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Abstract

Thermodynamic systems admit multiple equivalent descriptions related by transformations
that preserve their fundamental structure. This work focuses on exact isohomogeneous
transformations (EITs), a class of mappings that keep fixed the set of independent variables
of the thermodynamic potential, while preserving both the original homogeneity and the
validity of a first law. Our investigation explores EITs within the extended Iyer–Wald
formalism for theories containing free parameters (e.g., the cosmological constant). EITs
provide a unifying framework for reconciling the diverse formulations of Kerr-anti de Sitter
(KadS) thermodynamics found in the literature. While the Iyer–Wald formalism is a pow-
erful tool for deriving first laws for black holes, it typically yields a non-integrable mass
variation that prevents its identification as a proper thermodynamic potential. To address
this issue, we investigate an extended Iyer–Wald formalism where mass and thermody-
namic volume become gauge dependent. Within this framework, we identify the gauge
choices and Killing vector normalizations that are compatible with EITs, ensuring consistent
first laws. As a key application, we demonstrate how conventional KadS thermodynamics
emerges as a special case of our generalized approach.

Keywords: black hole thermodynamics; Iyer–Wald formalism; Kerr-anti de Sitter; thermodynamic
volume; contact geometry

1. Introduction
It is well established that a physical system can be described by multiple thermo-

dynamic potentials, each corresponding to a particular choice of independent variables.
These equivalent descriptions are related through specific maps, such as Legendre trans-
formations, which exchange roles of extensive and intensive quantities, while preserving
thermodynamic consistency. A deeper geometric perspective arises from contact geom-
etry [1], where the thermodynamic phase space is formulated as a contact manifold. In
this framework, the equivalence between different thermodynamic potentials is naturally
encoded through contactomorphisms, transformations that preserve the underlying contact
structure. This approach not only generalizes classical Legendre duality but also provides
a unified mathematical foundation for thermodynamic covariance.

In black-hole thermodynamics, the Iyer–Wald formalism [2,3] provides a power-
ful framework for deriving first laws in arbitrary diffeomorphism-invariant gravita-
tional theories. However, this approach typically yields a variation of the mass (δM)
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that is non-integrable [4], preventing its identification as the differential of a proper
thermodynamic potential.

Recent work on Kerr-anti de Sitter (KadS) spacetime showed that choosing a Killing
field that considers the angular velocity of the black hole with respect to infinity results in a
non-integrable mass variation [5]. However, an exact differential can still be extracted from
this selection. The procedure introduces an additional term that explains the difference
between thermodynamic and geometric volumes [5]. But there is a drawback. This method
relies, to some extent, on prior knowledge of the expected first law, as the resulting δM
should (ideally) correspond to the variation of a proper thermodynamic potential from
the outset.

In the present work, we investigate an extension of the Iyer–Wald formalism for
gravitational theories with free parameters, such as the cosmological constant. In our
framework, both the mass and the thermodynamic volume of the black hole are gauge
dependent. More precisely, these quantities are defined through the potential volume, a
concept commonly employed in KadS thermodynamics [6]. The fact that this volume is
gauge dependent was noted [7] but its consequences were not fully exploited. This gauge
dependence supplements the usual freedom in the normalization of the Killing generator
of the event horizon.

Additionally, we show that thermodynamic potentials obtained via Legendre trans-
formations compose a particular subset of a broader class of transformations, which we
have defined as exact isohomogeneous transformations (EITs) [8]. These mappings act
on thermodynamic representations preserving (i) the set of independent variables of the
original potential, (ii) homogeneity, and (iii) the validity of the first law.

We have demonstrated [8] that a notable application of EITs is in providing a unifying
framework to understand the different thermodynamic descriptions of KadS black holes
found in the literature [9–11]. In the current study, our goal is to systematically identify
the gauge transformations, and the corresponding transformations of the Killing vector,
that are compatible to the EITs, thereby ensuring consistent first laws of thermodynamics
through the extended Iyer–Wald formalism.

This paper is organized as follows. In Section 2, the general formalism for generating
different thermodynamic descriptions is presented. Isohomogeneous transformations are
introduced, with special emphasis on the so-called exact ones and how they are formalized
in the context of contact geometry. In Section 3, the gauge-dependent extension of the
Iyer–Wald formalism is discussed. This framework is combined with EITs to generate
integrable first laws in Section 4, and it is applied to Kerr-anti de Sitter black holes in
Section 5. Final comments are presented in Section 6. Additionally, Appendix A provides
an overview of contact manifolds, Appendix B briefly reviews nonexact isohomogeneous
transformations, and Appendix C expands a discussion on potential and vector volumes.

2. Generating Thermodynamic Descriptions
2.1. Isohomogeneous Transformations

The thermodynamic description of a system is specified by an exact 1-form, whose inte-
gration is usually called a thermodynamic potential. The symmetry of this representation is
encoded in the homogeneity of this potential. Formal setups where thermodynamic theories
can be established are the symplectic [12] and the contact [1] geometries. These frameworks
allow the connection between thermodynamics and other physical theories [13].

As the dynamics generated by a symplectic manifold are invariant under canonical
transformations (symplectomorphisms), submanifolds describing the equilibrium states of
a thermodynamic system are invariant under the so-called contactomorphisms (i.e., contact
symmetries). Well-known examples of contactomorphisms are the Legendre transforma-
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tions, which relate different thermodynamic potentials (internal energy, enthalpy, etc.). A
broader type of contactomorphism is given by the exact isohomogeneous transformations,
which we introduced in [8].

Given a thermodynamic potential M0 satisfying a first law and an Euler relation,

dM0 = T0 dS + ∑
i=2

Yi
0 dXi ,

rM0 = α1ST0 + α2X2Y2
0 + α3X3Y3

0 + · · · ,
(1)

we define an isohomogeneous transformation via a pair of functions (g, h) as follows:

M1 ≡ gM0 , T1 ≡ gT0 + h
∂g
∂S

, Yi
1 ≡ gYi

0 + h
∂g
∂Xi

. (2)

In Equation (2), h is a homogeneous function of the same degree r as M0, and g is a
homogeneous function of degree zero:

rh = α1S
∂h
∂S

+ α2X2
∂h

∂X2
+ α3X3

∂h
∂X3

+ · · · ,

α1S
∂g
∂S

+ α2X2
∂g

∂X2
+ α3X3

∂g
∂X3

+ · · · = 0 .
(3)

The new function M1 (which is also homogeneous of degree r) satisfies the relations

T1 dS + ∑
i=2

Yi
1 dXi = dM1 + (h − M0)dg ,

rM1 = α1ST1 + α2X2Y2
1 + α3X3Y3

1 + · · · .
(4)

From Equation (4), it is apparent that M1 is an exact differential (i.e., defines a new thermo-
dynamic potential) if and only if g is constant or h = M0. The latter defines what we term
exact isohomogeneous transformations. We emphasize that, despite the homogeneity of
M1, for a nonexact homogeneous transformation, the second relation in Equation (4) does
not represent an Euler relation. In black-hole thermodynamics, Equation (4) can usually be
identified with a Smarr formula, derived from generalized Komar integrals.

The link between dimensional analysis and homogeneity often supports the interpre-
tation of the Smarr relation as the geometric counterpart of the Euler relation. This type
of scaling argument is employed in [6] to justify treating the cosmological constant as a
pressure term. However, this identification should be used with caution. While a purely
geometric approach for black-hole thermodynamics may lead to the second relation in
Equation (4) in some particular cases, the isohomogeneous transformations ensure that
this is an Euler relation for M1 only when it is obtained from a proper thermodynamic
description via Equation (2). Otherwise, the set (M1, T1, Yi

1) does not, in general, provide a
valid thermodynamic representation. An important example is the Smarr formula for KadS
which employs Hawking’s results [11] and does not lead to a first law [10]. Additional
comments on this topic can be found in Appendix B. Therefore, the distinction between the
Smarr formula and the Euler relation is a central point in the construction of an adequate
thermodynamic description [8].

In what follows, we examine EITs in more detail, emphasizing their connection to
contactomorphisms on contact manifolds, and show how several well-known construc-
tions from standard thermodynamics arise as special cases of such transformations. In
Appendix B, we also explore nonexact transformations, which can be employed to restore
the integrability of a first law in certain scenarios [8].
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2.2. Exact Isohomogeneous Transformations as Contactomorphisms

Exact isohomogeneous transformations allow the construction of equivalent thermo-
dynamic descriptions. In the context of black-hole thermodynamics, these transformations
enable the connection of various formulations found in the literature [8]. However, the for-
mal structure of these transformations, as well as their relation to those used in conventional
thermodynamics, have not yet been fully explored. This is the goal of the present section.

Appendix A provides a concise introduction to contact geometry, including rele-
vant definitions and general results used in the present work. Given a contact manifold
(T , η), with contact 1-form η, thermodynamic phase space T , and canonical coordinates
(M1, Xi, Yi

1) for an EIT (exact isohomogeneous transformation), we have, from Equation (2),
with h = M0, and Equation (A5), the following:

η = dM1 − ∑
i=1

Yi
1dXi = g

[
dM0 − ∑

i=1
Yi

0dXi

]
= gα , (5)

where we identify X1 = S and Y1
0 = T. Thus, as an isomorphism EIT : T → T in the

thermodynamic phase space T , we have:

(EIT)∗α = gα , (6)

which shows that an EIT is a contactomorphism. Moreover, because α and η share the same
kernel, they yield equivalent thermodynamic descriptions. Since g ̸= 1, this contactomor-
phism is not strict.

In standard thermodynamics, where we work with intensive and extensive variables
(especially with temperature, which is intensive, i.e., homogeneous of degree zero), we can
choose g = 1/T0. In this case,

η =
1
T0

dM0 − dS − ∑
i=2

Yi
0

T0
dXi . (7)

The associated Reeb vector field (A4) is

ξ = − ∂

∂S
, (8)

corresponding to the entropy representation. Since T0 is intensive, this representation is
equivalent to the EIT with h = M0 and g = 1/T0. Nevertheless, they define different
thermodynamic descriptions, which differ in the choice of variables used to describe the
system.1 In the map EIT : T → T , the new Reeb vector is given by

ξ =
∂

∂M1
. (9)

If T0 is not intensive, the thermodynamic descriptions are not related, since the entropy
and energy representations differ in their homogeneity degree.

Certain special cases of EITs are closely related to standard Legendre transformations.
These represent EITs given by

h = M0 , g = gL ≡ 1 − ∑
k∈I

XkYk
0

M0
, (10)
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where I is an arbitrary set of indices. Under this transformation,

dM1 = ∑
i=1

Yi
1dXi = ∑

i/∈I
Yi

0dXi − ∑
k∈I

XkdYk
0 , (11)

with

Yi
1 = gLYi

0 + M0
∂gL
∂Xi

= Yi
0 − ∑

k∈I
Xk

∂Yk
0

∂Xi
− ∑

k∈I
Yk

0 δi
k . (12)

The description induced by gL admits two equivalent forms: one using original variables
{XK} and new conjugates

{
Yi

1
}

, and another using the original {Yi
0} but with the new

variables {Xk → Yk
0} for k ∈ I. The latter is the traditional thermodynamic representation

obtained by Legendre transformations, while the former is the EIT representation given by
gL. They describe the same thermodynamic potential (M1 = gL M0) in different coordinates.
Although equivalent, the EIT defines a thermodynamic description that is structurally
distinct from the Legendre transformation due to the different choice of independent
variables. In particular, the latter is a strict contactomorphism [1], while the EIT (5) is not.

A special case is the total Legendre transformation, that is, when I includes all inde-
pendent variables. In this case,

Yi
1 = − ∑

k=1
Xk

∂Yk
0

∂Xi
= − ∑

k=1
Xkgik , gik =

∂Yk
0

∂Xi
=

∂2M0

∂Xi∂Xk
, (13)

M1 = M0 − ∑
k=1

Yk
0 Xk = − ∑

k=1

βk
r

Yk
0 Xk , βk = r − αk , (14)

dM1 = ∑
k=1

Yk
1 dXk = − ∑

k=1
XkdYk

0 . (15)

In standard thermodynamics with extensive variables (r = αi = 1), we find M1 = 0, and
the familiar Gibbs–Duhem relation follows:

r = αi = 1 =⇒ ∑
k=1

XkdYk
0 = 0 . (16)

However, if any of the homogeneity degrees are nonstandard (as in the case of black-hole
thermodynamics [14,15]), M1 does not vanish and can be interpreted as describing the
system in the dual space of the cotangent space. For instance, in the thermodynamic
description of KadS black holes where the cosmological constant is not included in the
phase space, the function M1 obtained via a total Legendre transformation represents
the grand thermodynamic potential, which plays a central role in the Euclidean action
formalism [16].

The matrix gik in Equation (13) is known as the Weinhold metric [17]. In this case, the
EIT can be interpreted as a musical isomorphism (an index-raising operation). In addition
to endowing the contact manifold with a metric structure, the introduction of gik connects
the contactomorphism to a gauge transformation [1].

3. Gauge Freedom in Extended Iyer–Wald Formalism
3.1. General Setup

The Iyer–Wald formalism provides a general framework for deriving the first law of
black hole thermodynamics in arbitrary diffeomorphism-invariant gravitational theories [2].
In this work, we explore how the gauge freedom generated by the function g in an EIT (5)
is related to the gauge freedom in the IW formalism.
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Given the Lagrangian density L and the volume form ⋆1, the variation of L = L ⋆ 1
with respect to a set of dynamical fields ϕ, which include the metric, is conveniently
written as

δL = E(ϕ)δϕ + dΘ(ϕ, δϕ) , (17)

with equations of motion E(ϕ), and total derivative dΘ(ϕ, δϕ). However, from a thermo-
dynamic point of view, the first law obtained from the traditional Iyer–Wald formalism
can pose two problems. First, there is the (already noted) possible failure of integrability.
Moreover, for gravitational theories containing free parameters (such as a cosmological
constant), the resulting equations of state are generally non-homogeneous. To deal with
this issue, one approach is to treat the parameters in the Lagrangian L as thermodynamic
variables, allowing them to vary [18]. In this section, we show how this parametric variation
can induce changes in the Noether–Wald charges within a gauge-dependent extension of
the Iyer–Wald formalism.

If the Lagrangian also depends on a set of parameters p(α) that are allowed to vary, we
can introduce a new variation δ̂:

δ̂L ≡ ∂L
∂p(α)

δp(α) . (18)

The generalized variation of the Lagrangian is then

δL = E(ϕ)δϕ + dΘ(ϕ, δϕ) +
∂L

∂p(α)
δp(α) . (19)

With the contribution of δ̂, the infinitesimal Noether–Wald charge,

δ̄QK − ıKΘ(ϕ, δϕ) , (20)

satisfies the extended Iyer–Wald relation

d
[
δ̄QK − ıKΘ(ϕ, δϕ)

]
= −ıK

∂L
∂p(α)

δp(α) . (21)

In Equation (21), K is a Killing vector, δ̄ denotes a variation keeping K fixed, ıK is the interior
product, and QK is a Noether charge relative (on-shell) to the exact differential form

JK ≡ Θ(ϕ,LKϕ)− ıKL , (22)

with Lie derivative LK.
An important case occurs when there is a set of forms

{
ω

(α)
K

}
, labeled by the index

α, satisfying

ıK
∂L

∂p(α)
= dω

(α)
K =⇒ ıK

∂L
∂p(α)

δp(α) = d
[
ω

(α)
K δp(α)

]
. (23)

In this scenario,2 we can redefine the infinitesimal Noether–Wald charge (20) as

δ̄QK − ıKΘ + δp(α)ω
(α)
K , (24)

so that it is again conserved:

d
[
δ̄QK − ıKΘ + δp(α)ω

(α)
K

]
= 0 . (25)
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We have reached an important point. The differential forms ω
(α)
K introduce a gauge

freedom into the formalism, as we are free to add closed forms λ(α):

ω
(α)
K −→ ω

(α)
K + λ(α) . (26)

We seek to analyze how this gauge freedom affects the thermodynamic description of
the system.

3.2. Rotating and Stationary Black Holes with a Cosmological Constant

We examine a concrete physical system consisting of a stationary, rotating black hole
with a non-vanishing cosmological constant Λ. We assume that the unique free parameter
in the theory is Λ. Since the black hole is rotating and stationary, there is a Killing field
normal to the horizon with the form

K = ξ + Ωφ , (27)

where ξ and φ are the generators of time and angular isometries, and Ω is the angular
velocity of the black hole. In this setup, Equation (21) becomes

d[δ̄QK − ıKΘ(ϕ, δϕ)] =
δΛ
8π

ıK(⋆1) . (28)

The vector volume with respect to the Killing field K in Equation (27) is defined as [19]

VK =
∫

Σ
ıK(⋆1) . (29)

In Equation (29), the hypersurface Σ is bounded by two 2-surfaces: the horizon cross-
section σH and a spacelike 2-surface σ. Because ıφ(⋆1) vanishes on Σ, the vector volume VK

reduces to
VK =

∫
Σ

ıK(⋆1) =
∫

Σ
ıξ(⋆1) = Vξ . (30)

However, since ξ is a Killing field,

d
[
ıξ(⋆1)

]
= ∇µξµ ⋆ 1 = 0 . (31)

Therefore, locally, from Poincaré’s lemma, there is a differential form ⋆ω such that

ıξ(⋆1) = d ⋆ ω , (32)

where the Hodge dual of ω is used for later convenience. Hence, Equation (28) becomes

d
[
δ̄QK − ıKΘ(ϕ, δϕ) + δP ⋆ ω

]
= 0 , P ≡ − Λ

8π
. (33)

In Equation (33), we have defined the vacuum pressure P in terms of the cosmological
constant Λ in the standard way.

In this extended Iyer–Wald formalism, the variation of the black-hole energy is

δM ≡
∫

σ

[
δ̄Qξ − ıξΘ(ϕ, δϕ) + δP ⋆ ω

]
, (34)

where σ is a 2-dimensional surface surrounding the black hole (for example, using
Boyer–Lindquist-type coordinates, σ = {(t0, r0, θ, ϕ)}, with t0 and r0 constants, and r0

sufficiently large).
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For σ = σH , the potential volume of the black hole [6] is given by

V =
∫

σH

⋆ω . (35)

Also, the variation of angular momentum does not change in this extended formalism:

δJ = −
∫

σ

[
δ̄Qφ − ıφΘ(ϕ, δϕ)

]
= −

∫
σ

δ̄Qφ . (36)

The second equality in Equation (36) follows from the vanishing pullback of ıφΘ on σ.
The first law of thermodynamics can be structured through the integral relation:∫

σ

[
δ̄QK − ıKΘ(ϕ, δϕ) + δP ⋆ ω

]
= δM − ΩδJ . (37)

Considering the gauge δξµ = 0 = δφµ [20], and evaluating the left-hand side of
expression (37) with σ = σH , we obtain

∫
σH

[
δ̄QK + δP ⋆ ω

]
= δ

(
κA
8π

)
+ JδΩ + VδP ,

∫
σH

ıKΘ(ϕ, δϕ) =
A

8π
δκ + JδΩ , (38)

where A is the area of σH and κ is the surface gravity relative to K. Stokes’ theorem allows
one to combine these results as

δM =
κ

2π
δ

(
A
4

)
+ ΩδJ + VδP . (39)

An important point to consider is the issue of integrability mentioned earlier. In
particular, the variation of the new parameters introduces an additional complication in
the integrability conditions of Equation (39). This can be seen, for example, in [5], where
the mass variation is non-integrable, and a total variation is then extracted from the non-
integrable result, which is interpreted as the actual variation of the black-hole mass. The
additional term from the non-integrable factor gives rise to the well-known difference
between the thermodynamic and geometric volumes of KadS black holes [21–23].

4. Gauge Transformation in Extended Black-Hole Thermodynamics
We will develop a systematic procedure to derive an integrable first law through

gauge-dependent redefinitions of δM and V, where integrability is ensured by appropriate
gauge choices. Since exact isohomogeneous transformations naturally generate distinct
first-law formulations, we will translate this mechanism into the geometric framework
of the extended Iyer–Wald formalism. This approach eliminates the need for ad hoc
modifications to achieve integrability [5,9].

The gauge freedom in Equation (26) makes δM and V ambiguous until a specific
gauge is chosen. As noted in [7,23] and developed in [24], the best that can be done is to
fix this gauge so that it reproduces a desired value of M, which itself must be determined
independently. We will show that, through a systematic gauge-fixing procedure, it is
possible to guarantee the integrability of δM and, thus, to transform Equation (39) into a
proper first law of thermodynamics.

More precisely, exact isohomogeneous transformations provide a method to derive
alternative thermodynamic descriptions, starting from an initial formulation (labeled 0)
to a new representation (labeled 1). In this section, we establish how to implement this
transformation within the extended Iyer–Wald formalism through (i) a modification of the
Killing field normalization, and (ii) a gauge transformation of the potential volume.
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Let the Killing field K0 generate a proper first law within the extended Iyer–Wald
formalism, as

dM0 =
κ0

2π
d
(

A
4

)
+ Ω0dJ + V0dP , (40)

where we replace δ with d for explicit exactness of the differential (i.e., explicit integrability).
Consider the following transformation on the Killing field:

K0 = ξ0 + Ω0 φ −→ aK0 = ξ1 + Ω1 φ ≡ K1 (41)

where
ξ1 ≡ aξ0 + bφ0 , Ω1 ≡ aΩ0 − b . (42)

The quantities a and b are scalars in the spacetime coordinates, to be fixed as the analysis
proceeds, and K1 is fixed with respect to δ̄. The extended Iyer–Wald formalism for the
transformed Killing field is∫

σ

[
δ̄QK1

− ıK1 Θ(ϕ, δϕ) + δP ⋆ ω1

]
= δM1 − Ω1δJ , (43)

where δM1 and V1 are defined as

δM1 ≡
∫

σ

[
δ̄Qξ1

− ıξ1 Θ(ϕ, δϕ) + δP ⋆ ω1

]
, V1 ≡

∫
σH

⋆ω1 . (44)

Still working in the gauge3 δξ
µ
0 = 0 = δφµ, the following integrals are derived:

∫
σH

[
δ̄QK1

+ δP ⋆ ω1

]
= aδ

(
κ0 A
8π

)
+ aJδ(Ω0) + V1δP , (45)

∫
σH

ıK1 Θ(ϕ, δϕ) =
1

8π
aAδκ0 + aJδΩ0 . (46)

After straightforward simplifications using the surface gravity κ1 = aκ0 associated with the
Killing field K1, we obtain

δM1 =
κ1

2π
δ

(
A
4

)
+ Ω1δJ + V1δP . (47)

The exact isohomogeneous transformations h = M0 in Equation (2) ensure thermodynamic
consistency. That is, if the original description satisfies a first law, the transformed quantities
will also obey a first law under the mapping

M1 = gM0 , T1 = gT0 + M0
∂g
∂S

, Ω1 = gΩ0 + M0
∂g
∂J

, V1 = gV0 + M0
∂g
∂P

, (48)

where g = g(S, J, P) is a homogeneous function of degree zero.
Furthermore, requiring the temperature to be proportional to the surface gravity

determines a uniquely as

a = g +
M0

T0

∂g
∂S

. (49)

Given this expression for a and the transformed angular velocity Ω1 from Equation (48),
the parameter b is consequently fixed to

b = M0

(
Ω0

T0

∂g
∂S

− ∂g
∂J

)
. (50)
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However, the determination of a and b alone is insufficient to fix the volume V.
While the rescaling K0 → aK0 induces a proportional transformation on ω0, the complete
determination of ω1 requires additional gauge fixing. That is, the full transformation on ω0

must include a gauge transformation:

⋆ω0 −→ a ⋆ ω0 + ⋆λ ≡ ⋆ω1 . (51)

Nevertheless, we can determine λ such that V1 in Equation (48) is obtained from the
integration of ω1. More precisely,

V1 =
∫

σH

(a ⋆ ω0 + ⋆λ) =

(
g +

M0

T0

∂g
∂S

)
V0 +

∫
σH

⋆λ , (52)

which constrains λ to satisfy

∫
σH

⋆λ = M0

(
∂g
∂P

− V0

T0

∂g
∂S

)
. (53)

To determine λ explicitly, we consider that the original description has a M0 which is
a generalized Komar energy.4 In coordinate form, these quantities are expressed as

M0 = − 1
8π

∫
σ
(∇µξν

0 + Λω
µν
0 )dσµν , V0 = −1

2

∫
σH

ω
µν
0 dσµν , ∇µω

µν
0 = ξν

0 , (54)

where dσµν is the oriented surface element, and the following conservation equation for
Killing vectors holds in vacuum:

∇µ(∇µξν
0 + Λω

µν
0 ) = 0 , dσµν =

√−g
2

ϵ̃µναβdxα ∧ dxβ . (55)

In Equation (55), ϵ̃µναβ represents the Levi–Civita symbol. Therefore, from Equation (53),
we fix λ with the coordinate expression

λµν =
1

4π

(
∂g
∂P

− V0

T0

∂g
∂S

)
(∇µξν

0 + Λω
µν
0 ) , λ ≡ −1

2
λµνdxµ ∧ dxν ,

⋆ λ = −1
2

λµνdσµν .
(56)

Furthermore, from Equation (55) (which implies ⋆d ⋆ λ = 0), we derive the closure condi-
tion for ⋆λ : d⋆λ = 0.

We summarize the central result of this section. We have established that exact
isohomogeneous transformations admit a geometric realization within the extended Iyer–
Wald formalism. This implementation involves two key components:

• A transformation of the Killing field [Equation (41)];
• A gauge transformation of the potential [Equation (51)].

The parameters a and b and the closed form ⋆λ are given by Equations (49), (50), and (53).
This construction guarantees that we can replace the operator δ with d in Equation (47).

Furthermore, the additional gauge freedom in our construction allows the thermo-
dynamic description to naturally incorporate a temperature proportional to the surface
gravity [see Equation (49)]. This requirement was relaxed in [8]. In the next section, we
demonstrate that this novel framework has advantages over the implementation of the
Iyer–Wald formalism as described in [5,9].
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5. The Gauge of the Usual Kerr-Anti de Sitter Thermodynamics
As a key application, we demonstrate how conventional Kerr-anti de Sitter thermody-

namics emerges as a special case of our generalized approach. The four-dimensional KadS
spacetime is characterized by a mass parameter m, a rotation parameter a, and a negative
cosmological constant Λ, describing an asymptotically anti-de Sitter rotating black hole.
The line element, written in terms of the Boyer–Lindquist coordinates (t, r, θ, ϕ), is

ds2 = −∆r

ρ2

(
dt − a sin2 θ dϕ

Ξ

)2

+
∆θ sin2 θ

ρ2

[
a dt −

(
r2 + a2)dϕ

Ξ

]2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 ,

(57)

where

∆r ≡
L2 + r2

L2

(
r2 + a2

)
− 2mr , ∆θ ≡ 1 − a2

L2 cos2 θ ,

ρ2 ≡ r2 + a2 cos2 θ , Ξ ≡ 1 − a2

L2 , L2 ≡ − 3
Λ

.
(58)

The Lorentzian signature of the metric requires Ξ > 0 for the validity of the (t, r, θ, ϕ)

coordinate chart.
In a thermodynamic framework, it is useful to replace the set of parameters {(m, a, Λ)}

by the set of thermodynamic variables {(S, J, P)},

S =
A
4

=
π
(
r2
+ + a2)

Ξ
, J =

am
Ξ2 , P =

3
8πL2 , m =

(
r2
+ + a2)(L2 + r2

+

)
2r+L2 , (59)

with r+ denoting the largest positive zero of the function ∆r (the position of the
outer horizon).

An initial thermodynamic description of KadS black holes was proposed by Hawking [11].
This development has a clear geometric interpretation in terms of generalized Komar
integrals constructed from the Killing field K:

K = ∂t + ΩH∂ϕ , (60)

where ΩH is the scalar that ensures the null normalization of K on the horizon. For this
choice, the extended Iyer–Wald formalism yields a variational relation

δMH = THδS + ΩHδJ + VHδP , (61)

with

MH ≡ m
Ξ

, TH ≡
(

L2 + 3r2
+

)
r2
+ − a2(L2 − r2

+

)
4πL2r+

(
r2
+ + a2

) ,

ΩH ≡ aΞ
a2 + r2

+

, VH ≡ 4π

3
r+(r2

+ + a2)

Ξ
.

(62)

However, it was noticed in [10] that δMH is nonintegrable.5 Hence, Hawking’s relation (61)
does not correspond to a proper first law.

Let us apply our approach to establish the gauge transformation in a concrete scenario.
Since exact isohomogeneous transformations require a well-defined thermodynamic repre-
sentation to generate new descriptions, Equations (60)–(62) cannot serve as our starting
point. However, a consistent version of Hawking’s approach can be constructed using
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nonexact homogeneous transformations, derived via the procedure in Appendix B. In this
framework, Equation (60) is replaced by

KA ≡ ∂t√
Ξ
+

ΩH√
Ξ

∂ϕ . (63)

The index A refers to “alternative thermodynamic theory (ATT)” for KadS, following the
nomenclature introduced in [8]. As a result of the extended Iyer–Wald formalism, the
variational equation of Equation (39) is a proper first law,

dMA = TAdS + ΩAdJ + VAdP , (64)

where the ATT quantities are defined as

MA ≡ MH√
Ξ

, TA ≡ TH√
Ξ

, ΩA ≡ ΩH√
Ξ

, VA ≡ VH√
Ξ

, (65)

and the Killing potential is implicitly given by

VA =
∫

σH

ωA . (66)

In Appendix C a proof that this ωA exists is presented.
From the ATT, new thermodynamic representations can be obtained for KadS from

the EITs, using the procedure given in the previous section. This results in Equation (48) for
M0 = MA, along with an arbitrary intensive function g = g(S, J, P). Among these infinite
possibilities, a more usual (and fairly explored) thermodynamic description of KadS black
holes [25] can be obtained using the following exact isohomogeneous transformation from
the ATT:

(g, h) =
(

1√
Ξ

, MA

)
, Ξ(J, S, P) =

(
1 +

8π

3
J2P
M2

A

)−1

. (67)

This is referred to as the “usual thermodynamic theory (UTT)” in [8] and denoted here
by the index U. With the development presented in the previous section, we see that
this transformation has a geometric counterpart, which is implemented in the extended
Iyer–Wald formalism.

Combining Equation (41) with Equations (49), (50), (63), and (67), we derive the
transformed Killing field:6

KA −→ KU ≡
(

∂t −
a

L2 ∂ϕ

)
+
(

ΩH +
a

L2

)
∂ϕ . (68)

We also derive a gauge transformation, from Equations (51), (53) and (56), expressed as

ω
µν
A −→ ω

µν
U =

√
Ξω

µν
A + λµν , λµν =

a2

3
√

Ξ

(
∇µξν

A + Λω
µν
A

)
, ξA ≡ ∂t√

Ξ
. (69)

Following the extended Iyer–Wald formalism, the Killing field and gauge transforma-
tions generate the first law given by

dMU = TUdS + ΩUdJ + VUdP , (70)

where the UTT quantities are

MU ≡ MH
Ξ

, TU = TH , ΩU ≡ ΩH +
a

L2 , VU ≡ VH +
4π

3
a2MU . (71)
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The construction of the gauge ωU of Equation (69) is the main result of this section.
It demonstrates that our extended Iyer–Wald formalism reproduces the usual KadS ther-
modynamic theory for the Killing vector KU of Equation (68), without the need of any
prior knowledge of the resulting theory. The method depends only on the existence of an
original description (in our case, the ATT). Within our framework, the method of extracting
an exact variation from a non-integrable first law in [5,9] corresponds to an appropriate
gauge fixing.

We stress that we focus here on recovering the UTT because it remains a widely studied
description in the literature. Nevertheless, ETIs can be used to generate infinite equivalent
thermodynamic representations. This can be achieved, for instance, by generalizing Equa-
tion (67) to (g, h) = (Ξn, MA), with n ̸= 0. Furthermore, our generalized formalism reveals
that the difference between thermodynamic and geometric volumes is a gauge term. For
the UTT, this is the extra term that distinguishes VU and VH in Equation (71).

6. Final Remarks
In previous work [8], we showed that exact isohomogeneous transformations consti-

tute a fundamental structure for generating equivalent thermodynamic descriptions. In
the present article, we analyze the formal mathematical foundations of these mappings. In
particular, we show that EITs are contactomorphisms that include the well-known poten-
tials obtained via Legendre transformations as a subset. As a central part of our study, we
also demonstrate how these mappings can be connected to the gauge freedom present in
formulations of black-hole thermodynamics based on a potential volume.

Black-hole thermodynamics fundamentally differs from classical equilibrium ther-
modynamics in its reliance on functional variations rather than exterior derivatives, a
distinction apparent in their respective formulations of the first law. In this regard, while
the Iyer–Wald formalism is a powerful tool for deriving first laws in black-hole thermody-
namics, it typically leads to non-integrable and non-homogeneous results, which obscure
their connection to conventional thermodynamic first laws. We address this conceptual
gap by constructing a framework that produces integrable first laws using EITs and a
gauge-dependent extension of the Iyer–Wald formalism. An advantage of this approach is
that it generalizes the infinitesimal Noether–Wald charge while preserving its conservation,
which does not hold in extensions based on the (geometric) vector volume.

Our results demonstrate that exact isohomogeneous transformations, within the ex-
tended Iyer–Wald formalism, provide a systematic framework for identifying compatible
gauge choices and appropriate Killing vector normalizations that yield fully integrable first
laws. Equivalently, this can be interpreted as the statement that the geometric counterpart
of EITs in the Iyer–Wald formalism corresponds to transformations in both the gauge and
the horizon generator. The EIT-based extension, thus, establishes a robust connection
between the geometric and thermodynamic descriptions of black holes.

A link for the different thermodynamic descriptions for Kerr-anti de Sitter black holes
emerges from our analysis. As a concrete demonstration, we recovered standard KadS
thermodynamics from an alternative description through a specific gauge selection. In
our formalism, the procedure of extracting an exact differential of the black-hole mass
from a non-integrable result is replaced by an appropriate gauge fixing. This, in turn,
provides a new explanation for the well-known difference between the geometric and
thermodynamic volumes.

In summary, our proposal, based on exact isohomogeneous transformations and a
gauge-extended Iyer–Wald formalism, addresses longstanding integrability challenges in
formulating a proper first law, and it offers a new perspective on KadS thermodynamics.
This work suggests several research directions. These include derivations of new KadS
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thermodynamic descriptions, and applications of EITs and the extended Iyer–Wald formal-
ism to other gravitational theories containing free parameters. A deeper understanding of
the physical meaning behind the freedom to fix the gauge and select the Killing field also
remains an important open question. For instance, in order to connect this framework to
frames of reference, it is necessary to supplement the conventional explanation that links
the normalization of the Killing field to the Tolman factor for the black-hole temperature.
Furthermore, the appropriate choice of gauge fixing may require a revised interpretation of
KadS thermodynamics. Investigations along these lines are currently underway.
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Appendix A. Overview of Contact Manifold Description
The equilibrium states of a thermodynamic system can be identified as Legendre sub-

manifolds within a contact manifold, which is the odd-dimensional analogue of a symplec-
tic manifold. Given a 1-form α on a (2n+ 1)-dimensional manifold T , one can differentiably
associate each point p ∈ T with a hyperplane ker αp ⊂ TpT , with dim(ker αp) = 2n. This
hyperplane ker αp is called a contact plane, and the set of such hyperplanes defines a distri-
bution D ⊂ TT . Since, for any nonzero function g : T → R, we have ker αp = ker(gα)p,
we say that 1-forms differing by a conformal factor belong to the same equivalence class. A
map f : T → T such that the pullback satisfies

f ∗α = gα (A1)

is called a contact transformation or contactomorphism. The special case g = 1, for which
the Legendre transformation is an example, is called a strict contactomorphism.

If we further impose the condition

α ∧ ωn ̸= 0 , ω = dα , (A2)

the 2-form ω is non-degenerate on D, i.e., ω|D ̸= 0. Thus, at each point p ∈ T , the tangent
space decomposes as a direct sum TpT = ker αp ⊕ ker ωp. The pair (T , α) is called a contact
manifold, and α is the contact form. Darboux’s theorem ensures that every contact manifold
admits local coordinates, called canonical coordinates, in which

α = dz −
n

∑
i=1

Yi
1dXi . (A3)

Regarding dynamics, condition (A2) implies dim(ker ωp) = 1. That is, the contact
structure (T , α) admits a unique vector field ξ satisfying

ıξ ω = 0, α(ξ) = 1 , (A4)
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where ıξ is the interior product. This vector field ξ defines a decomposition TT = Lξ ⊕ D,
where Lξ is the vertical subspace generated by ξ. It is important to note that this decompo-
sition is not unique, as it depends on the representative of the class (A1). The vector field ξ

is called the Reeb vector field, and it plays the role of the Hamiltonian vector field, since
its flow preserves ω (i.e., Lξ ω = 0). In canonical coordinates (A3), we have ξ = ∂z. The
equations of motion are invariant under transformations that preserve the 2-form ω .

In the context of a thermodynamic description [1], we set z = M0 as a thermodynamic
potential, with Xi representing the n degrees of freedom of the system. The set (M0, Xi, Yi

0)

forms the canonical coordinates of a (2n + 1)-dimensional manifold T , referred to as the
thermodynamic phase space. In this case,

α = dM0 −
n

∑
i=1

Yi
0dXi , (A5)

where X1 = S and Y1
0 = T. The kernel of α represents the equilibrium states of the system.

Since α and η = gα, with g ̸= 0, have the same kernel, they describe the same equilibrium
states, that is, they define equivalent thermodynamic descriptions. However, the freedom
in the choice of canonical coordinates allows for different thermodynamic formulations
associated with the same equilibrium states.

Appendix B. Nonexact Isohomogeneous Transformations
The homogeneity of the black-hole mass can be recovered including the functional

variation of all free parameters, such as the cosmological constant. It follows that a Smarr
formula can be established given a particular choice of normalization for the Killing field
that generates the horizon. However, the direct application of the Iyer–Wald formalism to
the resulting variables may yield a first law that is not integrable,

δM1 = T1δS + ∑
i=2

Yi
1δXi , (A6)

where δM1 is not an exact form dM1, and the index 1 is used for convenience (to be
explained shortly). In some interesting cases, we can find an intensive function g, which
will be treated as an independent variable (for the moment), so that Equation (A6) can be
rewritten in the differential-form version

T1dS + ∑
i=2

Yi
1dXi = dM1 −

M1

g
dg . (A7)

This is the result of Equation (4) for a nonexact isohomogeneous transformation with h = 0,
which can be simplified to

d
M1

g
=

T1

g
dS + ∑

i=2

Yi
1

g
dXi , (A8)

and we say that this theory is the thermodynamic version of Equation (A6).
Thus, the homogeneous function M1 is not a thermodynamic potential in the vari-

ables T1,
{

Yi
1
}

. However, it is straightforward to define a legitimate thermodynamic
potential with

M0 =
M1

g
, T0 =

T1

g
, Yi

0 =
Yi

1
g

. (A9)

Geometrically, the implementation of (A9) can be seen as a renormalization of the Killing
field that generates the thermodynamics. If Equation (A6) is obtained from the Killing
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vector K1 and the thermodynamic description of Equation (A8) from K0, then the geometric
implementation of Equation (A9) can be seen as the transformation

K0 −→ g K0 = K1 . (A10)

As an important example, we cite Hawking’s work [11], which defines thermodynamic
quantities that, from the extended Iyer–Wald formalism, result in Equation (61), with a
Smarr formula

MH = 2THS + 2ΩH J − 2VH P , (A11)

which can be identified with the second relation of Equation (4). This is a case where the
Smarr formula does not correspond to an Euler relation, as commented in Section 2.1.

As shown in [8], this variational relation can be written in the form (A7) as

dMH − MH√
Ξ

d
√

Ξ = TdS + ΩHdJ + VHdP , (A12)

with the thermodynamic quantities defined in Section 5. From our considerations, there
is a proper thermodynamic description given by Equations (A8) and (A9) with g =

√
Ξ.

This is the alternative thermodynamic theory of KadS of Equation (64), with renormalized
Killing field (63). Thus, the ATT is the thermodynamic version of Hawking’s approach.

We conclude that nonexact isohomogeneous transformations are a powerful tool for
establishing proper thermodynamic versions of non-integrable first laws that can be written
in the form (A7). Moreover, their usefulness is not limited to these cases of h = 0. Broader
applications can be found in [8], where, for instance, it is shown how the usual KadS
thermodynamics can be obtained from Hawking’s approach.

Appendix C. Matching Potential and Vector Volumes
It is known that VA in (66) can be written as a vector volume of the region between the

singularity and the horizon [8]. We want to show that there exists a gauge such that VA is
also a potential volume. In greater generality, we want to find the gauge such that

lim
σ→0

∫ σH

σ
ıv(⋆1) =

∫
σH

⋆ω , ıv(⋆1) = d ⋆ ω . (A13)

For that, take an auxiliary closed (but not exact) differential form θ such that θ ̸= 0,
and define

θ′ ≡ −ω(σ → 0)
θ

θ , ω(σ → 0) ≡ lim
σ→0

∫
σ
⋆ω , θ ≡

∫
σ

θ . (A14)

Then, because there exists a θ in KadS,

Vv = lim
σ→0

∫ σH

σ
ıv(⋆1) = lim

σ→0

∫
σ
(⋆ω + θ′) +

∫
σH

(⋆ω + θ′) =
∫

σH

(⋆ω + θ′) , (A15)

which completes the proof since θ′ is closed.

Notes
1 As detailed in Appendix A, formally this means that the two descriptions differ in the choice of vertical subspace Lξ of the

distribution D that decomposes the tangent bundle TT = Lξ ⊕ D.
2 As previously mentioned, introducing parameters in the Lagrangian variations creates new challenges for the integrability

conditions and imposes additional requirements on the symmetries of the symplectic structure. Although these exigences can be
explicitly analyzed in various important cases (see, for example, [4]), they cannot be generally specified for all diffeomorphism-
invariant Lagrangians. Similarly, the additional restriction imposed by Equation (23) must be analyzed on a case-by-case basis.

3 It is also possible to choose the gauge δξ
µ
1 = 0, and Equation (46) would have the form of Equation (38) with κ1, Ω1, and V1.
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4 The results of Section 5, combined with the development in Appendix C, show that this original description exists.
5 The cosmological constant is not treated as a thermodynamic variable in [10]. However, even if it is included, the resulting

expression is still not a proper first law: dMH ̸= T dS + ΩH dJ + VH dP .
6 Although KU coincides with K of (60), its different expansion is relevant since it is the first term inside parentheses that contributes

to δMU in the Iyer–Wald formalism. Moreover, this is the vector that considers the angular velocity of the black hole with respect
to infinity. Is is also interesting to note that this vector is no longer unique if we allow the temperature not to be proportional to
the surface gravity. In this case, KU ̸= K, which is explored in a gauge-independent energy setup in [8].
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