processos .

Através da rede de processos e das redes de Petri , é
possível obter uma rede de Petri global que descreva todo o
programa concorrente . A ferramenta permite gerar um arquivo
chamado ’'petri " contendo uma descrição desta rede de Petri
global .

A ferramenta apresenta dois programas de análise de redes
de Petri , que têm o arquivo "petri “ como entrada .

O primeiro programa fornece os invariantes da rede de
Petri e faz a análise de "deadlock" . O algoritmo é apresentado
em [Bressan-85 ] . Utilizando os invariantes de uma rede de E ri
é possível prever o uso inadequado de semáforos na
sincronização de processos .

O segundo programa testa se uma seqüência de disparos de
transições é possível. Entre duas transições consecutivas que
compõem esta seqüência , podem ocorrer outras transições que



devem ser disparadas . Erros no protocolo entre dois ou mais
processos podem ser detectados através deste teste .

O usuário da ferramenta tem as opções de simular o
protótipo criado disparando transições nas redes de Petri . Para
que a simulação se aproxime mais da realidade , a ferramenta
oferece a possibilidade de designar código Smalltalk, a ser
executado na ocasião do disparo das transições .

A análise de redes de Petri não será discutida neste
artigo . É apresentada a maneira como código Smalltalk pode ser
associado às transições das redes de Petri .

e/

2.1 - Edição do Protótipo
A edição de um protótipo , com a ajuda da ferramenta,

consiste em descrever :

- redes de processos : especificam os processos que compõem o
programa concorrente e suas mútuas dependências .
– redes de Petri : descrevem as estruturas de controle de cada
processo .

A ferramenta emprega uma área da tela do microcomputador,
onde são representadas graficamente as redes de processos e as
redes de Petri .

Neste ítem mostra-se a forma como as redes de processos e
as redes de Petri são representadas na tela do microcomputador .
Esta especificação leva em conta a facilidade de representação
de figuras no ambiente Smalltalk .

2.1.1 - Edição de redes de processos
Uma rede de processos é um grafo biconexo direcionado ,

onde os nós podem ser de um dos dois tipos : processos ou
canais . Processos podem ser conectados somente a canais e vice–
versa . A palavra canal geralmente aparece relacionada apenas à
troca de mensagens . Neste artigo , contudo , empregaremo s a
palavra canal para designar "mail–boxes " ou semáforos , devido à
mesma representação adotada para ambos em redes de Petri .

2.1.1.1 - Elementos da rede
Os elementos ( nós ) da rede representam processos e canais .

Os processos são representados na tela através de retângulos , e
os canais , através de elipses .



2.1.1.2 - Relação entre os elementos
Processos comunicam– se compartilhando

representação de dois processos J e K,
canal X , é mostrada na seguinte figura :

canais . A
que se comunicam pelo

Um canal pode ser compartilhado por mais de dois
processos . Exemplo :

2.1.2 - Redes de Petri
Uma rede de Petri associada a um processo , apresenta na

ferramenta , uma representa(, ão que segue as seguintes
restrições :

1 – Não deve permitir
estritamente seqüencial.
2 - Deve ser fácil uní–la a redes de Petri de outros proc(
de forma a obtermos a rede de Petri global do sistema .
3 - Deve ser possível representá–la na tela do computador .
isto , a rede de Petri será representada em níveis diferentes .

Uma rede de Petr 1 possui o mesmo nome do processo
associado .

0 paralelismo , ou seja / deve

)s

_',ra



2.1.2.1 - Elementos da rede de Petri
A representação de um processo na ferramenta, em redes de

Petri , é basicamente uma rede de Petri restrita , onde cada
transição possui apenas um lugar como entrada e apenas um lugar
como saída , ou seja, é da forma de uma máquina de estados ,
evitando-se , deste modo , o paralelismo . A fim de se representar
a comunicação entre processos , as máquinas de estados serão
estendidas para ligarem–se umas com as outras através de
lugares em comum, aos quais denominaremos canais . Uma rede de
Petri associada a um processo será então , do tipo Máquina de
Estados Estendida (M. E . E . )

Em uma ME:E existe um lugar inicial, lugares finais e
lugares intermediários , dependendo de como ela é executada,
como ocorre em máquinas de estados . Lugares intermediários e
finais são representados através de elipses brancas . A
representação do lugar inicial é diferenciada através da cor
cinza claro . Um lugar é identificado como lugar inicial quando
possuir o mesmo nome da rede de Petri em que se encontra . Uma

ME:E pode ser ligada a outra ME:E através de canais quando as
duas ME:E ’s se comunicam entre si . Desta forma, os elementos que
compõem uma rede de Petri associada a um processo são :

jugaB
inicial

rb
\pf

lugar final ou
internedi aria

canal

it
t Bang i cao

2.1.2.2 - Intertigação entre ME:E ’s
Um processo P que coloca uma mensagem em um canal C ( ou

executa uma operação V sobre o semáforo C ) deve possuir o
seguinte tipo de transição :



Um processo P que retira uma mensagem de um canal C ( ou
executa uma operação P sobre o semáforo C ) deve possuir uma
transição do seguinte tipo : L

2.1.2.3 - Representação por níveis .

Uma rede de Petri associada a um processo pode
representada por níveis . Transições ou lugares podem ser
expandidos em sub–redes de Petri . Neste trabalho , é indiferente
expandir lugares ou transições , sendo que optamos por permitir
que apenas lugares pudessem ser detalhados em novas sub–redes
de Petri .

Uma sub–rede de Petri representando o detalhamento de um
lugar L deve possuir todas as transições que entram e que saem
de L . Todas as transições que chegam ao lugar L transformam-se
em transições–fonte ( transições sem lugares de entrada ) e las
as transições que emanam do lugar L , transformam– se em
transições-poço ( transições sem lugares de saída ) na sub de
de Petri associada ao lugar L .

O nome que a sub–rede de Petri recebe é o mesmo non ; do
lugar que está sendo detalhado . Todos os lugares que possuem
sub-redes de Petri associadas são representados através de
elipses com bordas duplas .

ser



Exemplo A - O Produtor–Consumidor
Dois processos P e C compartilham o canal B , sendo que P

coloca mensagens no canal e C retira mensagens do canal.
Rede de processos :

rede de Petri P :

rede de Petri



A sub–rede de Petri 1 detalhando o lugar 1

A partir destas quatro redes , é fácil obter por simples
composição , a rede de Petri global do programa concorrente .

2.2 - Simulação do Protótipo
A ferramenta permite simular o comportamento dos processos

modelados através de redes de Petri . Duas operações básicas
estão disponíveis para esta finalidade : inserir marcas nos
lugares e disparar transições .

Na ferramenta , uma marca é implementada como um objeto que
navega na rede de Petri . Objetos , e portanto marcas , são
entidades que podem ser diferenciadas umas das outras .

Dada uma ME:E de um processo qualquer , o usuário pode
associá–la a uma classe do ambiente Smalltalk, contendo os
métodos a serem executados no disparo de suas transições . Esta
classe deve ser criada com o mesmo nome do processo e como uma
subclasse de Token, definida na ferramenta .

Quando o usuário insere uma marca em algum lugar de uma
ME:E de um processo P qualquer , a ferramenta verifica se a
classe Token possui a subclasse P declarada pelo usuário . Se a
classe P existir, a ferramenta cria uma instância de P , que é
então inserida no lugar da rede de Petri apontado pelo usuário .
Caso contrário , a marca é considerada uma instância de Token .

Quando o usuário deseja disparar uma transição t qualquer ,
a ferramenta verifica se existe pelo menos uma marca em cada
entrada de t . A seguir , a ferramenta pede ao objeto marca ,
correspondente ao processo sendo executado , que execute um
método com o mesmo nome de t . O objeto marca verIfica se ele

b



mesmo responde a mensagens do tipo t . Se responder, o método t
passa a ser executado .

A declaração de um método t pelo usuário é composta de
duas partes .

A primeira parte , que é opcional, consiste em verificar se
o estado interno do objeto marca ( processo ) é tal que permita o
disparo da transição t . Caso a transição t não seja disparável,
o método t deve retornar o objeto " false " como resposta .
Normalmente , esta primeira parte é declarada se a transição t
compartilha lugares de entrada com outras transições , ou seja ,
se t estiver em conflito estrutural com outras transições .

Uma vez que a transição seja realmente disparáve 1 , a
segunda parte consiste em descrever as ações que serão
executadas no disparo de t . O método t deve então retornar
qualquer valor diferente de " false "

r'

Exemplo B

Na sub-rede de Petri 1 associada ao lugar 1 da rede de
Petri C, no exemplo A, deseja–se sempre disparar a transição w,
três vezes antes da transição s . Observar que as transições w e
s estão em conflito estrutural.

Para tanto , o usuário deve assocIar a seguinte classe C ao
ambiente Smalltalk:

Classe C
1. Cabeçalho da Classe :

Token subclass : #C
instanceVariableNames :

’ contador ’ " conta o número de disparos de w'classVariableNames : '’
poolDictionaries : “ !

2 . Métodos da Instância

ic
’'inicializa contador "
contador : = 1. ! "inicializando contador

"dispara s após 3 disparos de w"
’'prirneiro , verifica se pode disparar "
contador > 3

ifFalse : [ "false ] .
" segundo , dispara "

contador : = 1. !

S



W

"Dispara w 3 vezes em seguida "
" Primeiro , verifica se pode disparar "
contador <= 3

ifFalse : [ " false ] .
" Segundo , executa o disparo "
contador : = contador + 1. ! !

" Atualiza o número de disparos de w em seguida

2.2.1 - Troca de Mensagens
Uma mensagem (marca colocada em um canal ) corresponde , no

ambiente Sma11talk , a uma instânc ia da c lasse Msg . Toda
instância da classe Msg possui três variáveis :

1. origem, que especifica o processo origem
2 . destino , que especifica o processo destino
3 . informações , que é o objeto contendo a

propriamente dita .

Toda instância de mensagem pode conter os seguintes tipos

mensagem

de mensagens :

origem: umaIdentidade
especifica o processo-origem da mensagem.

origem
retorna a identificação do processo-origem
da mensagem.

destino : umaIdentidade
especifica o processo–destino da mensagem.destino
retorna a identificação do processo–destino
da mensagem.

info: umob jeto
especifica as informações da mensagem

info
retorna as informações da mensagem.

Quando um canal é compartilhado por vários pr
dele podem retirar mensagens , há , em alguns
necessidade de se especificar para qual dos pr
mensagem está endereç ada . Neste caso , é neces
tratamento adicional no disparo de transições que reprt
recepção de mensagens .

Desta forma , antes que
possua como entradas um lugar e um canal deter:mi os

ossos que
aasos 1

3SSC
io
nt

a
']iri

a

seja dispara(ia uma trans ão

necessário verificar se a marca que está no canal (1. .sac
possui como destino a marca que está no lugar (proce üso ) .

’.e

IS

1 )

Se



uma instância de Msg possuir a variável "destino " igual ao
objeto "nil " então qualquer processo poderá retirá–la do canal.

Devido ao fato de que lugares e canais podem possuir mais
de uma marca, quando uma transição que representa a recepção de
mensagens é disparada , é necessário verificar se existe algum
par ( processo , mensagem) tal que o destino da mensagem seja
aquele processo particular . Esta verificação é feita
automaticamente pela ferramenta .

Quando o usuário especifica um método associado a uma
transição que recebe mensagens , tal método deverá possuir um
parâmetro que corresponde à mensagem que está sendo recebida .

Quando o usuário especifica um método associado a uma
transição que envia mensagens , tal método deverá responder com
um objeto , que é a mensagem que está sendo enviada . A
ferramenta encarrega–se de inserir tal mensagem no canal.

6

Jf
1

Exemplo C
O objetivo deste exemplo é apresentar uma maneira como o

usuário pode associar uma identidade a um processo e como podem
ser declarados métodos que são ativados no envio e recepção de
mensagens .

Deseja–se modelar um processo produtor enviando mensagens
a diferentes processos consumidores . A rede de Petri é a mesma
do exemplo A. Este exemplo engloba o exemplo B .
a . Objetivo :

Ao simular, o usuárIo insere uma marca no lugar inicial da
rede de Petri P . Depois ele pode disparar as transições "eB"
preenchendo o campo–destino das marcas ( mensagens ) a serem
inseridas no canal "B "

O usuário pode inserir várias marcas no lugar inicial do
processo C . Ao disparar " iC " , a identidade do processo é
estabelecida pelo usuário . O usuário pode então disparar as
transições "rB'’ . A ferramenta verifica se é possível o disparo
de "rB " , analisando os campos–destino das marcas (mensagens ) no
canal B e as identidades das marcas no lugar '’ 1 " . O disparo das
outras transições já foi comentado no exemplo B .



b . Descrição das classes
classe P

1. Cabeçalho da classe
Token subclass : #P

instanceVariableNames :
classVariableNames :
poolDictionaries : “

2 . Métodos da instância

eB A

"Retorna uma mensagem com destino especificado pelo
usuário ’'

" ( Msg new) destino :(Prompter prompt : ’ tipo ‘
default : ’ 1 ’ ) ! 1

"Ver observação abaixo sobre entrada de dados "
Classe C

1. Cabeçalho da classe C

Token subclass : #C
instanceVariableNames :

’ contador ‘
classVariableNames :

poolDictionaries : ’

2 . Métodos da instância C

ic
"inicializa a identidade do processo e contador "
identidade : = Prompter prompt : ’ processo ' default : ’ 1 ’
" identidade é a variável herdada da classe Token "
" Ver observação abaixo sobre entrada de dados "
contador : = 1. !

@ : mensagem
" Imprime a mensagem recebida

Menu message : mensagem destino . !

"dispara s se já disparou 3 vezes w
"primeiro , verifica se pode disparar "
contador > 3

ifFalse : [ " false ] .
" segundo , dispara "
contador : = 1. !

W
"Dispara w três vezes em seguida antes de s ’'
"Primeiro , verifica se pode disparar "
contador <= 3 "pode disparar ? '’

ifFalse : [ ' false ] . "Não . retorna false "
" Segundo , executa o disparo "
contador : = contador + 1. ! 1



Observação :

Existem diversas formas de interação entre o usuário e o
ambiente Smalltalk . Uma maneira de pedir dados ao usuário é
através da classe Prompter . O comando :

Prompter prompt : ’ tipo ' default : ’ 1 ’
no método eB da classe P , ao ser executado , abre uma janela com
o título '’tipo " , apresentando como entrada "default " uma cadeia
( " string " ) simbolizando o número 1.

Desta forma, quando o usuário dispara a transição eB o
"prompt " pedindo dados assume a seguinte forma :

2.2.2 - Semáforos
A associação de código Smalltalk para a simulação da

sincronização através de semáforos é mais simples do que para a
troca de mensagens , porque dentro de um canal que simula um
semáforo a única informação útil é o número de marcas .

Toda marca dentro de um semáforo corresponde
instância de Msg com destino igual ao objeto "nil ’'

Quando um canal simula um semáforo , geralmente ele é
inicializado pelo usuário . Para isto , o usuário apenas deve
inserir neste canal um número de marcas correspondente à
inicialização do semáforo .

a uma

1

3 - Observações finais
Foram mostrados neste artigo exemplos de simulação

associando ou não código Smalltalk às transições . Quando uma
rede de Petri exibe código executável associado às transições
ou lugares , ela é denominada "rede de Petri interpretada"



Uma rede de Petri descreve apenas a estrutura de controle
de um programa, mas , associando código Smalltalk às transições ,
a rede de Petri interpretada passa a especificar os dados , as
operações sobre os mesmos e a ordem em que elas ocorrem.

Observa-se que o conjunto das marcações acessíveis na rede
de Petri interpretada pode ser menor pois em certas ocasiões ,
transições disparáveis na rede de Petri original podem deixar
de ser disparáveis na redé de Petri interpretada . Deste fato
pode-se tirar algumas conclusões a respeito da análise da rede
de Petrt interpretada , a partir da análise da rede de Petri
não-interpretada [Valette–901 .

Quanto à análise de "deadlock " nada se pode afirmar . É
possível que a rede de Petri interpretada possua ’'deadlocks ’'
enquanto que a rede de Petr 1 não interpretada não possua
"deadlocks " e vice–versa .

Nesta versão da ferramenta , a inserção de marcas e o
disparo de transições são feitos manualmente pelo usuário .
Entretanto , é possível associar à ferrarnenta um programa que
faça o papel do usuário . Este programa é conhecido na
literatura como " jogador de marcas " . Marcas são colocadas e
transições disparadas de acordo com uma certa distribuição
estatística pré-estabelecida . Desta forma é possível estimar ,
por exemplo , onde estará o gargalo do programa concorrente a
ser implementado .

A ferramenta apresentada em [ Dãhler–87 ] possui
características semelhantes . Nesta ferramenta , a estrutura de
controle de um programa concorrente é definida através de redes
de Petlri e a estrutura de dados , bem como a operação sobre os
mesmos , é definida em Smalltalk . Entretanto , ela lida com redes
de Petri predicado–transição e a maneira de associar código
Smalltalk às transições é feita de forma diferente .

A ferramenta apresentada neste artigo é ainda um
protótipo , que precisa ser estimulado em situações reais r ira
se constatar a sua viabilidade .

b



Bibliografia

[Bressan–85 ] Bressan, G. , " Ambiente de Programação distribuída:
Definição , Análise , Síntese " , tese de doutorado , Escola
Politécnica , Universidade de São Paulo , 1985 .

[Dâhler–87 ] Dâhler, J . et aI. , " A Graphical Tool for the Design
and Prototyping of Distributed Systems " . ACM SI(;SOFT Software
Engineering Notes , vol. 12 , no . 3 , pçs 25–36 , July 1987 .e

.'\ [ Gold-83 ] Goldberg , A. and Robson , D . , " Smalltalk 80 : The
Language and its Implementat ion " , Addison–Wesley , Reading ,
Mass . , 1983 .

[Kino–91 ] Kinoshita , J . , "Uma ferramenta para a construção de
programas concorrentes " . Dissertação de mestrado a ser
apresentada à Escola Politécnica da Universidade de São Paulo
em 1991

[Murata–89 ] Murata , T . , "Petri Nets : Properties , Analysis and
Applications " , Proceedings of the IEEE , vol. 77 , no . 4 , pgs
541–580 , April 1989 .

[Valette–90 ] Vallete , R . , notas do curso " Redes de Petri
apresentado na Escola Politécnica da Universisdade de São Paulo
em Julho de 1990 .



1



BOLETiNS TÉCNiCOS - TExros PUBLiCADOS

BT/PCS/9301 - Interligação de Processadores através de Chaves e)micron - GERALDO LINO DE CAMPOS, DEMI GETSCHKO

BT/PCS/9302 - Implementação de Transparência em Sistema Distribuído - LUÍSA YUMIKO AKAO. JOÃO JOSÉ NETO

BT/PCS/9303 - Desenvolvimento de Sistemas Especificados em SDL - SIDNEI H. TANO, SELMA S. S, MELNIKOFF

BT/PCS/9304 - Um Modelo Formal para Sistemas Digitais à Nível de Transferência de Registradores - JOSÉ EDUARDO
MOREIRA, WILSON VICENTE RUGGIERO

r \



fJ


