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We consider herein diagnostic methods for the quasi-likelihood regression models developed by Zeger
and Liang [Zeger, S. L. and Liang, K.-Y., 1986, Longitudinal data analysis for discrete and conti-
nuous outcomes. Biometrics, 42, 121–130.] to analyse discrete and continuous longitudinal data. Our
proposal generalises well-known measures (projection matrix, Cook’s distance and standardised resi-
duals) developed for independent responses. Moreover, half-normal probability plots with simulated
envelopes were developed for assessing the adequacy of the fitted model when the marginal distri-
butions belong to the exponential family. To obtain such a plot, correlated outcomes were generated
by simulation using algorithms described in the literature. Finally, two applications were presented to
illustrate the techniques.

Keywords: Diagnostic techniques; Generalised estimating equations; Repeated measures; Longit-
udinal data; Quasi-likelihood methods; Generalised linear models

1. Introduction

Zeger and Liang [1] considered the generalised estimating equations (GEEs) to analyse
longitudinal data via quasi-likelihood methods. Liang and Zeger [2] derived the GEEs from
a different and slightly more limited context. They assumed that the marginal distribution of
the dependent variable follows a generalised linear model (GLM). In both articles, the GEEs
are derived without fully specifying the joint distribution. The regression coefficients are con-
sistently estimated even in the cases where the correlation structure is misspecified. However,
efficiency depends on the working correlation matrix’s proximity to the true one [2].

Liang and Zeger’s method has been widely used in several areas dealing with non-Gaussian
correlated data. In such a context, finding an appropriate relationship between the correlated
response variable and the covariates through a linear model requires techniques to assess
whether the selected model adequately fits the data.

Tan et al. [3] proposed certain diagnostic measures for checking the adequacy of marginal
regression models but only in the analysis of correlated binary data. We present an extension
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of such measures valid for repeated measures regression analysis via GEEs in general. In
particular, we consider the projection (hat) matrix, Cook’s distance, standardised residuals
and half-normal probability plots with simulated envelopes [4].

Chang [5], among others, presented a non-parametric test that is a sensitive approach to
examine residual values for possible patterns of non-randomness. Pan [6] proposed a modified
version (QIC) of Akaike’s information criterion that works well for variable and working
correlation matrix selection. Finally, Preisser and Qaqish [7] proposed deletion diagnostics
for GEEs, but from a slightly different point of view than the one presented here. Their proposal
does not allow the construction of half-normal probability plots with simulated envelopes as
the expression for covariance matrix of the ordinary residuals does not follow the form required
by Atkinson [4].

In section 2, we review GEEs and introduce some notation. Diagnostic measures and graphi-
cal methods are derived in section 3. Interpretation of the proposed measures is discussed
through two illustrative examples in section 4.

2. Generalised estimating equations

Let yi = (yi1, yi2, . . . , yiti )
T, i = 1, . . . , n, be mutually independent random vectors of

repeated outcomes and let Xi = (xi1, xi2, . . . , xiti )
T be the ti × p matrix of covariate

values, with xij = (xij1, . . . , xijp)
T, i = 1, . . . , n and j = 1, . . . , ti . Assume that the mean and

variance of yij are given by

E(yij) = μij and Var(yij) = φ−1ν(μij), (1)

where ν(μij) is a known function of the mean μij and φ−1 is the dispersion parameter.
Suppose that the regression model is ηij = g(μij) = xT

ijβ, where g(·) is a link function and
β = (β1, . . . , βp)T is the vector of unknown parameters to be estimated. To simplify notation,
let ti = t without loss of generality.

If Ri denotes the correlation matrix for each yi , the corresponding covariance matrix is

Cov(yi ) = φ−1 A1/2
i Ri A1/2

i , (2)

where Ai = diag(ν(μi1), . . . , ν(μit)) is a diagonal matrix.
In general, Ri is unknown and a practical way to bypass such a problem in the GEE context

is to define a working correlation matrix, R(α), which depends on an unknown parameter
vector α and is equal for all subjects. Then, the working covariance matrix for yi is given by

�i = φ−1 A1/2
i R(α)A1/2

i . (3)

It will be equal to Cov(yi ) if R(α) is the true correlation matrix for yi . The related GEEs are

n∑
i=1

DT
i �−1

i (yi − μi ) = 0, (4)

where DT
i = XT

i �i and �i = diag(∂μi1/∂ηi1 , . . . , ∂μit/∂ηit), i = 1, . . . , n and j = 1, . . . , t .
The parameter estimates are obtained by alternating between the modified Fisher scoring

iterative method for β, as described subsequently, and the moment estimation method for α

and φ, as described by Liang and Zeger [2]. The estimates of α and φ must be recalculated
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at each iteration. Given current estimates of the (nuisance) parameters α and φ, the iterative
procedure for estimating β may be expressed as

β̂
(m+1) = β̂

(m) +
⎧⎨
⎩

[
n∑

i=1

D̂
T
i �̂

−1
i D̂i

]−1 [
n∑

i=1

D̂
T
i �̂

−1
i (yi − μ̂i )

]⎫⎬
⎭

(m)

, (5)

where m = 0, 1, 2, . . . and β̂
(m)

is an initial (arbitrary) estimator. The estimate of β is updated
by equation (5), evaluating the right-hand side at the current estimates of β, α and φ in the
mth iteration.

Liang and Zeger [2] showed that under certain regularity conditions, among which α̂ and
φ̂ are consistent estimators of α and φ, respectively,

√
n(β̂ − β)

D−→ Np(0, J−1),

with

J−1 = lim
n→∞ n

{
n∑

i=1

DT
i �−1

i Di

}−1 {
n∑

i=1

DT
i �−1

i Cov(yi )�
−1
i Di

} {
n∑

i=1

DT
i �−1

i Di

}−1

.

(6)
The robust, empirical or sandwich variance estimator of β̂ is given by

{
n∑

i=1

D̂
T
i �̂

−1
i D̂i

}−1 {
n∑

i=1

D̂
T
i �̂

−1
i (yi − μ̂i )(yi − μ̂i )

T�̂
−1
i D̂i

} {
n∑

i=1

D̂
T
i �̂

−1
i D̂i

}−1

,

which is obtained by replacing Cov(yi ) by (yi − μi )(yi − μi )
T and β, α and φ by their respec-

tive estimators. It is robust in the sense that it is a consistent estimator of J−1 even if R(α) is
misspecified. If R(α) is correctly specified, the variance estimator of β̂ will reduce to

{
n∑

i=1

D̂
T
i �̂

−1
i D̂i

}−1

,

known as the naive or model-based variance estimator. Similar robust and naive variance
estimates suggests that R(α) is adequate [8].

3. Diagnostic techniques

Diagnostic techniques are of great relevance for detecting regression problems and are very
well discussed for regression models with independent observations in Paula [9], for example.
For such models, the diagonal elements of the projection (hat) matrix, the well-known Cook’s
distance and the residuals are useful for detecting high leverage, influential and outlying
observations, respectively. Another resource for detecting problems in the fit of regression
models is the half-normal plot with simulated envelope [4]. However, this plot can only be
used when the marginal distributions are known.

Here, we extend such diagnostic measures to evaluate the fit of the regression models with
repeated measures described in section 2.
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3.1 High leverage, influence and outlying observations

The most useful way to setup the iterative process outlined in equation (5) is by using the
iteratively reweighted least-squares method obtained by employing a pseudo-observation

vector zi = η̂i + �̂
−1
i (yi − μ̂i ) and a weight matrix Wi = �̂i �̂

−1
i �̂i . Under this setup,

equation (5) reduces to

β̂
(m+1) =

⎧⎨
⎩

[
n∑

i=1

XT
i WiXi

]−1 [
n∑

i=1

XT
i Wizi

]⎫⎬
⎭

(m)

. (7)

At convergence, we obtain

β̂ = (
XTWX

)−1
XTWz, (8)

where W = diag(W1, . . . ,Wn) is a block diagonal weight matrix whose ith block corresponds
to the ith subject, X = (XT

1 , . . . , XT
n)T and z = (zT

1 , . . . , zT
n)T.

The residual vectors defined as the deviation of the observed from the fitted data can be
written as

r∗ = W1/2(z − η̂) = W1/2�̂
−1

(y − μ̂), (9)

where W1/2 is defined as the square root obtained from eigenvalue decomposition of W,
�̂ = diag(�̂1, . . . , �̂n), y = (yT

1 , . . . , yT
n)T and μ̂ = ( μ̂

T
1 , . . . , μ̂1T

n)T.

As Cov(z) = �̂
−1

Cov(y)�̂
−1 ∼= W−1, we have Cov(r∗) ∼= (I − H), where I is the identity

matrix and H is the block diagonal matrix given by diag(H1, . . . , Hn), where

Hi = W1/2
i Xi (XTWX)−1XT

i W1/2
i , i = 1, . . . , n. (10)

H is symmetric and idempotent, so that r(H) = tr(H) = p, where r(H) is the rank of H.
The elements of r∗ have different variances; consequently, the standardized residual

associated to yij is defined by

(rSD)ij = eT
(ij)W

1/2�̂
−1

(y − μ̂)√
1 − hij

, (11)

where e(ij) is a vector with 1 at the position of observation (ij) lexicographically ordered
and 0 at the remaining positions and hij is the j th diagonal element of Hi , i = 1, . . . , n and
j = 1, . . . , t .

The ordinary residual in equation (9) can also be written as r∗ = (I − H)W1/2z. Then,
considering that W1/2z plays the role of the outcome vector, we can interpret H as the hat
matrix in the same way as in normal linear regression, where W is the identity matrix. This
allows us to use the diagonal elements of H to detect high-leverage point, as in Paula [9] for
GLMs and Tan et al. [3] for logistic regression with correlated responses.

A large value of hij indicates that xij has a large influence on its fitted value ŷij. When
all points have the same influence on the regression parameter estimates, we expect that hij

is around the average tr(H)/N = p/N , so that points with hij ≥ 2p/N can be considered
as high-leverage points. As another guideline to identify outlying subjects, we can use the
average of the hij’s within a subject to identify high-leverage subjects. Namely, we consider
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the ith subject as having a large influence on the fitted model if

hi = 1

t

t∑
j=1

hij = tr(Hi )

t
≥ 2p

N
.

Graphically, we can plot hij versus i, with i = 1, . . . , n and j = 1, . . . , t . If the goal is to
determine the influence of each subject, then we plot hi versus i, i = 1, . . . , n.

Outliers can be detected by plotting the standardized residuals (rSD)ij versus the indices i,
where i = 1, . . . , n and j = 1, . . . , t . Outliers are observations that differ greatly from the
fitted value and not having high leverage.

The influence of each observation on the regression coefficients can be assessed by Cook’s
distance [10]. This measure is the distance between the estimated regression coefficients using
all response values (β̂) and those estimated without observation yij(β̂(ij)), with i = 1, . . . , n

and j = 1, . . . , t .
The idea in the one-step approximation for β̂(ij) presented by Pregibon [11] is applied here

to the GEEs estimator in equation (7) and is given by

β̂
(1)

(ij) = β̂ − [XTWX]−1[XTW1/2e(ij)][eT
(ij)W

1/2�̂
−1

(y − μ̂)]
1 − hij

.

Cook’s distance with the deletion of the observation yij is defined as

(CD)ij = 1

p
(β̂ − β̂(ij))

TXTWX(β̂ − β̂(ij)) = (rSD)2
ij

hij

p(1 − hij)
. (12)

In the plot of (CD)ij versus the index i, with i = 1, . . . , n and j = 1, . . . , t , influential obser-
vations are discrepant values compared with the others. Cook’s distance for subject i is given
by (CD)i = ∑t

j=1(CD)ij, i = 1, . . . , n.
As all the diagnostic statistics discussed earlier involve the estimated correlation parameters,

they may not be accurate when the estimates are not close to the true values.

3.2 Simulated envelope

Half-normal plots with simulated envelopes are useful for identifying outliers and examining
the adequacy of the fitted model, even when the distribution of the residuals is not known [12].

A simulated envelope for a half-normal probability plot of the absolute residuals is
constructed as follows:

1. For each subject i, i = 1, . . . , n, simulate a t × 1 vector of responses using the estimates
mean vector and the correlation matrix, on the basis of the model fitted to the original
data y.

2. For the simulated responses in the first step, fit the same model using the same covariates.
3. Compute the set of standardised residuals given in equation (11) and order them.
4. Repeat the first three steps 24 times, independently. Here, let (rSD)lm be the lth-ordered

absolute value of the standardised residual belonging to mth step, l = 1, . . . , N and
m = 1, . . . , M , where M = 25.

5. Compute the minimum, median (or mean) and maximum of the smallest absolute values
of residuals for all steps, that is, (rSD)1m, m = 1, . . . , 25.

6. Repeat the last step for the second smallest absolute values of standardised residuals (rSD)2m.
Next, repeat this step for the third smallest values (rSD)3m, and so forth, until the largest
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absolute values of the standardised residuals (rSD)Nm, m = 1, . . . , 25. At the end of this
step, three N × 1 vectors were obtained: one with the minimum, one with the median (or
mean) and the other with maximum values of the standardised residuals.

7. Finally, plot the values obtained in step 6 and the ordered absolute values of the standardised
residuals from the original fit against the half-normal scores

�−1

(
l + N − 1/8

2N + 1/2

)
,

where �(·) is the cumulative distribution function of the standard normal distribution.

The occurrence of points falling outside of the simulated envelope indicates that the fitted
model is not appropriate. If there are outliers, they will appear at the top side of the half-normal
probability plot, separated from the other points.

The half-normal probability plot with simulated envelope is easily constructed once cor-
related variables are generated. This may be easily accomplished by the function rmvnorm
available in S-Plus or R designed to generate multivariate Gaussian distributions [13]. Park
et al. [14] proposed an algorithm to generate a random vector of correlated binary variables
and Park and Shin [15] developed an algorithm to generate a vector of dependent Poisson
or gamma variables. These authors provide a simple algorithm for generating a set of non-
negatively correlated vectors with arbitrary dimension. To generate correlated variables under
other distributions, we suggest the use of copulas [16].

4. Applications

As an illustration, two data sets were analysed applying the methods developed in sections 2
and 3.

4.1 Application using a Gaussian distribution

The data were obtained from Lima and Sañudo [17]. The objective was to verify the learning
process of a certain task. Each of the 40 volunteers completed the task in eight different
attempts. Considering normal distribution and identity (canonical) link, the natural logarithm
mean of the response variable was fitted by

μij = xT
ij β̂,

where xi,j = (1j)T and β̂ = (β0, β1)
T, with i = 1, . . . , 40 and j = 1, . . . , 8.

Table 1 shows the estimated regression, dispersion and correlation parameters of the fitted
model using the AR(1) structure working correlation matrix. Using the generalised Wald test

Table 1. Parameter estimates of the normal regression model
using AR(1) structure.

Parameter Estimate Robust S.E. Naive S.E.

β0 Intercept 3.850 0.067 0.068
β1 Slope −0.051 0.010 0.013
φ−1 Dispersion 0.173
α Correlation 0.531
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Figure 1. Plot of Cook’s distance (a) and plot of the standardised residual (b) for the normal regression model using
AR(1) structure.

statistic proposed by Rotnitzky and Jewell [18], we concluded for a significant attempt effect
(P < 0.001).

Cook’s distance and the standardised residual were computed for each pair of subject (vol-
unteer) i and attempt j , i = 1, . . . , 40 and j = 1, . . . , 8. In figure 1a, the observations of the
subjects 1, 33 and 39 related to the first attempt (which are 5.0, 5.1 and 4.9, respectively)
present higher values than the other observations (whose mean is 3.7), suggesting that they
are influential points. This indicates that Cook’s distance measure distinguishes these observa-
tions correctly. Figure 1b shows no any residual distinct from the others. It is noteworthy that
this example presents no quantitative covariates; consequently, we do not use the projection
matrix to detect high-leverage observations.

Figure 2. Half-normal probability plot with simulated envelope for the normal regression model using AR(1)
structure.
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The half-normal probability plot with simulated envelope (figure 2) indicates no observation
outside the simulated envelope. Thus, it was concluded that the normal regression model
adequately fits the data.

4.2 Application using a Poisson distribution

The second example, reported by Montgomery et al. [19, p. 215], is a biomedical one with
30 subjects (rats) having an induced leukemic condition. Three chemotherapy type drugs were
used, with 10 subjects for each drug. White (W) and red (R) blood cell counts were collected
as covariates and the response is the number of cancer cell colonies. The data were collected
on each subject at four different time periods. Poisson responses using a log (canonical) link
were assumed. Thus,

log μij = βl + β4Wij + β5Rij,

where i, j and l are index subject, time period and drug, respectively, with i = 1, . . . , 30,
j = 1, . . . , 4 and l = 1, 2, 3. Here, the first 10 rats (i = 1, . . . , 10) used drug 1, the following
10 rats (i = 11, . . . , 20) used drug 2 and the last 10 rats (i = 21, . . . , 30) used drug 3.

Table 2 shows the estimated regression and correlation parameters of the fitted model
using the AR(1) structure working correlation matrix. Using the generalised Wald-test statistic
proposed by Rotnitzky and Jewell [18], it can be noted that all regression parameters are highly
significant (P < 0.001, for each parameter).

Applying the diagnostic techniques presented in section 3, the measures hij and hi were
computed to verify whether the observation (i, j ) or the subject i, respectively, are high-
leverage cases, i = 1, . . . , 30 and j = 1, . . . , 4. Figures 3a and b, respectively, provide these
two measures. In figure 3a, apparently, six observations are high leverage: (1, 4), (3, 1) and
(6, 1) related to the drug 1, (16, 1) and (16, 4) related to the drug 2 and (23, 4) related to the
drug 3. However, figure 3b shows no subject as a high-leverage case.

To detect influential and outlier observations, Cook’s distance and the standardised residual
were computed and are presented, respectively, in figures 3c and 3d. Neither figures show
any observation distinct from each other. The half-normal probability plot with simulated
envelope (figure 4) indicates no observation outside the simulated envelope. Therefore, it
can be concluded that the Poisson regression with AR(1) correlation structure is adequate to
explain the relation between the number of cancer cell colonies and the covariates white and
red blood cell counts.

Table 2. Parameter estimates of the Poisson regression model
using AR(1) structure.

Parameter Estimate Robust S.E. Naive S.E.

β1 Drug 1 3.0120 0.0778 0.0315
β2 Drug 2 3.2315 0.0976 0.0891
β3 Drug 3 3.1363 0.1540 0.1075
β4 W −0.0305 0.0051 0.0045
β5 R 0.0221 0.0065 0.0073
α Correlation 0.9227
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Figure 3. Plot of the leverage for each observation (a) plot of the leverage for each subject (b) plot of Cook’s
distance (c) and plot of the standardised residual (d) for the Poisson regression model using AR(1) structure.

Figure 4. Half-normal probability plot with simulated envelope for the Poisson regression model using AR(1)
structure.
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