

DETERMINAÇÃO DAS BARREIRAS DE ENERGIA E VIAS DE INSERÇÃO DE METAIS ALCALINOS E SEUS ÍONS EM FULERENOS MENORES

Karina Bordin de Gois

Roberto Luiz Andrade Haiduke

Instituto de Química de São Carlos

karinabordin@usp.br

Objetivos

O carbono apresenta grande versatilidade ao estabelecer ligações consigo mesmo por meio da hibridização dos orbitais sp3, sp2 e sp, o que possibilita a formação de diferentes alótropos, entre eles os fulerenos. Esses compostos despertam interesse tecnológico e biomédico devido às suas propriedades e potenciais aplicações, e muito já foi estudado sobre fulerenos maiores, principalmente no que se refere à inserção de metais no C₆₀[1], visando compreender as barreiras de inserção, os estados de transição, os mecanismos envolvidos e as mudanças conformacionais resultantes[2]. Nesse contexto, este projeto tem por objetivo calcular, por meio de cálculos teóricos de estrutura eletrônica, as barreiras de ativação e as vias de inserção de metais alcalinos e seus cátions (Li, Li⁺, Na, Na⁺, K e/ou K^{+}) em fulerenos menores como C_{20} , C_{24} , C_{26} , C₂₈ e/ou C₃₀, de modo a compreender melhor os mecanismos de inserção e as propriedades das estruturas resultantes.

Métodos e Procedimentos

As geometrias moleculares de partida serão construídas com o auxílio do software Avogadro^[3], enquanto os cálculos de estrutura

eletrônica serão realizados com o software Gaussian 16^[4,5]. Primeiramente, serão feitos cálculos de otimização de geometria e de frequências vibracionais dos reagentes e produtos. Em seguida, serão efetuados cálculos para encontrar e caracterizar o estado de transição e entender melhor o mecanismo da inserção dos metais nos fulerenos. Nesse caso, cálculos de frequências vibracionais devem assegurar a natureza de pontos de mínimo, para reagentes e produtos, e de pontos de sela de primeira ordem, para o estado de transição. A partir dos valores das energias de reagentes, produtos e estados de transição, será possível calcular a barreira de energia das reações

$$\Delta E^{\neq} = E_{TS} - \Sigma E_{reagentes}$$

e a variação de energia da reação

$$\Delta E = \Sigma E_{\text{produtos}} - \Sigma E_{\text{reagentes}}$$
.

Em relação ao método a ser utilizado, será selecionada alguma abordagem baseada na Teoria do Funcional de Densidade, escolhendo-se o funcional de troca-correlação a partir de pesquisas bibliográficas sobre estudos semelhantes ou por meio de testes iniciais. Conjuntos de função de base de qualidade triplo-ζ devem ser utilizados, tais como def2-TZVP, def2-TZVPD ou outros similares.

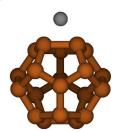

Resultados

Tabela 1 - ΔE , ΔH e ΔG de algumas das espécies estudadas.

Espécie	ΔE	ΔH	Δ G
C20@Li	-768,807825	-768,806881	-768,849952
C20	-761,311289	-761,310345	-761,352767
Li	-7,480526	-7,479582	-7,495344
	-10,046275	-10,638635	-1,155228
Espécie	ΔE	ΔH	Δ G
C20@Na	-923,372771	-923,371827	-923,414536
C20	-761,311289	-761,310345	-761,352767
Na	-162,243820	-162,242876	-162,260320
	114,417095	113,824735	124,590752
Espécie	ΔE	ΔH	Δ G
C20@K	-1.360,559122	-1.360,558178	-1.360,601974
C20	-761,311289	-761,310345	-761,352767
K	-599,896979	-599,896035	-599,914226

Espécie	ΔE	ΔH	ΔG
C20@Li+	-768,547007	-768,546063	-768,587669
C20	-761,311289	-761,310345	-761,352767
Li+	-7,281466	-7,280522	-7,295630
	28,706870	28,114510	38,106820
Espécie	ΔE	ΔH	Δ G
C20@Na+	-923, 104207	-923,103263	-923,144183
C20	-761,311289	-761,310345	-761,352767
Na+	-162,055314	-162,054370	-162,071159
	164,653490	164,061130	175,538732
Espécie	ΔE	ΔH	Δ G
C20@K+	-1.360,275566	-1.360,274621	-1.360,317021
C20	-761,311289	-761,310345	-761,352767
K+	-599,739917	-599,738972	-599,756509
	486,714100	486.121740	497.140012

MOLDEN

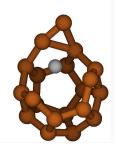


Figura 1: Estrutura inicial e final do C₂₀@Li.

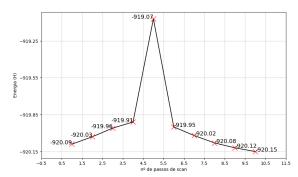


Figura 2: Barreira de energia para o C₂₄@Li.

Conclusões

Após finalizar os cálculos, pode-se observar a partir da energia de Gibbs e da entalpia que para o C_{20} , a maioria das espécies não eram favoráveis de serem inseridas, incluindo os cátions que possuem menor raio atômico. Isso pode ser devido à estrutura tensionada do próprio fulereno, já que este é composto

apenas de anéis de 5 membros, sendo difícil de retornar à sua estrutura original após a quebra para inserção do metal. Por isso foram escolhidas espécies ainda menores (berílio e hidrogênio) para prosseguir com os cálculos, tanto para fins de otimizar tempo e recursos computacionais.

Para os demais fulerenos, C_{24} , C_{26} e C_{30} , que em sua estrutura possuem tanto anéis de 5 quanto de 6 membros, as espécies Li, Li⁺, Be e Be²⁺ ao serem inseridas de forma espontânea por ter ΔG menor que zero.

A hipótese para estes demais fulerenos era de que a inserção ocorreria pelo anel de 6 membros, pois dessa forma não ocorreria quebra na estrutura, e foi confirmada a partir do cálculo de scan do sistema C24@Li, onde pode-se acompanhar como se deu a reação, além de possibilitar o cálculo da barreira.

Agradecimentos

Agradeço ao meu orientador por todo suporte durante o desenvolvimento deste projeto e também ao CNPq (Conselho Nacional de Desenvolvimento Cientìfífico e Tecnológico) pelo fomento.

Referências

[1]CAI, W.; ZHANG, M.; ECHEGOYEN, L.; LU, X. Recent advances in endohedral metallofullerenes. Fundamental Research, 2023.

[2]LI, J.; WANG, R.; HUANG, W.; ZHU, Y.; TEO, B. K.; WANG, Z. Smallest endohedral metallofullerenes [Mg@C20]n (n = 4, 2, 0, -2, and -4): Endo-ionic interaction in superatoms. The Journal of Physical Chemistry Letters, v. 14, n. 11, p. 2862–2868, 2023. PMID: 36920152.

[3]AVOGADRO CHEMISTRY. Avogadro. Disponível em: https://avogadro.cc/

[4]FORESMAN, J. B.; FRISCH, A. E. Exploring Chemistry with Electronic Structure Methods. Gaussian, Incorporated, 1996.

[5]FRISCH, M. J. et al. Gaussian 16 Revision C.01. Wallingford CT: Gaussian Inc., 2016.