Boletim Técnico da Escoia Politécnica da USP

Dept? de Eng? de Computacao e Sistemas Digitais

BT/PCS/9305

Uma Ferramenta para o
Desenvolvimento de Protétipos de
Programas Concorrentes

Jorge Kinoshita
Joao José Neto

Sao Paulo - 1993

10623494

O presente trabalho & baseado na dissertacao de mestrado apresentada. em 1991, pelo Eng_9
Jorge Kinoshita, sob orientacao do Prof. Dr. Jodo José Neto: "Uma Ferramenta para a Construcao
de Programas Concorrentes’.

A integra da dissertacao encontra-se a disposicéo com o autor e na biblioteca de Engenharia de
Eletricidade da Escola Politécnica da USP.

Kinoshita, Jorge
Uma ferramenta para O desenvolvimento de prototi
pos de programas concorrentes / J. Kinoshita, Jv 30
cé Neto. -- Sao Paulo : EPUST, 1993.
p. —— (Boletim Tecnico da Escola Politecnica da
USP, Departamento de Engenharia de Ccmputagio e Sis
temas Digitais, BT/PCS/9305)

L Programagio concorrente (Computadorcs) 2. Re-
des de Petri (Computadores) I. Jose Neto, Joao II.
Universidade de Sao Faulo. Escola Politecnica. De-
partamento de Engenharia de Computagio e Sistemas
Digitais III. Titulo IV. Serie CDD 005.43

003

UMA FERRAMENTA PARA O DESENVOLVIMENTO DE PROTOTIPOS DE

PROGRAMAS CONCORRENTES

Autores: Jorge Kinoshita e Jodo José Neto
Escola Politécnica - Depto. de Eletricidade.
Cidade Universitdria CEP 5508 Sao Paulo - SP.
Cx. Postal 11455 fone 815-9322 ramal 3392

Resumo

Este trabalho apresenta uma ferramenta de auxilio ao
projeto de programas concorrentes, baseada em especificacdes
através de Redes de Petri. A ferramenta foi desenvolvida em
microcomputador compativel com IBM-PC, em ambiente Smalltalk-V.
Sdao mostrados alguns exemplos de utilizacdo dos recursos da
ferramenta, ilustrando seu emprego no desenvolvimento de
protétipos.

Abstract

The present work shows a Petri net based tool intended to
help designing concurrent software. It has been built under the
Smalltalk-Vv environment, running on an IBM-PC compatible
machine. Some significant examples are presented, illustrating
the use of the tool’s facilities in developping concurrent
software prototypes.

Palavras-chave: Programacao concorrente, Smalltalk e redes de
Betri,

1. Introducdo

Neste artigo é apresentada uma ferramenta de apoio a fase
de projeto de um programa concorrente, onde sdo descritos os
processos que o compdem e como eles interagem entre si. A
ferramenta permite a simulacdo e analise da descricao em
quesfao com o objetivo de se prever erros no programa final,
como "deadlocks" ou protocolos mal definidos. Este artigo

tratard com énfase a operacao de simulacéao.

2. A Ferramenta

A ferramenta, desenvolvida como trabalho de mestrado
[Kino-91], é grafica e permite a edigao, simulacao e andlise de
prototipos de programas concorrentes. Baseia-se essencialmente
nos conceitos de programacao concorrente, redes de Petri
[Murata-89], e Smalltalk [Gold-83].

Foi construida no ambiente Smalltalk-V e é vista como uma

das janelas deste ambiente (Eig. I).

g .d:

4
POCRSSD
|I
Edicao | 3 :
3 ' (G g
nalise i :
{insere +
dispara u;:_
’m . —
i q.) !
‘B
5| -
" L"-J""

A edicdo de protétipos é efetuada em dois passos. O
primeiro passo consiste em descrever o0s processos que compoem o
programa concorrente e a forma como eles estao relacionados,
através de uma rede de processos. O segundo passo consiste em
associar uma rede de Petri a cada processo que compde a rede de
processos.

Através da rede de processos e das redes de Petri, &
possivel obter uma rede de Petri global gque descreva todo o
programa concorrente. A ferramenta permite gerar um arquivo
chamado ‘"petri" contendo uma descrigdo desta rede de Petri
global.

A ferramenta apresenta dois programas de analise de redes
de Petri, que tém o arquivo "petri" como entrada.

O primeiro programa fornece os invariantes da rede de
Petri e faz a analise de "deadlock". O algoritmo & apresentado
em [Bressan-85]. Utilizando os invariantes de uma rede de F ri
é possivel prever O uso inadequado de semaforos na
sincronizacao de processos.

0 segundo programa testa se uma segiiéncia de disparos de
transicées é possivel. Entre duas transigoes consecutivas que

compoem esta seqiiéncia, podem ocorrer outras transicbes que

devem ser disparadas. Erros no protocolo entre dois ou mais
processos podem ser detectados através deste teste.

O wusudrio da ferramenta tem as opgoes de simular o
protétipo criado disparando transicdes nas redes de Petri. Para
que a simulacdo se aproxime mais da realidade, a ferramenta
oferece a possibilidade de designar cédigo Smalltalk, a ser
executado na ocasido do disparo das transicées.

A andlise de redes de Petri nao sera discutida neste
artigo. E apresentada a maneira como coédigo Smalltalk pode ser
associado as transicdes das redes de Petri.

2.1 - Edic3o do Protétipo

A edicao de um protdotipo, com a ajuda da ferramenta,
consiste em descrever:

- redes de processos: especificam os processos que compoem O
programa concorrente e suas mituas dependéncias.

- redes de Petri: descrevem as estruturas de controle de cada
processo.

A ferramenta emprega uma &rea da tela do microcomputador,
onde sao representadas graficamente as redes de processos e as
redes de Petri.

Neste item mostra-se a forma como as redes de processos e
as redes de Petri sao representadas na tela do microcomputador.
Esta especificagdo leva em conta a facilidade de representacao
de figuras no ambiente Smalltalk.

25101 = Edicdao de redes de processos

Uma rede de processos é um grafo biconexo direcionado,
onde o0s nés podem ser de um dos dois tipos: processos ou
canais. Processos podem ser conectados somente a canais e vice-
versa. A palavra canal geralmente aparece relacionada apenas a
troca de mensagens. Neste artigo, contudo, empregaremos a
palavra canal para designar "mail-boxes" ou semaforos, devido a

mesma representacdo adotada para ambos em redes de Petri.

2.1.1.1 - Elementos da rede

Os elementos (nés) da rede representam processos e canais.

Os processos sao representados na tela através de retangulos, e

Os canais, através de elipses.

2.1.1.2 - Relacdo entre os elementos

Processos comunicam-se compartilhando canais. A
representacao de dois processos J e K, que se comunicam pelo

canal X, é mostrada na seguinte figura:

Um canal pode ser compartilhado por mais de dois
processos. Exemplo:

2.1.2 - Redes de Petri

Uma rede de Petri associada a um processo, apresenta na

ferramenta, uma representacgao que segue as seguintes
restricoes:
1 - Nao deve permitir o paralelismo, ou seja, deve ser

estritamente seqiiencial.

2 - Deve ser facil uni-la a redes de Petri de outros procs S
de forma a obtermos a rede de Petri global do sistema.

3 - Deve ser possivel representa-la na tela do computador. - ira
isto, a rede de Petri sera representada em niveis diferentes.

Uma rede de Petri possui o mesmo nome do Pprocesso
associado.

2.1.2.1 - Elementos da rede de Petri

A representacao de um processo na ferramenta, em redes de
Petri, é basicamente uma rede de Petri restrita, onde cada
transicdo possui apenas um lugar como entrada e apenas um lugar
como saida, ou seja, & da forma de uma magquina de estados,
evitando-se, deste modo, o paralelismo. A fim de se representar
a comunicagcao entre processos, as maquinas de estados serao
estendidas para ligarem-se umas com as outras através de
lugares em comum, aos quais denominaremos canais. Uma rede de
Petri associada a um processo sera entao, do tipo Maquina de
Estados Estendida (M.E.E.)

Em uma MEE existe um lugar inicial, lugares finais e
lugares intermediarios, dependendo de como ela é executada,
como ocorre em maquinas de estados. Lugares intermediarios e
finais sao representados através de elipses brancas. A
representacao do lugar inicial é diferenciada através da cor
cinza claro. Um lugar é identificado como lugar inicial quando
possuir o mesmo nome da rede de Petri em gque se encontra. Uma
MEE pode ser ligada a outra MEE através de canais quando as
duas MEE's se comunicam entre si. Desta forma, os elementos que

compboem uma rede de Petri associada a um processo sao:

v
i) *
T
l_uqalj lugar final gy canal transicao
inicial intermediario

2.1.2.2 - Interligacao entre MEE’s

Um processo P que coloca uma mensagem em um canal C (ou
executa uma operagdo V sobre o semaforo C) deve possuir o

seguinte tipo de transicao:

Um processo P que retira uma mensagem de um canal C (ou
executa uma operacdo P sobre o semaforo C) deve possuir uma

transicdo do seguinte tipo:

2.1.2.3 - Representacdo por niveis.

Uma rede de Petri associada a um processo pode ser
representada por niveis. Transicdes ou lugares podem ser
expandidos em sub-redes de Petri. Neste trabalho, € indiferente
expandir lugares ou transicdes, sendo que optamos por permitir
gue apenas lugares pudessem ser detalhados em novas sub-redes
de Petri.

Uma sub-rede de Petri representando o detalhamento de um
lugar L deve possuir todas as transigbes que entram € que Saem

de L. Todas as transicdes que chegam ao lugar L transformam-se

em transicdes-fonte (transigdes sem lugares de entrada) e as
as transicdes que emanam do lugar L, transformam-se em
transigdes-pogo (transicdes sem lugares de salda) na sub de

de Petri associada ao lugar L.

O nome que a sub-rede de Petri recebe & O mesmo nom- do
lugar que estd sendo detalhado. Todos os lugares que posSsuem
sub-redes de Petri associadas sao representados através de

elipses com bordas duplas.

Exemplo A - O Produtor-Consumidor
Dois processos P e C compartilham o canal B, sendo que P

coloca mensagens no canal e C retira mensagens do canal.
Rede de processos:

rede de Petri P:

rede de Petri C:

A sub-rede de Petri 1 detalhando o lugar 1 é:

El
2)

—

A partir destas quatro redes, é facil obter por simples

composicao, a rede de Petri global do programa concorrente.

2.2 - Simulacao do Protétipo

A ferramenta permite simular o comportamento dos processos
modelados através de redes de Petri. Duas operacdes basicas
estdo disponiveis para esta finalidade: inserir marcas nos
lugares e disparar transicoOes.

Na ferramenta, uma marca é implementada como um objeto que
navega na rede de Petri. Objetos, e portanto marcas, sao
entidades que podem ser diferenciadas umas das outras.

Dada uma MEE de um processo qualquer, o usuario pode
associd-la a uma classe do ambiente Smalltalk, contendo os
métodos a serem executados no disparo de suas transicoes. Esta
classe deve ser criada com o mesmo nome do processo € COmoO uma
subclasse de Token, definida na ferramenta.

Quando o usudrio insere uma marca em algum lugar de uma
MEE de um processo P gqualquer, a ferramenta verifica se a
classe Token possui a subclasse P declarada pelo usuario. Se a
classe P existir, a ferramenta cria uma instdncia de P, que é
entdo inserida no lugar da rede de Petri apontado pelo usudrio.
Caso contrario, a marca é considerada uma instancia de Token.

Quando o usuario deseja disparar uma transicao t qualquer,
a ferramenta verifica se existe pelo menos uma marca em cada
entrada de t. A seguir, a ferramenta pede ao objeto marca,
correspondente ao processo sendo executado, que execute um

método com o mesmo nome de t. O objeto marca verifica se ele

mesmo responde a mensagens do tipo t. Se responder, O método t
passa a ser executado.

A declaracdo de um método t pelo usudrio & composta de
duas partes.

A primeira parte, que é opcional, consiste em verificar se
o estado interno do objeto marca (processo) é tal que permita o
disparo da transicado t. Caso a transigdao t nao seja disparavel,
o método t deve retornar o objeto "false" como resposta.
Normalmente, esta primeira parte é declarada se a transigao t
compartilha lugares de entrada com outras transigoes, Ou seja,
se t estiver em conflito estrutural com outras transicoes.

Uma vez que a transicdo seja realmente disparavel, a
sequnda parte consiste em descrever as agdes que serao
executadas no disparo de t. O método t deve entao retornar

qualquer valor diferente de "false".

Exemplo B

Na sub-rede de Petri 1 associada ao lugar 1 da rede de
Petri C, no exemplo A, deseja-se sempre disparar a transigao w,
trés vezes antes da transicdo s. Observar que as transicoes w e
s estdao em conflito estrutural.

Para tanto, o usudrio deve associar a seguinte classe C ao
ambiente Smalltalk:

Classe C
1. Cabegcalho da Classe:

Token subclass: #C
instanceVariableNames:
'contador ' " conta o numero de disparos de w"
classVariableNames: '’
poolDictionaries: '’ !

2. Métodos da Instancia
iC

"inicializa contador"
contador := 1.! "inicializando contador "

s
"dispara s ap6s 3 disparos de w"
"primeiro, verifica se pode disparar"
contador > 3
ifFalse:["false].
"seqgundo, dispara"
contador := 1.!

2

"Dispara w 3 vezes em seguida"
"Primeiro, verifica se pode disparar"
contador <= 3
ifFalse:[“false].
"Segundo, executa o disparo"
contador := contador + 1.! !
"Atualiza o namero de disparos de w em seguida "

2.2.1 - Troca de Mensagens

Uma mensagem (marca colocada em um canal) corresponde, no
ambiente Smalltalk, a uma instancia da classe Msg. Toda
instancia da classe Msg possui trés varidveis:

1. origem, que especifica o processo origem

2. destino, que especifica o processo destino

3. informacdes, que €& o objeto contendo a mensagem
propriamente dita.

Toda instancia de mensagem pode conter os seguintes tipos
de mensagens:

origem: umaldentidade
especifica o processo-origem da mensagem.
origem
retorna a identificacdo do processo-origem
da mensagem.
destino: umaldentidade
especifica o processo-destino da mensagem.
destino
retorna a identificacdao do processo-destino
da mensagem.
info: umObjeto
especifica as informacdes da mensagem
info
retorna as informacées da mensagem.

Quando um canal é compartilhado por varios pr essos que

dele podem retirar mensagens, ha, em alguns asos, a
necessidade de se especificar para gqual dos p1 3ssc a
mensagem esta enderegada. Neste caso, & neces ic am
tratamento adicional no disparo de transigoes que repre nt a
recepcao de mensagens.

Desta forma, antes que seja disparada uma trans 3o e
possua como entradas um lugar e um canal determi os =
necessario verificar se a marca que estd no canal (i :sac a)

possui como destino a marca que estd no lugar (processo). se

uma instéancia de Msg possuir a variavel ‘'"destino" igual ao
objeto "nil" entdo qualquer processo podera retiréa-la do canal.

Devido ao fato de que lugares e canais podem possuir mais
de uma marca, quando uma transicao que representa a recepcdo de
mensagens € disparada, é necessario verificar se existe algum
par (processo, mensagem) tal que o destino da mensagem seja
aquele processo particular. Esta verificacao e feita
automaticamente pela ferramenta.

Quando o wusuadrio especifica um método associado a uma
transicdo que recebe mensagens, tal método devera possuir um
parametro que corresponde a mensagem que esta sendo recebida.

Quando o usudrio especifica um método associado a uma
transicdo que envia mensagens, tal método devera responder com
um objeto, que é a mensagem que esta sendo enviada. A

ferramenta encarrega-se de inserir tal mensagem no canal.

Exemplo C

O objetivo deste exemplo é apresentar uma maneira como o
usuario pode associar uma identidade a um processo e como podem
ser declarados métodos que sdo ativados no envio e recepcao de
mensagens.

Deseja-se modelar um processo produtor enviando mensagens
a diferentes processos consumidores. A rede de Petri é a mesma
do exemplo A. Este exemplo engloba o exemplo B.

a. Objetivo:

Ao simular, o usuario insere uma marca no lugar inicial da
rede de Petri P. Depois ele pode disparar as transicoes "eB"
preenchendo o campo-destino das marcas (mensagens) a serem
inseridas no canal "B".

O usuario pode inserir véarias marcas no lugar inicial do
processo C. Ao disparar "iC", a identidade do processo é
estabelecida pelo usudrio. O usuario pode entao disparar as
transicGes "rB". A ferramenta verifica se é possivel o disparo
de "rB", analisando os campos-destino das marcas (mensagens) no
canal B e as identidades das marcas no lugar "1". O disparo das

outras transicdes ja foi comentado no exemplo B.

b. Descricao das classes

classe P
1. Cabecalho da classe

Token subclass: #P
instanceVariableNames: '’
classVariableNames: '’
poolDictionaries: '’ !

2. Métodos da instancia

eB
"Retorna uma mensagem com destino especificado pelo
usudario"
~(Msg new) destino:(Prompter prompt:’tipo’
default:’17)! !
"Ver observacdo abaixo sobre entrada de dados"
Classe C

1. Cabecalho da classe C

Token subclass: #C
instanceVariableNames:
'contador '
classVariableNames: ‘'’
poolDictionaries: ’* !

2. Métodos da instancia C

_ic
"inicializa a identidade do processo e contador”

identidade := Prompter prompt:’processo’ default:’l’

" jdentidade é a varidvel herdada da classe Token
" Ver observacao abaixo sobre entrada de dados”
contador := 1.!

rB:mensagem
"Imprime a mensagem recebida
Menu message: mensagem destino.!

"dispara s se ja disparou 3 vezes w
"primeiro, verifica se pode disparar”
contador > 3

ifFalse:["false].
"segundo, dispara"
contador := 1.!

2

"Dispara w trés vezes em seguida antes de s"
"Primeiro, verifica se pode disparar"”
contador <= 3 ‘'"pode disparar ?"

ifFalse:[“false]. "Nao. retorna false"
"Segundo, executa o disparo'
contador := contador + 1.! !

Observagéo:

Existem diversas formas de interacdo entre o usuario e o
ambiente Smalltalk. Uma maneira de pedir dados ao usuario é
através da classe Prompter. O comando:

Prompter prompt:’tipo’ default:’1’
no método eB da classe P, ao ser executado, abre uma janela com
O titulo "tipo", apresentando como entrada "default" uma cadeia
("string") simbolizando o nitmero 1.
Desta forma, quando o usuario dispara a transicdo eB o

"prompt" pedindo dados assume a seguinte forma:

2.2.2 - Semaforos

A associacao de cédigo Smalltalk para a simulacdo da
sincronizagdo através de semdforos & mais simples do que para a
troca de mensagens, porque dentro de um canal que simula um
semaforo a dnica informagdo Gtil é o namero de marcas.

Toda marca dentro de um semaforo corresponde a uma
instancia de Msg com destino igual ao objeto "nil".

Quando um canal simula um semaforo, geralmente ele é
inicializado pelo usuario. Para isto, o usudrio apenas deve
inserir neste canal um namero de marcas correspondente a

inicializacdo do semaforo.

3 - Observacdes finais

Foram mostrados neste artigo exemplos de simulacao

associando ou ndo cédigo Smalltalk as transicoes. Quando uma
rede de Petri exibe cédigo executdvel associado as transicgoes

ou lugares, ela é denominada "rede de Petri interpretada".

Uma rede de Petri descreve apenas a estrutura de controle
de um programa, mas, associando cdédigo Smalltalk as transigodes,
a rede de Petri interpretada passa a especificar os dados, as
operacdes sobre os mesmos e a ordem em que elas ocorrem.

Observa-se que o conjunto das marcacbes acessiveis na rede
de Petri interpretada pode ser menor pois em certas ocasides,
transicdes disparaveis na rede de Petri original podem deixar
de ser disparaveis na rede de Petri interpretada. Deste fato
pode-se tirar algumas conclusdes a respeito da analise da rede
de Petri interpretada, a partir da analise da rede de Petri
nao-interpretada [Valette-90].

Quanto & analise de "deadlock" nada se pode afirmar. E
possivel que a rede de Petri interpretada possua "deadlocks"
enquanto que a rede de Petri nao interpretada naoc possua
"deadlocks" e vice-versa.

Nesta versdao da ferramenta, a insergcdao de marcas € O
disparo de transicbes sao feitos manualmente pelo usuario.
Entretanto, é possivel associar a ferramenta um programa que
faca o papel do usuario. Este programa & conhecido na
literatura como "jogador de marcas". Marcas sao colocadas e
transicées disparadas de acordo com uma certa distribuicao
estatistica pré-estabelecida. Desta forma é possivel estimar,
por exemplo, onde estara o gargalo do programa concorrente a
ser implementado.

A ferramenta apresentada em [Déhler-87] possui
caracteristicas semelhantes. Nesta ferramenta, a estrutura de
controle de um programa concorrente & definida através de redes
de Petri e a estrutura de dados, bem como a operagdo sobre Os
mesmos, é definida em Smalltalk. Entretanto, ela lida com redes
de Petri predicado-transicdo e a maneira de associar c¢6digo
Smalltalk as transicbes é feita de forma diferente.

A ferramenta apresentada neste artigo é ainda um
protétipo, que precisa ser estimulado em situagbes reais rzra
se constatar a sua viabilidade.

Bibliografia

[Bressan-85] Bressan,G. , "Ambiente de Programacado distribuida:
Definicdo, Anélise, Sintese", tese de doutorado, Escola
Politécnica, Universidade de Sao Paulo, 1985.

[Déhler-87] Dahler, J. et al., "A Graphical Tool for the Design
and Prototyping of Distributed Systems". ACM SIGSOFT Software
Engineering Notes, vol. 12, no. 3, pgs 25-36, July 1987.

[Gold-83] Goldberg, A. and Robson, D., "Smalltalk 80: The
Language and its Implementation’, Addison-Wesley, Reading,
Mass., 1983.

[Kino-91] Kinoshita, J., "Uma ferramenta para a construcao de
programas concorrentes". Dissertacdao de mestrado a ser
apresentada a Escola Politécnica da Universidade de Sao Paulo
em 1991.

[Murata-89] Murata, T., "Petri Nets: Properties, Analysis and
Applications", Proceedings of the IEEE, vol. 77, no. 4, pgs
541-580, April 1989.

[Valette-90] Vallete, R., notas do curso "Redes de Petri"
apresentado na Escola Politécnica da Universisdade de Sao Paulo
em Julho de 1990.

BOLETINS TECNICOS - TEXTOS PUBLICADOS

BT/PCS/9301 - Interligagéo de Processadores através de Chaves Omicron - GERALDO LINO DE CAMPOS, DEMI GETSCHKO
BT/PCS/9302 - Implementacdo de Transparéncia em Sisterna Distribuido - LUISA YUMIKO AKAO, JOAO JOSE NETO
BT/PCS/9303 - Desenvolvimento de Sistemas Especificados em SDL - SIDNEI H. TANO, SELMA S. S. MELNIKOFF

BT/PCS/9304 - Um Modelo Formal para Sistemas Digitais 4 Nivel de Transferéncia de Registradores - JOSE EDUARDO
MOREIRA, WILSON VICENTE RUGGIERO

-~

