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ARTICLE INFO ABSTRACT

Handling Editor: Brandon Heung The major oxides in the clay fraction of tropical soils are iron (Fe203), aluminum (Al1203), and silicon (Si02)
oxides, which are responsible for the soil’s capacity to provide multiple ecosystem services. Therefore, they are
used to classify the soils into different pedological classes. Despite their importance of these oxides, quantifying
them on a large scale presents significant challenges. The most common method is laboratory sulfuric acid
digestion, which is expensive, complex, and environmentally detrimental. To overcome these issues and provide
faster results, we developed a satellite technique associated with machine learning (ML) to map Fe;O3, Al;Os3,
and SiO; in all agricultural areas in Brazil at 30 m resolution. Additionally, we tested the feasibility of the
generated maps to infer soil weathering, and assist in the construction of pedological maps. A dataset, comprising
5,330 sites (0-20 cm and 80-100 cm) across all 27 states was employed in prediction. Six spectral variables
obtained from the historical Landsat series (bare soil) and seven terrain attributes derived from a digital elevation
model were employed to generate the FepOs, AloOs, and SiO2 maps, using the Random Forest algorithm. The
predicted maps of oxides covered nearly 3.48 million km? (~40 % of the national territory). The best predictions
were observed for Fe;O3 in the 0-20 cm layer (RMSE = 49.8 g.kg™!, RPIQ = 1.82, and R? = 0.62), while the
worst predictions were for SiO- in the 80-100 cm layer (RMSE = 65.3 g.kg™!, RPIQ = 1.50 and R? = 0.22). It was
possible to infer soil weathering using the Ki index. Despite the models not showing such high R? values, the
results are aligned with legacy maps, highly weathered soils were observed in the plateaus of the Cerrado biome,
while younger soils were observed in the arid Caatinga biome and waterlogged soils in the Pantanal biome. The
generated maps also demonstrated a high potential for grouping pedological soil classes. They also revealed a
relationship between oxide contents and the NDVI of sugarcane crops, indicating potential applications in crop
management. Moreover, this satellite-based technique, supported by ML, presents a plausible approach to predict
oxide fraction at high spatial resolution for large areas.
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1. Introduction exchange capacity (Adhikari and Hartemink, 2016; Hewitt et al., 2015).

These properties have different spatial distributions and can vary

Soil is involved in several ecosystem services (ES) that are of utmost
importance for the maintenance of life on the planet (McBratney et al.,
2014), such as provisioning (food, fiber, and timber production), regu-
lating (climate, flood, and water regulation), cultural and supporting
(nutrient cycling, soil formation) (Silvero et al., 2023). This ability is
determined by various intrinsic soil properties, such as texture, organic
carbon content, depth, bulk density, available water, and cation
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considerably across the Earth’s crust, influencing the soil’s capacity to
supply ecosystem services (Adhikari and Hartemink, 2016). In tropical
soils, characterized by a high degree of weathering, the clay fraction
oxides are distinguished in provisioning ES (Kirsten et al., 2021; Silva
et al., 2021). Soil oxides play several roles in the soil matrix, influencing
the maintenance of soil structure, potential for organic carbon and water
retention, the pH level, and availability of nutrients for plants, among
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others (Kirsten et al., 2021; Ukabiala et al., 2021). Thus, quantifying
these oxides can help in understanding the ability of soil to provide ES.

The clay fraction (particles <0.002 mm) major oxides of tropical
soils are iron oxides (Fe;O3), aluminum oxides (Aly03), and silicon ox-
ides (SiOy) (Schaefer et al., 2008), and they are used in the Brazilian soil
classification system (SiBCS). The FeoO3 content is used in SiBCS for
classification at the third level of the classification hierarchy, while
Aly,03 and SiOy are used to measure the degree of soil weathering
(Embrapa, 2018). Despite the influence of these oxides on the soil, there
is a lack of effort to map them in the tropical regions of the world.
Principally because, laboratory methodologies are expensive, time-
consuming, and have a high potential for environmental pollution (its
quantification is performed by using acid digestion with strong acids
such as sulfuric acid), making it difficult to obtain information on these
oxides for large areas, with high spatial resolutions (Silva et al., 2020).
However, despite the challenge of mapping the contents of these oxides,
innovative techniques for digital soil mapping (DSM) have the potential
to create high-resolution maps detailing oxide contents, even with low
sample densities and challenging conditions of complexity inherent in
soil systems (de Mendes et al., 2022; Safanelli et al., 2021b).

The DSM approach involves deploying robust mathematical models
capable of predicting a given soil property based on environmental
covariates (Hengl et al., 2017; Vaysse and Lagacherie, 2015). Due to
advances in computational techniques, it is currently possible to
implement robust machine learning (ML) algorithms that aim to
generate predictions with enhanced accuracy and precision (Wadoux
et al., 2020). The Random Forest (RF) algorithm has been the most
widely used in DSM studies (Padarian et al., 2020). RF creates robust
models composed of multiple decision trees with low correlation among
each other. Due to these characteristics, RF is able topredict with high
accuracy and a minimal overfitting rate in the models (Sheykhmousa
et al., 2020; Wadoux et al., 2020).

The final quality of DSM outputs depends on the environmental
covariates used for the prediction of specific soil properties. The envi-
ronmental covariates express soil formation factors and represent parts
of the physical, chemical and organisms processes that govern the
spatial variation of soil (McBratney et al., 2003; Wadoux et al., 2020).
Among the environmental covariates, the most commonly used ones are
digital elevation models, vegetation indices, climate covariates,
geological maps, and surface reflectance obtained by satellites
(Lamichhane et al., 2019; Ma et al., 2019). In addition to these cova-
riates, recent studies propose using environmental covariates that
represent bare soil reflectance (Roberts et al., 2019; Rosin et al., 2023;
Safanelli et al., 2021b). Despite the great potential of bare soil reflec-
tance in DSM, obtaining this reflectance is a major challenge primarily
due to the persistent presence of vegetation covering soil surfaces
throughout the year. To solve this problem, Dematte et al. (2018)
developed an algorithm (Geospatial Soil Sensing System — GEOS3)
capable of retrieving bare soil reflectance from a historical series of
Landsat images by aggregating the pixels that were exposed at least once
throughout the historical series into a synthetic soil image (SYSI).

Several studies worldwide have demonstrated the potential of
exposed soil reflectance for soil attribute mapping (Gasmi et al., 2021;
Rizzo et al., 2020; Roberts et al., 2019; Silvero et al., 2021a; Yang et al.,
2020). The prediction of soil attributes based on reflectance has been
consolidated through the use of laboratory spectroscopy (Barra et al.,
2021). Soil attributes concentrations alters their spectral signature, at
specific wavelengths or across the entire electromagnetic spectrum, such
as the iron oxide content altering reflectance in the red region, or clay
content altering reflectance intensity across the spectrum (Ackerson
et al., 2015; Dematte et al., 2007). This characteristic makes the
reflectance of exposed soil when applied in DSM, one of the most
important environmental covariate in predicting soil attributes (Poppiel
et al., 2019; Rosin et al., 2023).

We expect that the reflectance of topsoil measured by satellite will be
related to the contents of FexOs, AloO3, and SiO, oxides present in the
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clay fraction, as these oxides influence electronic transitions and mo-
lecular vibrations in the 350-2500 nm spectral range. Thus, we aimed
to: (i) quantify and map the contents of FeyO3, Al,O3, and SiO, using
remote sensing data integrated with ML techniques at both surface and
subsurface soil depths; and (ii) evaluate whether the resulting oxide
maps can be used to infer the degree of weathering in Brazilian agri-
cultural soils, support soil classification, and assist in agricultural crop
management. The high-resolution maps (30 m of spatial resolution)
generated for all agricultural areas of Brazil are expected to support
researchers, farmers, and consultants in better understanding soil dy-
namics and guiding more informed land use decisions.

2. Materials and methods
2.1. Study area

The study area is represented by the entire agricultural territory of
Brazil. Brazil is a country with large dimensions (approximately 8.5
million km?) and high soil variability. This soil variability is due to the
formation factors, mainly, the climate, the time of formation, the parent
material, and the topography (Schaefer et al., 2023). Brazil’s climate
varies across the territory between tropical, subtropical and semiarid
(Alvares et al., 2013). The time formation of parent material that gave
rise to Brazilian soils primarily occurred during the Cenozoic, Mesozoic,
Neoproterozoic, and Paleoproterozoic eras (Schaefer et al., 2023).
Regarding the parent material, the majority of rocks are sedimentary,
formed by sediments with diverse origins, such as weathering of the
Andes (Amazon basin), ocean floor (Sao Francisco craton region), and
desert sediment as in the Bauru and Botucatu formations (Schaefer et al.,
2023). In addition to sedimentary rocks, a large part of Brazil’s geology
is composed of volcanic and plutonic rocks (de Alkmim, 2015). In the
region encompassing the states of Parand, Sao Paulo, Rio Grande do Sul,
Minas Gerais, Goias, and Mato Grosso do Sul, there is a large mass of
basaltic rocks formed from basaltic eruptions (de Alkmim, 2015). These
rocks are extrusive and contain higher levels of iron and easily weath-
erable minerals (Schaefer et al., 2008). Along the Brazilian coastline,
many plutonic rocks were formed underground (i.e., intrusives) during
the continental drift (de Alkmim, 2015). These rocks possess highly
crystallized minerals like quartz. Another factor of formation with high
variability in Brazil is the topography. Many mountains are present in
coastal regions, while the interior of the country has large plateaus that
favor soil weathering (Schaefer et al., 2023). There are also extensive
floodplain basins, such as the Pantanal (Couto et al., 2023). All of these
variations in soil formation factors contribute to the existence of soils
with different levels of weathering and, consequently, different levels of
oxides that were mapped in this study.

2.2. Soil observations

The soil observations were derived from two sources: i) publicly
available national soil profile databases with nearly 9119 sites (Samuel-
Rosa et al., 2019), and ii) the Brazilian Soil Spectral Library with nearly
45,000 sites (Dematte et al., 2019). The final database containing the
soil observations used in this study was consolidated and modified in
four different steps. The first step was to eliminate the sites with inac-
curate coordinates (i.e., accuracy less than 100 m). In the second step, all
the sites with information on at least one of the Fe;O3, SiOy and Al,O3
oxides were filtered. The pseudo-total concentrations of these oxides
were obtained by sulfuric acid digestion, as proposed by Vettori (1969),
with modifications proposed by Raij and Valadares (1974). This
extraction method can access the oxides in the secondary minerals.
Therefore, the extracted oxides mostly reflect the clay fraction of the
soil.

Once the second step was completed, a total of 5330 sites were ob-
tained, covering the entire Brazilian territory. These sites were submit-
ted to a third step, which consisted of detecting those located in the areas
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covered by SYSI. In the fourth step, the sites with irregular sampling (i.
e., soil profiles), were subjected to interpolation along the profile to
standardize the depths, making them suitable for our study, while the
sites with 0-20 cm and 80-100 cm depths were maintained without
interpolation. The interpolation method was the quadratic spline func-
tion implemented in the GSIF R package (Hengl and Macmillan, 2019).
The use of the quadratic spline function for the interpolation of soil at-
tributes along the profile was proposed by Bishop et al. (1999), who
showed that, in tests comparing it with other similar methods, it out-
performed the alternatives; since then, it has been widely used in soil
science studies s (Ellili-Bargaoui et al., 2020; Sulaeman et al., 2013;
Tayebi et al., 2021). After interpolation, we obtained layers of 20 cm,
starting at the soil surface to 100 cm depth. The 0-20 and 80-100 cm
depths were used in this study because: 1) There are more observation
points in these layers (because some points are sampled at these depths;
2) We wanted to show the differences between the surface (A horizon)
and the subsurface layers (B horizon), being the intermediary horizons
less important for pedology studies in this case, where the SiBCS is
considered and 3) The digital soil mapping for Brazilian territory is
highly time-consuming. After all the steps were taken, the database was
ready to be used. In the final database, each oxide had a different
number of sites. In addition, the sampling density was also different for
each depth used (Table 1).

2.3. Environmental covariates

The RF algorithm was used to fit predictive models for Fe;O3, Al;Os3,
and SiO; oxides using the synthetic soil image (SYSI) and terrain attri-
butes as covariates. A flowchart of the prediction process is shown in
Fig. 1.

The concentrations of the oxides are directly associated with soil
formation factors, which was one of the criteria for choosing the envi-
ronmental covariates. Despite the great importance of all soil formation
factors, only the relief factor was considered. It was impossible to use
factors such as parent material and time due to low spatial resolution or
lack of information. The climatic factor was not included because the
covariates available in WordClim have a spatial resolution of 1 km.
Additionally, these variables exhibit artifacts across the Brazilian terri-
tory, such as unrealistic geometric patterns and longitudinal lines.
Furthermore, for the organism factor, vegetation indices calculated from
spectral information of the surface are commonly employed. According
to Lamichhane et al. (2019), covariates of this nature exhibit an indirect
relationship with soil properties. Consequently, we opted not to incor-
porate them into our analysis. To represent the relief factor, we used
environmental covariates that were previously used to predict soil at-
tributes with satisfactory results in Safanelli et al (2021a). These terrain
attributes were as follows: slope, altitude, north and east slope, hori-
zontal curvature, vertical curvature, and a relief shape index. These
variables were based on a digital elevation model (DEM) from the
Shuttle Radar Topography Mission (SRTM) with 30 m spatial resolution
(Farr and Kobrick, 2000). To calculate the environmental variables, the
Terrain Analysis in Google Earth Engine (TAGEE) algorithm proposed by

Table 1
Number of soil observations for each oxide throughout Brazil and in areas
covered by SYSIL.

Oxide Layer N° observations
Brazil SISY Coverage

Fe 03 0-20 cm 5211 2715

80-100 cm 3671 1874
Al,03 0-20 cm 4551 2253

80-100 cm 3262 1608
Si0y 0-20 cm 4750 2380

80-100 cm 3393 1697

SYSI: Synthetic Soil Image.
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Safanelli et al. (2020b) was used. The individual information on the
environmental covariates derived from the DEM is shown in Table 2.

For choosing the environmental covariates, we also adopted the bare
soil spectral signature. Several studies have demonstrated that these
oxides alter the reflectance intensity of soils (Dematte et al., 2009; Terra
et al., 2018). Thus, it is possible to estimate their concentrations from
spectral information. To obtain the spectral variables, the GEOS3 algo-
rithm (Dematte et al., 2020, Dematte et al., 2018), developed within the
Google Earth Engine, was used to generate the multispectral composite
of bare soil and the frequency of soil exposure from 1982 to 2020, using
the Landsat Surface Reflectance Collections at 30 m resolution (USGS,
2021a; 2021b). GEOS3 is a data mining algorithm that extracts soil
features from the historical collection of satellite images and aggregates
the spatially sparse discovered soil fragments into a SYSI. The SYSI is the
reflectance image, composed of six spectral bands (blue — band 1, green
—band 2, red - band 3, NIR — band 4, SWIR1 - band 5, and SWIR2 — band
6).

A set of rules was used to identify bare ground pixels in satellite
images, based on spectral indices coupled with quality assessment bands
to remove clouds, cloud shadows, inland water, photosynthetic vege-
tation, and non-photosynthetic vegetation (e.g., harvest residues).. A
pixel was considered bare soil when it had Normalized Difference
Vegetation Index (NDVI) values between —0.05 and 0.30 (masking
green vegetation) and Normalized Burn Ratio 2 (NBR2) values between
—0.15 and 0.15 (masking crop residues). Pixels detected as bare soil
were selected to compose the multitemporal collection. Each pixel that
makes up the SYSI refers to the median value calculated among all pixels
in the multitemporal collection for a given position. Thus, GEOS3 pro-
duced an almost continuous representation of the topsoil reflectance,
increasing the mapped area of the soil surface by combining and aver-
aging the estimates frommultitemporal measurements. Detailed infor-
mation on GEOS3, spectral indices, and sensitivity analysis can be found
in previous studies (Dematte et al., 2020; Fongaro et al., 2018; Gallo
et al., 2018; Safanelli et al., 2020a). All six SYSI bands were used as
environmental variables to predict oxides; they are shown in Table 2.

2.4. Soil clay fraction major oxides prediction by random forest

In this study, a quantile regression forest (QRF) ML algorithm, an
extension of the RF algorithm, was implemented to map the content of
major oxides in the soil clay fraction across Brazilian agricultural areas.
The RF, proposed by Breiman (2001), is a ML algorithm that operates by
constructing a set of independent decision trees. Each tree is trained on a
random sample of the training data. During prediction, each tree gen-
erates an estimate, and the final prediction is determined by combining
the estimates from all the trees (Breiman, 2001). The QRF proposed by
Meinshausen (2006) provides a set of prediction quantiles using an
empirical probability distribution rather than just a median value. These
quantiles can be used to determine the prediction interval (PI), allowing
inference about prediction uncertainties.

2.4.1. Model tuning, performance, and validation

The selected environmental covariates were used as independent
variables to obtain soil oxide prediction models. At each soil sampling
point, the values of the environmental covariates were collected using
the bilinear sampling method, which considers some neighboring pixels
within a radius of 100 m around the coordinate point. The bilinear
sampling aims to reduce the effects of noisy pixels and the effect of
coordinates with lower accuracy.

To optimize the best combination of hyperparameters for RF, a grid
search procedure was performed to improve prediction accuracy. The
following values were tested for each hyperparameter: number of trees
in the forest (FS): 30, 60, 100, 200, and 500, number of random pre-
dictors tested at splits of each tree (nRP): 3, 5, 9, 11, and 13, and min-
imum number of samples at the tree (minSL): 10, 20, 30, 40, 50, 100,
200, and 500.
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Fig. 1. Flowchart of the soils clay fraction major oxides prediction and its possible applications tested. GEOS3: Geospatial Soil Sensing System; SYSI: Synthetic Soil
Image; DEM: Digital Elevation Model; STRM: Shuttle Radar Topography Mission; TAGEE: Terrain Analysis in Google Earth Engine; TA: Terrain Attributes; RF:

Random Forest; Ki: Weathering index.
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Table 2
Environmental covariates used for prediction of major oxides.

Environmental covariate Source (spatial References

resolution)

SYSI blue (450-520 nm)
SYSI green (520-600 nm)
SYSI red (630-690 nm)
SYSI NIR (760-900 nm)
SYSI SWIR1 (1550-1750

Landsat collection (30 m)
Landsat collection (30 m)
Landsat collection (30 m)
Landsat collection (30 m)
Landsat collection (30 m)

(Dematte et al., 2018)
(Dematte et al., 2018)
(Dematte et al., 2018)
(Dematte et al., 2018)
(Dematte et al., 2018)

nm)
SYSI SWIR2 (2080-2350 Landsat collection (30 m) (Dematte et al., 2018)
nm)
Elevation SRTM (30 m) (Farr and Kobrick,
2000)
Slope TAGEE/SRTM (30 m) (Safanelli et al., 2020b)
Northness TAGEE/SRTM (30 m) (Safanelli et al., 2020b)
Eastness TAGEE/SRTM (30 m) (Safanelli et al., 2020b)

Horizontal curvature
Vertical curvature
Terrain shape index

TAGEE/SRTM (30 m)
TAGEE/SRTM (30 m)
TAGEE/SRTM (30 m)

(Safanelli et al., 2020b)
(Safanelli et al., 2020b)
(Safanelli et al., 2020b)

SYSIL: Synthetic Soil Image; TAGEE: Terrain Analysis in Google Earth Engine;
SRTM: Shuttle Radar Topography Mission.

Bootstrapped sampling was used to determine the training dataset
for the model, while the validation dataset was defined by the remaining
samples (out-of-bag) that were not selected in each bootstrapping.
Bootstrapping is a method that randomly samples observations from the
original dataset to create a new dataset for training prediction models.
This training dataset is generally composed of approximately 67 % of the
original dataset. We applied the bootstrap method up to 500 times,
which corresponds to the maximum number of trees tested for the
random forest.

The optimal combination (FS, nPR, and minSL) with the smallest
Root Mean Squared Error (RMSE) for the validation set was selected for
each soil attribute. The accuracy of the developed models was evaluated
by the coefficient of determination (Rz), RMSE, and Ratio of Perfor-
mance to InterQuartile distance (RPIQ) of the calibration, validation,
and test data sets. The calculation of these parameters was performed
according to the equations (1) to (5).

nos 2
RMSE = (le(yn‘y’) ) (€D)]
Ssresiduals
R? =1 — Zoreiduds (2)
SStotal
SSresiduats = Z:’:l (yl - yi)z ®
SStotar = Z::l (.yi 7?)2 “
IQR,
RPIQ = RMSE;, ©

where y is the vector of measured values, y is the vector of predicted
values, y is the mean of vector y, n is the number of soil observations
and, IQR is the interquartile range.

2.4.2. Evaluation of predictions

The evaluation of predictions was conducted following the selection
of predictive models. For this evaluation, 400 geo-referenced sites
covering the entire Brazilian territory were provided by private sources,
exclusively for map validation purposes, with all site data de-identified.
Each site consisted of two soil samples, one for each mapped layer. The
sulfuric acid digestion method described in Section 2.2 was used to
determine Fe;Os, AlyOs, and SiO,. These samples comprised a new
database called the test database, to which environmental covariates
were also added, as described previously. The test database was not
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utilized during any of the training and validation steps. The selected
predictive models were applied to this new database to predict the oxide
contents. After the predictions, accuracy was assessed using the R2
RMSE, and RPIQ metrics.

2.4.3. Soil clay fraction major oxides and uncertainty mapping

The best combination of FS, nPR, and minSL, was used to predict the
major soil oxides for the study area. The raster files corresponding to the
environmental covariates were used as input data in Fe;O3, Al;03, and
SiO2 models, and the output consisted of the respective maps. The final
estimated value for each pixel in the final maps was formed by the
aggregated mean of the estimations obtained by each regression tree
(Equation (6)).

f = %Zlef b (Xp) (6)

where X p is the set of environmental features for pixel; B is the forest
size determined by the number of bootstrapping samples b; f, is the

regression tree fitted to each bootstrapped sample b; fp is the mean of the
pixel.

The uncertainties of the predictions were inferred by calculating the
ratio of the interquartile range over the median (prediction interval
ratio, PIR) proposed by Poggio et al. (2021). The main reason for
choosing PIR was its ability to compare models for predicting different
oxides at different depths. The 90th prediction interval (PI90) was
adopted in this study. The PIR maps were derived (Equation (7) from the
maps corresponding to the quantiles of 0.05 (q0.05), 0.5 (q0.5), and
0.95 (q0.95), obtained through QRF. The PIR value ranges from 0 to 1,
where a higher value indicates greater uncertainty in the prediction.

q0.95 — q0.05

PIR =005

)

where q0.95 is the 95 % quantile of the modeled predictions; q0.05 is the
5 % quantile of the modeled predictions and, q0.5 is the 50 % quantile of
the modeled predictions.

2.5. Oxide maps interpretation

Brazilian soils are typically highly weathered and exhibit advanced
stages of pedogenesis, primarily due to the prevailing tropical and
subtropical climates that have shaped the landscape over geological
timescales. Much of the parent material is also rich in iron-bearing
minerals. As a result of intense weathering and pedogenetic processes,
particularly ferralitization, latosolization, and clay illuviation, adapta-
tions to international soil classification systems, such as the WRB and
USDA Soil Taxonomy, have been necessary, especially with regard to
iron oxide (FepO3) content. To support these classifications, FepO3
content determined through sulfuric acid digestion has been categorized
into four groups: (i) hypoferric (<80 g kg’l), (ii) mesoferric (80 to <180
g kg™, (iii) ferric (180 to <360 g kg™ 1), and (iv) hyperferric (>360 g
kg™ !). These thresholds are critical for distinguishing soil types and
understanding the genesis, evolution, and functional properties of
tropical and subtropical soils, as well as guiding land use and manage-
ment strategies. This Fe;O3 based classification is especially relevant for
Latosols, Nitosols, and Argisols, dominant soil types in Brazil which
correspond to Ferralsols, Oxisols, Acrisols, Lixisols, and Alisols in in-
ternational systems.

FeoO3 content is also used to assess the degree of ferralitization, a
pedogenetic process marked by intense chemical weathering and re-
sidual iron enrichment, primarily in the form of iron oxides (Schaefer
et al., 2008; van Breemen & Buurman, 1998). These oxides contribute to
the formation of oxic horizons (Soil Survey Staff, 2017) or ferralic B
horizons (WRB, 2014), composed of highly weathered mineral constit-
uents with variable grain sizes. The formation of such horizons generally
requires iron-rich parent material, a climate conducive to deep
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weathering, and prolonged exposure to weathering processes. The de-
gree of ferralitization can be quantitatively assessed using the Ferrali-
tization Index (SiOy/Fep03), based on sulfuric acid digestion.
Accordingly, the concentrations of Fe;O3 and SiO2 measured as part of
the Brazilian Soil Classification System (SiBCS) are essential for classi-
fying soils and interpreting their formation.

Additionally, due to the advanced weathering typical of Brazilian
soils, Al,O3 and SiOy contents (also obtained through sulfuric acid
digestion) are used to estimate the degree of chemical weathering
through the weathering index Ki (Equation (8). This index provides
further insight into soil development and mineral transformation in
tropical environments. The interpretation of the oxide maps obtained in
the prediction was conducted using two distinct approaches. The first
approach involved reclassifying the maps based on their oxide contents
into three distinct classes. Subsequently, the percentage of the area
encompassed by each class was quantified.

The Fe,O3 maps were divided according to the SiBCS classification
system, where hypoferric, mesoferric, and ferric. However, for the Al,O3
and SiO, maps, this classification system was not applicable. Therefore,
we proposed patterned intervals based on the range of oxide contents
obtained in the maps. We defined soils with oxide contents less than 80
g.kg™! as low, soils ranging from 80 to < 150 g.kg~! as medium, and
soils with oxide contents above 150 g.kg~! as high, for both oxides.

The second interpretation was conducted based on the parent ma-
terials. We utilized a geological map constructed by Gomez et al. (2018)
and calculated the average oxide contents for each parent material.

2.6. Soil clay fraction major oxides maps applications

We tested two applications of the soil oxide maps: Infer the degree of
chemical weathering of soils and potential to contribute to the devel-
opment of high-resolution soil class maps.

2.6.1. Chemical weathering index calculation

To infer the chemical weathering of soils, we calculated the Ki index
(Equation (8) proposed by Embrapa Solos (1997). The Ki calculation was
performed on a pixel-by-pixel basis using the maps of SiO; and Al;Os.
The Ki weathering index expresses clay mineral destruction and Si
leaching by the soil weathering process. The higher the index value, the
lower the degree of weathering of the soil. Ki is one of the most widely
used indices in Brazil, as it indicates soil mineralogy and weathering.
The Ki index is used in the SiBCS to characterize and identify horizons “B
latossolicos”, an equivalent to ferralic horizons, which should have
values below 2.2, indicating a high degree of weathering (Embrapa
Solos, 2018). Low Ki values indicate processes of monosiallitization,
ferralitization and alitization, leading to the formation of 1:1 clay
minerals, iron and aluminum oxides, respectively (Lima et al., 2022). On
the other hand, higher Ki values (greater than 2.2) indicate the occur-
rence of bissiallitization processes with a higher presence of 2:1 clay
minerals, indicating a lower degree of weathering (Guimaraes et al.,
2021).
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Al203(gkg ™)
2.6.2. Application in pedological maps

Considering that, in the Brazilian Soil Classification System (SiBCS),
the content of pedogenic oxides and the degree of weathering are used as
criteria for soil classification, the generated maps were evaluated for
their potential applicability. To this end, a 182 ha farm located in the
municipality of Rafard, Sao Paulo state (Fig. 1), was selected to test the
contribution of these maps to the development of pedological maps. The
chosen area exhibits significant variations in lithology, with a predom-
inance of immature psammites with heterogeneous grain sizes, tran-
sitioning to feldspathic psammites and even arkosic sandstones.
Concurrently with this lithology, eruptive elements of dikes from the
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Serra Geral formation occur, composed of intrusive bodies of tholeiitic
basalt (Nanni et al., 2019). This complex lithology has contributed to the
formation of different soil classes. A conventional soil class map was
constructed by Bazaglia Filho et al. (2013) for the area. In this map, five
soil classes were identified at the first categorical level of SiBCS.

Using our oxide maps, we performed an unsupervised classification
using the K-means algorithm. This classification generated a map con-
taining groups based on the content of oxides. All six oxide maps (Fe3Os,
Al;03, and SiO; in the 0-20 cm and 80-100 cm layers) were used as
input variables in the classification. Additionally, we included the Ki
maps from both layers as input variables. The number of groups was set
to five, representing the number of soils from the conventional soil class
map. Finally, we compared the resulting map from the unsupervised
classification with the conventional soil class map.

3. Results and Discussion
3.1. Descriptive statistics

The main soil oxide contents are highly variable among samples and
depths (Fig. 2). The Fe;03 contents ranged from 0 to 385 g kg™!, SiO,
varied from 0 to 390 g kg ™!, and Al,03 ranged from 0.34 to 396 g kg~
The contents of these oxides in the soil clay fraction are related to two
factors: the type of parent material and its degree of weathering
(Schaefer et al., 2008). The high variability observed in oxide contents is
explained by the extensive geodiversity throughout the Brazilian terri-
tory ( de Paula Silva et al., 2021). Differences were also observed in the
contents between the evaluated layers. All studied oxides have higher
concentrations in the 80-100 cm layers (Fig. 2). Minor differences were
observed for Fe;O3, where the median content in the 0-20 cm layer was
41 g kg™!, and in the 80-100 cm layer it was 57 g kg~'. On the other
hand, for SiO, and Al,03 oxides, the differences were more pronounced,
with median contents in the 0-20 cm layer of 118 and 100 gkg ™!, and in
the 80-100 cm layer of 163 and 154 g kg™}, respectively. The surface
layers have greater interaction with the weathering agents causing a
more intense loss of elements than in the deeper layer, especially in
tropical regions, resulting in lower quantities of oxides in the surface
layers (Guimaraes et al., 2021).

3.2. Spearman correlation between soil clay fraction major oxides and
environmental covariates

The Spearman correlation analysis between the environmental
covariates and the oxides revealed that, for all the oxides, the bands of
SYSI showed the highest correlations (Fig. 3a). Among the bands of the
SYSI, SWIR2 showed the highest correlation values, ranging from —0.46
(for SiO; in the 80-100 cm layer) to —0.63 (for Fe;Os in the 0-20 cm
layer). Pedogenic oxides are components of the soil clay fraction, and an
increase in their content tends to reduce the reflectance intensity
throughout the spectrum, resulting in a negative correlation in the re-
gions of the spectrum covered by the SYSI bands, principally in the SWIR
region (Terra et al., 2018). Different correlation values of oxides with
SYSI were observed among the studied soil layers, with the 0-20 cm
layer consistently showing higher correlations when compared to the
80-100 cm layer. This is due to the reflectance collected by satellites
only comprises the surface layer of the soil, thus ensuring a direct
relationship with oxide content in the 0-20 cm layer and an indirect
relationship in the 80-100 cm layer ( de Mendes et al., 2019; Rosin et al.,
2023).

Regarding the remaining environmental covariates (terrain attri-
butes), a positive correlation with oxide concentrations was observed.
According to Marques et al. (2004), most high-altitude areas in Brazil
are characterized by older parent materials that have undergone more
intensive weathering, resulting in higher concentrations of pedogenic
oxides in the clay fraction of the soil. Among the terrain attributes,
elevation and slope had the highest correlation values with oxides. Only
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Fig. 2. Descriptive statistics of major soil oxides data observed in the study area.

SiO4 in the 80-100 cm layer showed no correlation with elevation. The
correlations with elevation ranged from 0.21 for SiO, in the 0-20 cm
layer to 0.40 for Fe3Og in the 0-20 cm layer. In addition, the correlations
with slope ranged from 0.15 for SiO5 in the 80-100 cm layer to 0.27 for
Fe;03 in the 0-20 cm layer. The higher correlation values observed
between elevation, slope, and Fe;O3 content can be attributed to the
presence of a basaltic lithological substrate (basalt from the Serra Geral
Formation, which is rich in iron) and the occurrence of flattened sum-
mits. These geomorphological and geological conditions favor intense
chemical weathering, soil homogenization, and ferralitization processes,
leading to the development of deeper soils with elevated Fe,O3 contents
(Mello et al., 2022, 2023). In contrast, soils at lower elevations are
typically formed over siltstone substrates and fluvial sediments, which
contain lower iron concentrations. In these areas, ferralitization is less
advanced, and clay illuviation predominates, resulting in lower Fe;O3
contents. Additionally, drainage is often impeded by the presence of
argillic horizons, and elutriation processes in the surface horizons
further reduce iron accumulation by leaching fine particles, thereby
increasing the relative concentration of SiOy (Mello et al., 2022, 2023).

3.3. Performance of RF models for soil clay fraction major oxides
prediction

The best model performances were observed in the surface layers, for
all oxides, especially for Fe;O3 in the 0-20 cm layer (RMSE = 49.8 g.
kg~!, RPIQ = 1.82 and R? = 0.62) (Fig. 3b). Conversely, Si;Os pre-
sented the lower values, mainly for the 80-100 cm layer (RMSE = 65.3
g.kg_l, RPIQ = 1.50 and R? = 0.22). This superior performance in the
surface layer can be attributed to the SYSI bands that represent the soil
surface reflectance, and as demonstrated in section 3.2, showed the
highest correlations with the oxides among all environmental
covariates.

The Fe;03 oxide showed more accurate models than SiO, and Al;03
(Fig. 3b). It occurred due to the less generalized occurrence of Fe,O3 in
soil, being present in higher concentrations under specific conditions of
relief, climate, and parent material (Bigham et al, 2002; Wir-
iyakitnateekul et al., 2007). On the other hand, SiO5 and Al,O3 are
present in several soil minerals, such as kaolinite, illite, feldspar, and
others, with generalized occurrence in Brazilian territory (Schaefer
et al., 2008). Besides, the Fe;0O3 showed higher Spearman correlations
with environmental covariates, than SiO5 and Al;03, mainly with SYSI
bands and elevation, as explained above, which is key to explaining the
accuracy of RF prediction models.

3.4. Soil clay fraction major oxides maps

The predicted maps of oxides (Fig. 4) comprised nearly 3.48 million
km? (~40 % of the national territory), which matches the area covered
by the SYSI with bare soils between 1982 and 2021. These maps mainly
span the agricultural areas of the country, where land cover tends to be
removed due to agricultural practices. The maps for the 80-100 cm layer
showed higher concentrations for all oxides, mainly SiO,, following the
patterns observed in the soil dataset (Fig. 2). On the other hand, the
maps of the 0-20 cm layer exhibited greater spatial variability. The
increased spatial variability observed in the surface layer is a attributed
of more intense weathering processes than in the subsurface layer
(Poppiel et al., 2019; Rossel, 2011).

Fe,05 exhibited the highest variation: 17.5-232 g.kg™! (0-20 cm
layer) and 29-211 gkg™! (80-100 cm layer). Subsequently, Al,Os
ranged from 26-207 g.kg™! (0-20 cm layer) to 88-192 g.kg ™! (80-100
cm layer), while SiO5 ranged from 50.5-170 g.kg-1 (0-20 cm layer) to
116-200 g.kg~! (80-100 cm layer). Despite having slightly higher
contents in the 80-100 cm layer, the spatial distribution of Fe;O3 con-
tents is similar in both mapped layers (Fig. 4a and 4b). Approximately
61 % of the mapped area in the 0-20 cm layer and 57 % in the 80-100
cm layer consist of soils with low iron content (hypoferric soils). Addi-
tionally, 9 % and 18 % correspond to soils with moderate iron content
(mesoferric soils), while 30 % and 25 % represent soils with high iron
content (ferric soils), respectively. Moreover, the clay translocation that
occurs in some locations can increase the variability in the surface layer
and decrease it in the subsurface (Schaefer et al., 2008).

Oxides Al and Si exhibit distinct spatial behaviors between the
evaluated layers (Fig. 4d, 4e, 4g, and 4h). The contents of these oxides
are significantly higher in the subsurface layer throughout the mapped
area. In the 0-20 cm layer, 49 % and 38 % of the mapped area consist of
soils with low contents (<80 g.kg’l) of AlgOy and SiO,, respectively
(Fig. 4f and 4i). In contrast, in the 80-100 cm layer, there are no soils
containing low contents. Instead, approximately 64 % of the mapped
areas contain soils with Al,O3 contents ranging from 80 to 150 g.kg ™,
and 62 % contain SiO, contents above 150 g.kg ™. In tropical soils, the
majority of aluminum (Al) and silicon (Si) are found within the struc-
tures of clay minerals, primarily in kaolinite, resulting from the process
of monosialization. Due to the process of clay illuviation, these elements
are transported to subsurface horizons (Quénard et al., 2011; Schaefer
et al., 2008). On the other hand, iron (Fe) is predominantly found in
pedogenic oxides such as hematite and goethite, which are products of
intense weathering (Schwertmann and Taylor, 1989). The main pedo-
genetic process in soils with high iron content and intense weathering is
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Fig. 3. Performance evaluation of soil clay fraction major oxides prediction using out-of-the-bag validation. (a): Spearman’s correlation analysis of environmental
covariates with soil oxides, (b) metrics evaluating the models used to predict soil oxide maps, (b.1): Root Mean Squared Error (RMSE), (b.2): Ratio of Performance to
InterQuartile distance (RPIQ), (b.3): coefficient of determination (R2), * Significant at 5% probability level.

ferralitization (Breemen and Buurman, 1998). Iron oxides form stable
complexes with organic matter and other soil particles, limiting their
movement within the soil profile (Schwertmann and Taylor, 1989; Van
Wambeke et al., 1983).

The predicted oxide contents are strongly correlated with parent
materials. The highest contents were observed in regions composed of
the basaltic flows of the Serra Geral formation, while the lowest contents
were found in soils formed on sandstones (Fig. 5a). A more detailed view
of the oxide contents across the main parent materials of Brazilian soils
is presented in Fig. 5b. The highest average oxide contents were
observed in soils developed on volcanic basaltic rocks (Vb) (FexO3: 172
and 162; Al,0O3: 143 and 168; SiO5: 140 and 188 g.kg’1 in the 0-20 and
80-100 cm layers, respectively), followed by soils derived from volcanic
rhyolitic rocks (Vr) (Fe20O3: 133 and 133; Al;03: 121 and 151; SiOy: 125

and 180 g.kg™! in the 0-20 and 80-100 cm layers, respectively). The
lowest contents were observed in soils derived from metamorphic me-
dium to high-grade rocks (Mmhg) (Fe;Os3: 78 and 85; Al;03: 83 and 121;
SiO2: 92 and 153 g.kg-1 in the 0-20 and 80-100 cm layers, respectively)
and sedimentary siliciclastic rocks (Ss) (FepOs: 88 and 195; Al;O3: 91
and 126; SiOy: 99 and 159 g.kg‘1 in the 0-20 and 80-100 cm layers,
respectively).

Volcanic rocks are rich in minerals such as amphiboles, pyroxene,
and olivine, which are less crystallized and more susceptible to chemical
and physical weathering (Schenato et al., 2003). Additionally, these
minerals contain significant amounts of iron, giving rise to ferric soils
(Araujo et al.,, 2014; Schaefer et al., 2008). Due to the advanced
weathering of these soils, they also tend to have higher clay contents,
resulting in elevated concentrations of silicon and aluminum, which are
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constituents of kaolinite and gibbsite (Schaefer et al., 2008). The lower
contents observed in soils derived from Mmhg rocks are due to their
chemical composition. These rocks are typically gneisses, which have
undergone significant transformations in their mineralogy due to
intense metamorphism (White et al., 2017). Despite the mineralogical
and structural variations, gneisses predominantly exhibit minerals that
are resistant to weathering, such as K-feldspars, muscovite, and quartz,
along with accessory minerals like zircon (Buol and Weed, 1991;
Camara et al., 2021). Similar to Mmhg rocks, Sedimentary Siliciclastic
rocks also predominantly consist of minerals that are highly resistant to
chemical weathering, particularly quartz (Garzanti, 2019). This results
in soils with lower clay contents and consequently lower oxide con-
centrations (Martins et al., 2005; L. S. Silva et al., 2019).

In soils developed from plutonic rocks, the oxide contents were
higher in Plutonic Gabbroic and Ultramafic (Pgu) rocks compared to
Plutonic Granitic (Pg) rocks. Pgu rocks have a mineralogical composi-
tion similar to basalt, with a notable presence of ferromagnesian min-
erals that are more easily weathered (Guimaraes et al., 2017; Silva et al.,
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2022). On the other hand, Pg rocks are predominantly composed of
highly crystallized minerals that are strongly resistant to chemical
weathering (Heuze, 1983). Median oxide contents exceeding 80 g-kg™!
were observed in soils developed on Sedimentary Carbonatic (Sc) rocks.
These values differ from those commonly reported in the literature,
especially for Fe;Os, as soils formed on Sc rocks usually exhibit contents
below 80 g-kg_1 (de Souza Oliveira et al., 2021; Pinheiro Junior et al.,
2021; Silva et al., 2017). This inconsistency may be attributed to the
coarse lithological mapping scale (1:5,000,000), in which regions
interpreted as Sc rocks may actually include other lithologies with
higher iron contents.

3.4.1. Soil clay fraction major oxides predictions uncertainty

The uncertainties of the predictions were represented by the PIR
(Fig. 6). In general, PIR values ranged from 0.1 to 0.5, with higher values
observed in the subsurface layers. The lowest uncertainties were
observed in the Fe;03 maps, which also exhibited the highest prediction
accuracy metrics. Across all maps, higher PIRs were observed in regions



J.T.F. Rosas et al.

0.1

Geoderma 460 (2025) 117425

Fe,O, (80-100 cm)

AlLO, (80-100 cm)

)

SiO, (80-100 cm)

"

PIR

-
0.5

(2} Brazilian States
®® Waterbodies
5 Unmapped

Fig. 6. Uncertainty Predicted major soil oxides.

with lower sampling densities. As suggested by Wadoux et al. (2020),
the estimation of uncertainties can be used to identify under-sampled
locations and guide future sampling efforts. The widest PIR ranges
were observed for Al;Os, and SiO» in the 80-100 cm layer, indicating
that these maps are the least reliable among those generated in this
study.
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3.5. Soil clay fraction major oxides maps applications

3.5.1. Maps of weathering index (Ki)

The Ki index maps calculated based on SiO2 and Al,O3 contents are
presented in Fig. 7. We generated Ki maps for two soil layers (0-20 cm
and 80-100 cm). The map of the surface layer (Fig. 7a) revealed greater
spatial variability in Ki values, ranging from 0.67 to 4.2, with values
below 2 predominating across most of the mapped area. In contrast, the
subsurface layer map showed lower spatial variability, with values
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the Ki index calculated from laboratory analyses in the two studied layers. The pedological map used for comparisons was the legacy soil map of Brazil published by
IBGE, (2021); The geological map used for comparisons was published by Gomez et al. (2018).
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between 1.5 and 2.9 (Fig. 7b), and a significant prevalence of areas
containing Ki values above 2. These maps are consistent with the Ki
values calculated from laboratory-analyzed soil samples, as shown in
Fig. 7c.

Ki values predominantly equal to or below 1.5 (in the 0-20 cm layer)
are observed in the region represented in Fig. 7a.1. This region corre-
sponds to a portion of the Cerrado biome, where the predominant soils
are Ferralsols. The Ferralsols of the Cerrado exhibit varying origins,
ranging from sedimentary rocks such as the sandstones of the Parana
Basin to basaltic rocks of the Serra Geral Formation and Cenozoic
Lateritic Cover (Oliveira et al., 2023). The occurrence of plateaus asso-
ciated with the tropical climate has contributed to an intense degree of
weathering of these soils, making them the most weathered in Brazil
(Curi and Franzmeier, 1984; Oliveira et al., 2023). In general, their
mineralogy exhibits a lower presence of primary weatherable minerals
and a higher presence of kaolinite and oxides, with the soils tend to be
more gibbsitic in the higher areas of the plateaus (Schaefer et al., 2008).

The Ki maps represent the spatial variations in the degree of
weathering in soils formed under different circumstances, as can be
observed in Fig. 7a.4. The delimited area in the figure encompasses a
region between the states of Bahia and Tocantins, as well as the northern
part of Goias. This region exhibits a strong contrast between highly
weathered soil classes (Ferralsols) on one side, which are found in the
extensive plateau of the Urucuia geological formation, and Cambisols
and Regosols formed on the Bambui group on the other side. Values of Ki
ranging from 1.91 to 3.10 were observed by Maranhao et al, (2016)
when studying profiles formed on the Bambui group in this region,
which is consistent with our results.

Higher values of Ki in the surface layer (predominantly > 2) are
observed in the regions encompassing the Pantanal and Caatinga bi-
omes, where younger soils such as Leptosols, Regosols, Luvissols, Pla-
nosols, Solonetz, and Vertisols are predominant. Fig. 7a.2 and 7a.3
provide a zoom-in on these regions, offering a more detailed visualiza-
tion. The Pantanal is a vast floodplain, and as such, hydromorphism is
the main pedogenetic process in its soils, reducing weathering rates (de
Coringa et al., 2012). Additionally, the parent materials in the Pantanal
region often consist of carbonate sediments or exhibit a significant
presence of sodium (Andrade et al., 2020; de Oliveira et al., 2021). The
chemical elements released during the weathering of these sediments
that remain in the soil solution increase the pH, favoring the neo-
formation of 2:1 clay minerals (Couto et al., 2023). Contrary to the
Pantanal, the Caatinga biome is one of the largest tropical dry areas in
the world (Araujo et al., 2022). Furthermore, the Caatinga is the oldest
semiarid landscape in South America, and its semiarid climate strongly
influences the formation of its soils (Aratjo Filho et al., 2023). The
majority of soils in this biome contain significant amounts of primary
minerals and 2:1 clay minerals due to the low rates of weathering
(Oliveira et al., 2019).

The map of the 80-100 cm layer showed that subsurface soils are less
weathered and more similar to the parent material than the surface soils.
It is possible to observe that lower Ki values are found in regions
composed of rocks that undergo weathering more easily, such as basalt.
In Fig. 7b.1, we selected a region where soils have developed on
different parent materials. Soils derived from quartzose rocks (Bauru
Group Formation, Botucatu Formation, and Passa Dois Formation)
exhibit Ki values above 2 in the subsurface layer. On the other hand,
soils formed on the Serra Geral Formation (ultramafic basaltic rocks)
display Ki values lower than 2, indicating greater weathering in the
subsurface.

As observed by Wilford (2012), the intensity of weathering plays a
crucial role in the transformation of primary minerals into secondary
components, such as clays and oxides, which in turn influence the hy-
drological, geochemical, and geophysical properties of soils. Although
our research focused on spectral and terrain covariates, other method-
ologies—such as the approach proposed by Wilford (2012)—provide
valuable insights into how the integration of topographic and
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radiometric data can enhance our understanding of regolith properties.

Weathering intensity, which integrates airborne gamma-ray spec-
trometry data with elevation information from the Shuttle Radar
Topography Mission (SRTM), can serve as a promising tool to improve
soil property modeling, particularly in areas where soil characteristics
exert strong influence. Although we did not incorporate radiometric
data in our study due to the lack of high-resolution information, the
weathering intensity methodology using radiometric inputs may be
employed in future research, should such data become available—thus
refining the prediction of soil attributes in our study area.

Moreover, Wilford’s (2012) methodology can be adapted to assess
weathering intensity across different landscapes and regions, as
demonstrated by Mello et al. (2023) in tropical landscape soils,
providing complementary insights to our terrain-based analysis.

3.5.2. Application in pedological maps

The study area comprises five soil classes: Cambisols, Chernozems,
Nitisols, Lixisols, and Leptosols (Fig. 8a), with a predominance of Lix-
isols. Unsupervised classification, performed using the oxide maps,
created groups that represented the observed soil classes on the pedo-
logical map (Fig. 8b). The best representations were found in the regions
corresponding to Nitisols and Lixisols, represented by groups (1) and (2),
respectively. The Nitisols in these regions developed over iron-rich
basaltic rocks and easily weatherable primary minerals, thus exhibit-
ing high oxide content (Silvero et al., 2021b), due to intense weathering
and ferralitization processes, in contrast to the other soils in the area that
have developed on parent materials moderately rich in quartz (Nanni
et al., 2019). This characteristic allowed for the distinction of this soil
class from the others due to its high oxide content and pronounced de-
gree of weathering. In contrast, in this region, Lixisols are soils with a
moderate degree of weathering when compared to Nitisols, where the
pedogenetic process of clay illuviation is predominant (Embrapa Solos,
2018). This process favors the formation of sandy surface layers and
clayey subsurface layers. As a result, there are significant differences in
oxide content between the layers (Quénard et al., 2011). This charac-
teristic allowed for the discrimination of these soils into a single group.

In the regions encompassing the soil classes Cambisols, Chernozems,
and Leptosols, there was no clear discrimination between the groups.
These soils share common characteristics such as a low degree of
weathering, significant amounts of primary minerals and 2:1 clay min-
erals, and shallow depth (Embrapa Solos, 2018). We believe that due to
these similarities, it was challenging to individualize these soils into
distinct groups.

3.6. Limitations and challenges

Mapping large territories, such as Brazil, is a laborious task that poses
several challenges, especially when soil attributes are difficult to
determine in the laboratory. In this study, clay fraction oxides were
mapped, which are difficult to determine in the laboratory due to the
high costs of analysis and the polluting potential of the reagents
involved. However, these oxides are of great importance for the un-
derstanding of soils.

One of the major limitations of this study was the low sampling
density, with many areas still under-sampled. The uncertainty maps
indicate that many locations require further efforts for future collections
and analyses. Another limitation was the absence of environmental
covariates that represented the parent material in greater detail since
soil oxides have a direct relationship with this formation factor. Despite
this, the soil oxides obtained were consistent with the existing geological
maps at coarse scales.

The soil maps showed great agreement with the legacy pedological
maps and the understanding of Brazilian soils. However, the accuracy
metrics, especially R%, were not high, ranging from 0.22 to 0.62, and the
RMSE was not so low, ranging from 49.8 to 65.3 g.kg ™!, suggesting that
the maps may contain significant errors in some regions, as shown in the
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Fig. 8. Comparisons between (a) a detailed pedological map, (b) Class map obtained by unsupervised classification of soil oxide, and Ki maps.

uncertainty maps, especially in the subsurface maps. Despite this, the
maps follow the expected spatial distribution. Another major limitation
is the mapping in areas where native vegetation remains intact. In our
study, SYSI was the most important covariate, but it is not possible to
obtain this covariate for the entire Brazilian territory, limiting the map
only to agricultural areas.

In future soil mapping, some major challenges remain, including: (I)
improving the database to contain data from under-sampled areas; (II)
developing covariates that represent parent materials with greater
detail; and (III) developing covariates that can map these oxides in areas
where vegetation has never been removed and where SYSI cannot be
obtained.

4. Conclusions

It was possible to predict soil clay fraction major oxides (Fe2Os, SiOo,
Al,03) with high spatial resolution (30 m) using satellite-derived data
and ML. Furthermore, the prediction of our maps was considered
satisfactory, although the R? values are not high, ranging from 0.22 to
0.62, and the RMSE was not as low, ranging from 49.8 to 65.3 g.kg ™.
The predicted oxide maps covered approximately 3.48 million km?
(~40 % of the national territory), encompassing all areas that were used
for agriculture during the period from 1982 to 2022.

The oxide contents were strongly related to the pedogenetic pro-
cesses of soil formation, such as hydromorphism, clay illuviation,
monosialitization, and ferralitization. Additionally, a significant rela-
tionship between soil-forming factors, such as parent material and
climate, was observed.

The maps of soil clay fraction major oxides showed potential for
inferring the degree of weathering of soils using the weathering index Ki.
The Ki index demonstrated consistency with legacy pedological maps,
where higher weathering was observed in regions predominantly
composed of Ferralsols, while less weathered soils were found in regions
dominated by Neosols, Luvissols, Planosols, Solonetz, and Vertisols.

Oxide maps exhibited potential to assist in the construction of
pedological maps, capable of distinguishing regions belonging to the
same soil class. Furthermore, the findings provide valuable information
for all agricultural regions in Brazil, with high spatial resolution. This
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information can aid researchers, farmers, and consultants in under-
standing the dynamics of their soils and making informed decisions. For
future mappings, major challenges include improving the database by
incorporating data from under-sampled areas and developing detailed
covariates to represent parent materials. Additionally, there is a need to
develop covariates capable of mapping oxides in areas where natural
vegetation remains and SYSI data cannot be obtained.
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