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Abstract

Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their
families.The Cancer Genome Atlas and similar projects have provided a comprehensive understanding of the som-
atic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and
molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic
abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate
on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal
Analysis Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS ini-
tiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to

reveal targetable vulnerabilities and, ultimately, improved outcomes for a patient population in need.
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Introduction

Diffuse gliomas are the most frequent primary brain
tumors in adults.” Almost all gliomas relapse despite
intensive treatment with surgery, radiation, and chemo-
therapy.The most common and most aggressive gliomas,
glioblastoma (GBM), are isocitrate dehydrogenase (/DH)-
wildtype and classified as 2016 World Health Organization
(WHO) grade IV.They are characterized by a median over-
all survival that has remained static at around 15 months
for decades, even in selected clinical trial populations.>*
Patients with lower-grade (WHO grade Il) /IDH-mutated
gliomas have a more favorable prognosis, but these
tumors progress and recur as higher grades (lll and 1V)
and become resistant to therapy.’ The standard of care

for diffuse gliomas is maximal safe resection, followed by
chemoradiation (Fig. 1).° Patients are then monitored for
disease progression by imaging at regular intervals fol-
lowing surgery. Evaluation of disease progression is com-
monly guided by specific imaging criteria (eg, Response
Assessment in Neuro-Oncology [RANO]),® which rely
on visual evaluation of contrast enhancement and the
non-enhancing hyperintense area on T2-weighted imag-
ing. Radiologic features sometimes do not distinguish
between true tumor progression and its imaging mim-
icker, pseudoprogression, which can result in premature
withdrawal from a specific treatment or the continuation
of an ineffective therapy.

Molecular characterization of gliomas has advanced
our understanding of their genesis’'® and has identi-
fied somatic alterations that allow their classification
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into subtypes with different biology and median survival
times.®This wealth of information has provided a detailed
molecular portrait of primary glioma.The Cancer Genome
Atlas (TCGA), which characterized 1100 grades II-IV glio-
mas in detail, has by design focused on untreated tumors.
The next frontier in glioma genomics is to understand
recurrent disease, as patients generally die from increas-
ingly resistant tumor regrowth after therapy. Recent pilot
studies of paired tumors obtained before and after ther-
apy show that there are many differences between the
primary neoplasm at diagnosis and the recurrent tumor.?°
Progression of gliomas is the result of an evolutionary
process that involves iterative cycles of clonal expansion,
genetic diversification, and clonal selection under micro-
environmental pressures, including overcoming antitu-
mor immune responses.?! The presence of multiple cell
populations with an array of different somatic mutations
is at least partly responsible for the rapid induction of
intrinsic resistance to therapy in gliomas.??2 Adaptive epi-
genetic and phenotypic responses are equally important.
The emerging understanding of this dynamic evolution
of the glioma genome has major implications for cancer
biology research and potential development of effective
therapies. This can only be achieved through (i) profiling
of sufficiently large primary/recurrent patient tumors and
associated imaging to collect enough patients in order to
capture low-frequency variants or subtle therapy-driving
processes and (ii) standardization across biospecimen
processing and data platforms. Here, we discuss the cur-
rent literature on preliminary molecular longitudinal char-
acterization of gliomas (Table 1) and introduce the Glioma
Longitudinal Analysis (GLASS) Consortium, which has
been initiated to establish a definitive portrait of the
recurrence process and, in doing so, discover vulnerabili-
ties that render the tumor sensitive to therapeutic inter-
vention (Fig. 2).

Molecular Profiling Offers New
Possibilities for Diagnosis and Therapy
of Gliomas

Clinical Classification of Adult Diffuse Glioma

Historically, the diagnosis of diffuse gliomas relied purely
on microscopic evaluation,? but more recently the com-
bination of histopathology with specific molecular charac-
teristics of gliomas has proven more objective for clinical
stratification.®".17-19.24-29 Glijomas are initially split based
on the mutation status of the IDH 71 or 2 genes. Tumors
with wild-type alleles are called IDH-wildtype and 95%
are GBMs."? Tumors with IDH mutations are further subdi-
vided based on the presence of complete 1p/19q codele-
tion (IDH mutant codeleted) or tumor suppressor protein
53 (TP53) mutation and alpha thalassemia/mental retard-
ation syndrome X-linked (ATRX) loss (/IDH mutant non-
codeleted).®"17.1824.26-29 \ost WHO grades Il and lll diffuse
astrocytomas and oligodendrogliomas are IDH mutant and
contain 1p/19q codeletion. Consensus on how this revised
molecular classification should be implemented in routine
clinical practice?® is outlined in the latest WHO 2016 clas-
sification of CNS tumors.™ For the first time, this scheme
provides data for diagnosis, prognostic grading, and guid-
ing therapeutic decisions.3%3" However, this improved
classification system is predicated on primary untreated
disease, and it remains unclear how these molecular mark-
ers impact the biology and prognosis following diagnosis.
The DNA methylation status of the Of-methylguanine-
DNA methyltransferase (MGMT) gene promoter is pre-
dictive of response to temozolomide therapy in primary
GBM, and this status appears to be largely stable between
primary and recurrent disease.®? The value of retesting
MGMT status after disease progression is debatable, and
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Table1 Summary of cohort based longitudinal characterization of glioma studies

Cohort Size
(#patients)

# Publication Journal DataTypes GliomaType

at Diagnosis

1. Phillips et al'® Cancer Cell 16530701 Mar 2006  Gene expression arrays High grade 23
Johnson etal®®  Science 24336570 Dec 2013 Exome sequencing Low grade 23
3. Kim et al®* Genome Res 25650244  Feb 2015  Whole genome and exome sequenc-  Glioblastoma  23¥
ing, DNA copy number arrays
4. Suzuki et al? Nat Genetics 25848751  Apr 2015 Exome sequencing Low grade 10
Kim et al® Cancer Cell 26373279  Sep 2015 Exome sequencing, array CGH, RNA Glioblastoma 38
sequencing
6. Mazor et al®® Cancer Cell 26373278 Sep 2015 DNA methylation, RNA sequencing Low grade 211
Kwon et al”3 PLoS One 26466313  Oct 2015 Gene expression arrays Glioblastoma 15
8. Baietal* Nat Genetics 26618343  Nov 2015 Exome sequencing, array CGH, gene  Low grade 41
expression arrays, DNA methylation
9. Wang et al®® Nat Genetics 27270107 July 2016  Exome sequencing Glioblastoma 39
10. DeCarvalho Biorxiv NA Nov 2016  Whole genome sequencing and CGH  Glioblastoma  21¥ "3
et al*® arrays
11. Wang et al*® Cancer Cell 28697342 June 2017 Gene expression arrays, RNA Glioblastoma  36% ™
sequencing
12. Klughammer Biorxiv NA 2017 DNA methylation Glioblastoma 112
etal™
13. Ferreira de Biorxiv NA 2017 DNA methylation Low grade 32¥44

Souze et al’®

* Additional characterization on cohort from #2.
*2 Analysis additionally includes data from cohorts in #2, #3, #4, #5.
"3 Analysis additionally includes data from cohorts in #3, #5.

"4 Additional characterization on cohort from #3, includes re-analysis of cohorts from #1, #6, #7.

*5 Analysis additionally includes data from cohorts in #6, #8.
*'Including 13 glioma pairs from TCGA.
*2 Including 14 glioma pairs from TCGA.

* Additional characterization on 27 glioma pairs from TCGA, overlapping with ¥1 and ¥2

* Including 27 glioma pairs from TCGA, overlapping with ¥1 and ¥2

a methylated MGMT promoter continues to predict treat-
ment response at this stage.

Intratumoral Heterogeneity in Primary Gliomas

Cancer results from a single normal cell that has acquired
molecular alterations providing it with a growth advantage.
In glioma, the most frequent somatic abnormalities are
thought to be founding events.®¥This includes somatic muta-
tions in the IDH genes and in the promoter of the telomerase
reverse transcriptase gene, which is characteristic of IDH-
wildtype GBM as well as IDH-mutant codeleted gliomas.?
Major aneuploidy, such as 1p/19q codeletion, whole chromo-
some 7 gain, and chromosome 10 loss (/IDH-wildtype glio-
mas), are also thought to be glioma-initiating alterations.34-36
The 3 major glioma subtypes reflect different patient age at
diagnosis distributions, which further suggests that the 3
groups represent distinct gliomagenic biologies.

Cancer cell descendants of the same cell of origin may
contain a wide range of genetic and epigenetic states.”38
This intratumoral heterogeneity confounds diagnosis, chal-
lenges the design of effective therapies, and is a determin-
ant of tumor resistance.®® Molecular heterogeneity in GBM
has been characterized using multiple approaches. For

example, fluorescent in situ hybridization analysis of the
most commonly amplified receptor tyrosine kinases (RTKs)
in GBM (epidermal growth factor receptor [EGFRI, platelet
derived growth factor receptor alpha [PDGFRA], and MET)
revealed a mosaic of tumor subclones marked by different
RTK amplifications in 2%-3% of GBM,*%4! possibly indi-
cating cooperation between cell populations. Single-cell
sequencing demonstrated comparable non-overlapping
subclonal GBM cell populations marked by different EGFR
truncation variants, suggesting convergent evolution of
EGFR mutations.*?> Genomic profiling of spatially distinct
tumor sectors has revealed partial overlap in the mutation
content in multiple samples from /IDH-mutant lower-grade
glioma'?364344 and [DH-wildtype GBMs.343545-47 Somatic
mutations/DNA copy number alterations in important gli-
oma driver genes such as TP53 and phosphatase and
tensin homolog (PTEN) have been found to be subclonal,
suggesting they were acquired after tumor initiation. These
unexpected discoveries show the many genetic routes
tumor cells can take to overcome anti-tumorigenic barri-
ers such as senescence and genomic instability. The pos-
sibility of extrachromosomal oncogene amplification adds
an additional layer of complexity, allowing tumors to rap-
idly increase intratumoral heterogeneity in response to a
microenvironment sparse in resources.*853
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Fig. 2 Simplified glioma evolution models. The glioma-initiating cell evolves into the tumor at diagnosis with selective pressures resulting in
intratumoral heterogeneity. Recurrent tumors share few or the majority of the somatic alterations seen in the diagnostic tumors depending on the
evolutionary pattern (linear, branching, or ancestral evolutions). Subclones may be marked by mutations or extrachromosomal DNA elements.

Intratumoral mutation retention rates may be corre-
lated with the geographical distance between samples in
the tumor,%” and by extension, the level of heterogeneity
between different lesions of multifocal GBM is greater than
between different areas in the same GBM.#%545 Spatial het-
erogeneity determined by genetic alterations is reflected in
the epigenetic patterns of different tumor sections exam-
ined by combined analysis of DNA methylation and gen-
etic abnormalities.**%6 These accumulating data suggest
that intratumoral heterogeneity is encoded through a gen-
omic-epigenomic codependent relationship,*® in which
epigenetic changes may modulate mutational susceptibil-
ity in proximal cells, and specific mutations dictate aberrant
epigenetic patterns.*3%6:57 Although gene expression signa-
tures can be used to subclassify GBMs, the predominant
subtype often varies from region to region within a given
tumor.3546This relative instability may be in part due to the
variable levels of tumor-associated non-neoplastic cells
that can be found in different parts of the tumor.58%° Single-
cell RNA sequencing of GBM cells has shown that glioma
cells from the same tumor can correspond to different gli-
oma subtypes, often with one dominating the others.4%5%-61
Single-cell transcriptomics extend previous observations
of mosaic RTK amplification in a small subset of GBM to be

a more common disease characteristic.6%¢" Single-cell RNA
sequencing further has shown cellular hierarchies along
an axis of undifferentiated progenitors to more differenti-
ated cell populations, reminiscent of the hematopoietic
stem cell hierarchy. The balance shifts toward proliferating
progenitors in IDH-wildtype glioma, reflecting the clinically
more aggressive disease course.26 These developmen-
tal and functional hierarchies are associated with dynamic
neural stem cell expression patterns in which stem or pro-
genitor cells may function as units of evolutionary selec-
tion (Fig. 2).

Longitudinal DNA Profiling in Pretreatment and
Posttreatment Tumors

One of the earliest reports on the effects of therapy on the
tumor genomic landscape analyzed a 23-patient cohort of
IDH-mutant lower-grade gliomas treated with temozolo-
mide chemo.% A subset of the recurrent tumors acquired
hundreds of new mutations that bore a characteristic sig-
nature of temozolomide-induced mutagenesis, suggesting
that treatment pressure from an alkylating agent induced
the growth of tumor cells with new mutations.3® These
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hypermutated tumors may be sensitive to immune check-
point inhibitors,?? including programmed death 1 (PD-1)
inhibitors®® and poly-adenosine diphosphate ribose poly-
merase inhibitors.®® However, clinical trial data supporting
these hypotheses have yet to emerge. Another study used
whole-genome and multisector exome sequencing of 23
predominantly IDH-wildtype GBM and matched recurrent
tumors.?* This study showed that some GBM recurrences
carried ancestral p53 driver mutations detectable in the pri-
mary GBM counterparts, suggesting an intrinsic resistance
mechanism. Other recurrences were driven by branched
subclonal mutations not present in the parental primary
GBM. This may imply secondary or extrinsic resistance,
reflecting treatment-induced resistance through DNA
mutagenesis and a distinct evolutionary process (Fig. 2).3*
As in the study of IDH-mutant lower-grade gliomas, a sub-
set of the disease recurrences was characterized by an
accumulation of mutations in association with temozolo-
mide treatment. Notably, this effect was limited to cases
with MGMT promoter methylation. MGMT is a gene in
the DNA repair pathway, and somatic mutations of other
pathway members, such as mutS homolog 2 (MSH2) and
MSHS6, have been identified as drivers of the hypermuta-
tion process.®’ The spatiotemporal evolutionary trajectory
in paired gliomas between initial diagnosis and relapse
was further portrayed via integrative genomic and radio-
logic analyses through whole-exome sequencing (WES) of
38 primary and corresponding recurrent tumors.®® Linear
evolution, reminiscent of intrinsic resistance in which a
recurrent tumor is genetically similar to the initial tumor,
was predominantly observed in recurrent tumors that
relapsed adjacent to the primary site. Branched evolution,
associated with secondary or extrinsic resistance, was
more common in recurrences at distant sites, which were
marked by a substantial genetic divergence in their muta-
tional profile from the initial tumor, with key driver altera-
tions differing in more than 30% of cases. Geographically
separated multifocal tumors and/or long-term recurrent
tumors were seeded by distinct clones, as predicted by an
evolution model defined as multiverse, ie, driven by mul-
tiple subclonal cell populations.*’ In an effort to elucidate
the diverse evolutionary dynamics by which gliomas are
initiated and recur, the clonal evolution of GBM under ther-
apy was assessed from an aggregated analysis of datasets
generated by multiple institutions.®® Systematic review of
the exome sequences from 93 patients revealed highly
branched evolutionary patterns involving a Darwinian pro-
cess of clonal replacement in which a subset of clones with
a selective advantage during a standard treatment regi-
men renders the tumor susceptible to disease progression
(Fig. 2). Mathematical modeling delineated the sequential
order of somatic mutational events that constitute GBM
genome architecture, identifying somatic mutations in
IDH1, phosphatidylinositol-4,5-bisphosphate 3-kinase cata-
lytic subunit alpha (PIK3CA), and ATRX as early events of
tumor progression, whereas PTEN, neurofibromatosis
type 1 (NF1), and EGFR alterations were predicted to occur
at a later stage of the evolution.” Similar observations
have been reported from studies of low-grade gliomas,
demonstrating that the somatic mutations in IDH1, TP53,
and ATRX were frequently early and retained throughout
tumor progression from primary to relapse.'#*

Longitudinal profiling of paired samples continues to
provide deeper insights into the genomic background
of treatment-induced hypermutagenesis. The latter has
potential to increase aggressive clinical behavior and rele-
vance in targeted and immunotherapy.'”#7%7" The impli-
cations of these pilot data and how these insights can be
integrated into clinical practice require further evaluation.
Collectively, longitudinal genomic profiling will be essen-
tial in implementing clinical application toward patient-tai-
lored treatment regimens.

Transcriptional Changes During Glioma
Progression

Unsupervised transcriptome analysis of GBM converged
on 4 expression subtypes, referred to as classical, mesen-
chymal, neural, and proneural, which are associated with
specific genomic abnormalities.'?41572

Transcriptional subtypes of the relatively homogeneous
IDH-mutant and /IDH-mutant 1p/19q-codeleted groups have
been less emphasized in the literature, as these cases usu-
ally carry a proneural signature.’®'> While expression sub-
type classification is a widely used research tool, it has not
been shown to correlate with clinical outcome, and has not
been incorporated in the recent 2016 WHO CNS tumor clas-
sification update. Much is still unknown about how tran-
scriptional subclasses evolve under therapy. A switch from
proneural to mesenchymal expression has been observed
upon disease recurrence and was proposed to be a source
of treatment resistance in GBM relapse,'®7374 but the rele-
vance of this phenomenon in glioma progression remains
ambiguous, particularly considering (i) the increased frac-
tion of microglial/macrophage cells in mesenchymal GBM
that confound subtype characterization®%® and (ii) glioma
neurospheres derived from mesenchymal GBM that are
frequently classified as proneural.’ Deriving an expres-
sion subtype classification on the basis of glioma-intrinsic
genes has maintained the proneural, classical, and mesen-
chymal classes.®® Determining subtypes in a cohort of 91
IDH-wildtype GBM showed subtype switching following
therapy and disease relapse in 45% of the cohort.® These
patterns converged with changes in the microenvironment
but also revealed that NF7 loss results in macrophage/
microglia recruitment. The ability of genomic abnormali-
ties to regulate the tumor microenvironment shows how
tumors act as a system, rather than an aggregation of indi-
vidual cells.

Epigenetic Changes During Glioma Progression

DNA methylation profiling of gliomas has prognostic value
independent of patient age and the pathologic grade of
the tumor.® Evidence suggests that evolutionary selection
can also act on the epigenome, affording cells plasticity
to resist therapy.*® For example, recurrent IDH-mutant
gliomas profiled for mutations and DNA methylation inde-
pendently evolved deregulation of their cell cycle programs
through genetic mutations or epigenetic mechanisms.*®
Nearly all /IDH-mutant gliomas exhibit a characteris-
tic cytosine-phosphate-guanine island hypermethylator
phenotype (G-CIMP), which (i) induces silencing of key
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extracellular matrix and cell migration gene promoters,'®
(ii) mediates alteration of chromosome topography, lead-
ing to oncogene upregulation,’®’® (iii) mediates histone
methylation-related changes in gene expression, and (iv)
may play a role in creating an immunosuppressed micro-
environment.”” While almost all /DH-mutant tumors are
G-CIMP at diagnosis, a longitudinal analysis showed that
34% of cases exhibited demethylation toward G-CIMP-
intermediate or G-CIMP-low DNA methylation at recur-
rence.”® Substantial epigenetic heterogeneity between
tumor samples from the same patient collected at subse-
quent surgeries was also observed in a cohort of 112 pri-
mary mostly non—-G-CIMP GBM patients.”® Characteristic
trends in DNA methylation between primary and relapsed
GBM included a prominent demethylation of gene promot-
ers related to Wnt signaling, which was associated with
worse patient outcome. Moreover, patients whose primary
tumors harbored higher levels of DNA methylation het-
erogeneity showed longer progression-free survival and a
trend toward longer overall survival.”®

Imaging and (Epi)genomics

MRI is noninvasive, with no risk of radiation exposure.
Standard MRI includes precontrast and postcontrast
T1-weighted (T1w) and T2-weighted (T2w)/T2w fluid-
attenuated inversion recovery (T2-FLAIR) imaging assess-
ing tumor location, size, and other features.8® Newer
techniques such as perfusion imaging provide a measure
of tumor vascularization in terms of relative cerebral blood
volume, which correlates with tumor grade.®'82 There is
interest in exploring the relationships between MR findings
such as cerebral blood volume with the biological behavior
of tumors—for example, to determine risk prior to surgery.

In the rapidly growing field called radiogenomics,®
quantitative imaging features can be linked with genomic
profiles, with recent applications in high-grade glioma.8384
A priority of radiogenomics is to identify MRI-based bio-
markers for glioma subtypes such as IDH-mutant versus
wildtype and 1p/19q codeleted versus non-codeleted.
Noninvasive phenotypic assessment provides an early
test to stratify IDH-mutant non-codeleted gliomas and may
offer prognostic information through MRI with the poten-
tial to influence patient outcomes and determine risk prior
to surgery.®5 It may also help in selecting personalized
treatments in clinical trials.®® A detailed global assessment
of the spatial and longitudinal heterogeneity of gliomas is
potentially feasible.®”

Barriers to Progress

The major obstacle for glioma patients is a lack of effective
treatments, which may result from cell-intrinsic resistance
or treatment-resistant glioma cells being favored over treat-
ment-sensitive cells, augmented or attenuated by micro-
environmental influences, including hypoxia and stromal
elements. That therapy has profound effects on tumor
composition is reflected by the temozolomide-induced
hypermutator phenotype.®* As a result, the molecular char-
acteristics of the recurrent tumor differ in significant ways

from those found in the primary tumor.?438TCGA and simi-
lar initiatives elsewhere have established comprehensive
portraits of the interpatient variability of untreated glioma
genomes. Single-cell sequencing and barcoding experi-
ments have demonstrated functional hierarchies providing
important insights into characteristics of the most relevant
cells to target.5263 We are increasingly able to infer the life
history of glioma,? from germline predispositions®8° and
tumor-initiating events such as IDH7 mutation to tumor-
promoting events such as RTK alterations. To improve the
outcomes of patients with gliomas, we need to establish a
thorough understanding of the treatment-induced molecu-
lar and genetic diversity that leads to resistance.

A detailed understanding of the biological diversity
within every tumor following clinical presentation and
disease progression is needed if we are to successfully
understand how treatment affects glioma progression.
This is an essential step toward the integration of precision
therapeutics into clinical decision making, highlighting the
danger in considering treatment options for patients with
recurrent tumors solely on the basis of the molecular ana-
lysis of their treatment-naive tumors. This is particularly
important in the setting of clinical research, which often
recruits patients with recurrent GBM to evaluate drugs
developed on the basis of mechanistic data obtained on
treatment-naive tumors.

Studying the heterogeneity and spatiotemporal evolu-
tion of cancer in general, and particularly in brain cancer,
is challenging. Many tumor samples—and therefore large-
scale collaboration—are needed to achieve meaning-
ful comprehensive results and to capture low-frequency
alterations or subtle therapy-driving processes. Individual
research groups typically do not have the resources to use
a multiplatform analysis of their samples, owing to cost or
the availability of expertise. Published longitudinal datasets
consist of a mixture of different modalities, ranging from
only exomes® or DNA methylation profiles®®7° to a com-
bination of exome sequencing, RNA sequencing, and DNA
copy number profiling,3*%° thwarting meta-analyses based
on cross-publication comparisons. The value of establish-
ing a comprehensive multiplatform reference dataset
quickly has been demonstrated by the success of TCGA,
the International Cancer Genomics Consortium (ICGC), the
Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) Consortium, and other glioma pro-
jects, which have led to a fundamental reclassification of gli-
omas by the WHO'® and are highly cited.810-1290.91 Similarly,
a consortium would be the most effective approach to
assemble the large cohorts of primary and recurrent tumor
pairs needed to identify somatic alterations enriched after
disease progression. Systematizing and standardizing what
we do and how we do it will be essential for change to clini-
cal practice in neuro-oncology. This philosophy is at the
core of the international GLASS Consortium.

The Glioma Longitudinal Analysis
(GLASS) Consortium

Large-scale collaborations are needed to help us under
stand the impact of treatment on evolutionary dynamics
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and thereby develop novel treatments to prevent and over-
come resistance to treatment. GLASS aims to perform com-
prehensive molecular profiling of matched primary and
recurrent glioma specimens from 1500 patients, 500 in each
of the 3 major glioma molecular subtypes. At the time of
writing, the consortium includes investigators from 34 aca-
demic hospitals, universities, and research institutes from
12 countries (see list of participants on the GLASS website,
http://www.glass-consortium.org). By analogy with the
ICGC,% GLASS is structured into country-specific franchises
(GLASS-NL, GLASS-AT, GLASS-AU, GLASS-Korea, etc) led
by local investigators who are invested in the team’s over-
all goal, while taking advantage of country-specific oppor-
tunities. This enables each GLASS branch to have unique
features that allow a deeper analysis of subcohorts, that is,
with additional imaging annotation, parallel characterization
of drug response through xenografting of tumor samples,
autopsies, a specific focus on a glioma subtype, etc, thereby
making them competitive and enabling them to address
non-overlapping aspects of the phenotypic diversity seen
in the clinic. Country-specific branches will be coordinated
to connect with the larger analyses and to drive specific
research topics for both. There are no explicit restrictions on
publishing, and each group is invited to publish their sub-
studies independently. The overall goal is to establish a ref-
erence dataset by pooling samples and aggregate data from
all multiplatform analyses, countries, and substudies, and
to make datasets comparable through coordinated sam-
ple and data processing guidelines. Country franchises are
centrally connected through a number of committees, each
overseeing different aspects of the analysis.

Biospecimen Acquisition and Characterization
Platforms

Biospecimens from gliomas are often snap-frozen or con-
served as formalin-fixed, paraffin-embedded (FFPE) sam-
ples. For genomic and transcriptomic analyses, snap-frozen
material is preferred, while historically FFPE is the com-
mon approach to tissue preservation. Methods for gener-
ating sequencing data from FFPE material are increasingly
improving, with 5%-20% of samples failing quality controls.
Given that samples from multiple timepoints are required
for inclusion into GLASS, patients for whom only FFPE
material is available are twice as likely to not yield sufficient
high-quality DNA. While the increased failure rate means
we will have to include a higher number of samples, we do
not see this as prohibitive and are actively pursuing the use
of FFPE material. RNA extracted from glioma tissue is often
highly degraded, resulting in higher attrition rates,® but
high-quality RNA sequencing data from FFPE samples have
been reported.®® For DNA methylation profiling of FFPE
material, a recent study focusing on primary glioblastoma
reported a high success rate using the reduced representa-
tion bisulfite sequencing assay.”®

While we require the availability of a matching germline
sample (blood or other) for inclusion of DNA sequencing
data into GLASS, cases without a germline match may be
candidates for transcriptome and DNA methylation analy-
sis. Ideally, we aim to generate DNA, RNA, and epigenomic
sequencing data from every tumor. Single-cell analysis

methods require fresh tissue from which individual cells
can be dissociated; this may be considered in the future
as the project evolves or as part of specific subprojects.
Similarly, subsets of the GLASS cohort will be compared
longitudinally by spatial correlation using multisector anal-
ysis (3-6 samples per tumor) to understand whether any
differences between paired tumor samples are the result of
intratumoral heterogeneity or longitudinal heterogeneity.
Where available, these will be correlated with conventional
and novel MR imaging to explore spatiotemporal heteroge-
neity noninvasively. We aim to take current radiogenomic
approaches further, not only to establish the features of
genetic characteristics at first diagnosis, but also in relation
to molecular alterations over time and under the pressure
of standard therapy. Comprehensive genomic sequencing
is needed to identify patterns of disease evolution as well
as the key mutations and chromosomal alterations that
confer resistance to standard radiation, temozolomide,
and novel clinical trial therapies. Sequencing paradigms
and their costs are rapidly evolving, and each method pro-
vides different but complementary information.There is no
consensus on optimal methods. With the accessibility of
30x coverage whole-genome sequencing (WGS) at $1100
per biospecimen, the costs of WGS and WES have become
comparable. The coverage of a typical WES is between
60x and 100x, which enables greater sensitivity in detect-
ing mutations in coding regions, but WES does not inter-
rogate noncoding regions of the genome and is not able
to detect structural variants or noncoding copy number
variants. The comprehensive nature of WGS enables anal-
ysis of evolution and clonality at higher resolution. WGS
and WES combined may provide the optimal window on
the breadth, depth, and allelic fraction of somatic events.
However, where limitations in tissue or resources mandate
a choice of one or the other, the decision will depend on
the purpose of the (sub)project. GLASS franchises with a
focus on clinical relevance may lean toward WES, while
projects aiming to define clonal relationships may opt to
perform WGS.

Targeted sequencing data analysis in the absence of a
matching germline sample is frequently performed in the
clinical setting, and such datasets, which are typically able
to provide mutation calls on 20-400 genes, may therefore
be easily accessible. While GLASS does not intend to pur-
sue generating such datasets, aggregating information
from existing resources may be a viable option to learn or
validate mutations enriched at diagnosis or recurrence.

Clinical Annotation in GLASS

Aggregating clinical annotation across the consortium
will help enable linkage of genotype with clinical and mor-
phological phenotype in primary and recurrent settings.
The number of clinical annotation elements will be differ-
ent in each country with minimal requirements (Box 1).
The GLASS clinical annotation committee will standardize
clinical and imaging data collection for prospective stud-
ies and oversee collection of the clinical and imaging data
from patients whose profiles are already included in the
composite dataset. Each individual franchise will make
data accessible in a comprehensible way by integrating
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Box 1. GLASS aims to collect genome-wide DNA, RNA, and epigenomic sequencing data on 1500 glioma tissues and
matched recurrent tissues. To be included in this core set of cases, tissues and germline reference are required, with
a minimal clinical dataset. Submission of standard cases without a germline source or without complete molecular
profiling is encouraged. To generate a comprehensive data resource for the molecular study of glioma recurrence,
cases with molecular data on matched primary/recurrent specimens will be collected into an archive.

¥ All data should be provided in compliance with HIPAA regulations, ie, dates as intervals.

CORE CASE REQUIREMENTS

* Primary diagnosis of glioma (WHO Grade II-1V) with frozen/FFPE tumor specimen
e Matched recurrent diagnosis of glioma (WHO Grade II-1V) with frozen/FFPE tumor specimen

e Matched germline reference specimen
OR

e Global DNA sequencing (WES or WGS) on matched glioma pairs (Grade II-IV primary) and
germline reference specimen and RNA sequence and DNA methylation on matched glioma

pairs (Grade II-1V primary)
WITH

¢ Clinical data: age at diagnosis, year of diagnosis, time from diagnosis to recurrence, treatment

history between diagnoses*
STANDARD CASE REQUIREMENTS

e Primary diagnosis of glioma (WHO Grade II-IV) with frozen/FFPE tumor specimen
e Matched recurrent diagnosis of glioma (WHO Grade II-IV) with frozen/FFPE tumor specimen

OR

e Global DNA sequencing (WES or WGS) on matched glioma pairs (Grade II-IV primary) and
germline reference specimen and/or RNA sequence and/or DNA methylation on matched

glioma pairs (Grade II-IV primary)
WITH

* Clinical data: age at diagnosis, year of diagnosis, time from diagnosis to recurrence,

treatment history between diagnoses*

e |IDH mutation and 1p/19q co-deletion status if DNA sequence is not available

ARCHIVE CASE REQUIREMENTS

e Molecular data on primary/recurrent matched glioma specimens

WITH

» Clinical data: age at diagnosis, year of diagnosis, time from diagnosis to recurrence*

clinical, imaging, and molecular parameters to explore
correlation with relapse data. Currently, radiology and
imaging are part of the clinical annotation committee. By
mapping imaging features in a voxel-wise manner and cor-
relating these spatially with molecular alterations obtained
from different parts of the tumor, we aim to assess the
entire tumor and to determine intratumoral heterogeneity.

Data Infrastructure

A designated committee will maintain standardized data
processing, data management, and data sharing. A charac-
teristic of the GLASS Consortium is that data will be gen-
erated at multiple institutions distributed over multiple
countries. As the regulations pertaining to ethical use of
sequencing datasets are continuously evolving, GLASS will
follow the example set by ICGC to perform decentralized
data analysis to avoid cross-border exchange of patient-
sensitive raw sequencing data. Batch effects may arise from
varying library preparations, analyzing fresh-frozen versus
FFPE tissue, sequencing platforms, laboratories, etc. Batch
effects are most perturbing when performing unsupervised

analysis, such as unsupervised clustering from expression
or DNA methylation profiles. Adequately correcting for
these items will be necessary to obtain usable data.

The GLASS data infrastructure committee has developed
Docker software images that are shared among participating
institutions and that enable analysis uniformity. Like a ship-
ping container, a Docker image packages one or more soft-
ware tools to establish a workflow resembling an executable
application. Comparable to platform-independent Java soft-
ware, the ready-to-run Docker images are independent of
the local computational environment. Along the same lines,
comparable Singularity images have been prepared. The
GLASS participants run these images locally, which initial-
izes a per-sample-per-analysis Docker/Singularity container,
resulting in data analysis using an identical software envir-
onment and run parameters. Docker/Singularity images and
documentation are available for download through http:/
docker.glass-consortium.org.

The data infrastructure committee will also coordinate
mechanisms for dissemination of results, so as to widely
share datasets with the community. We may explore mech-
anisms such as the Genomic Data Commons, or similar, to
align our efforts with other molecular profiling studies.
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Final Remarks and Perspectives

Survival and quality of life for patients with diffuse glio-
mas remain dismal with standard treatments. Diffuse
glioma is a fatal disease with an enormous societal bur-
den as a result of the short survival following high-grade
disease and the young age at diagnosis of lower-grade
disease. This not only affects patients in the prime of their
lives, but also puts enormous burden on their immediate
entourage, as they need extensive supportive care and
navigation through a complicated medical landscape,
and experience difficulties with medical costs and insur-
ance. While cures of diffuse gliomas remain elusive, our
patients demand better therapies. With no substantive
impact of molecular medicine to date, in practice treat-
ments remain “one size fits all” The GLASS Consortium
aims to improve clinical outcomes by establishing a
broadly useful dataset that will provide pivotal new
insights into the mechanisms used by gliomas to defy
therapeutic challenges.

Importantly, GLASS is also an opportunity for the
exchange of knowledge among an international group of
collaborators to ultimately build smarter clinical trials and
develop therapies that will extend survival and improve the
quality of life of people with diffuse gliomas. GLASS is well
positioned to demonstrate the value of well-coordinated
collaborative efforts. To that end, new investigators are
invited to join the consortium, where the major criteria for
participation are the ability to offer datasets of longitudi-
nally profiled glioma patients or the availability of suitable
tissue samples.

In summary, through the GLASS Consortium, we aspire
to continue the immeasurable success of TCGA while
increasing the focus on making a difference to patients and
their families.
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