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A B S T R A C T

The major oxides in the clay fraction of tropical soils are iron (Fe2O3), aluminum (Al2O3), and silicon (SiO2) 
oxides, which are responsible for the soil’s capacity to provide multiple ecosystem services. Therefore, they are 
used to classify the soils into different pedological classes. Despite their importance of these oxides, quantifying 
them on a large scale presents significant challenges. The most common method is laboratory sulfuric acid 
digestion, which is expensive, complex, and environmentally detrimental. To overcome these issues and provide 
faster results, we developed a satellite technique associated with machine learning (ML) to map Fe2O3, Al2O3, 
and SiO2 in all agricultural areas in Brazil at 30 m resolution. Additionally, we tested the feasibility of the 
generated maps to infer soil weathering, and assist in the construction of pedological maps. A dataset, comprising 
5,330 sites (0–20 cm and 80–100 cm) across all 27 states was employed in prediction. Six spectral variables 
obtained from the historical Landsat series (bare soil) and seven terrain attributes derived from a digital elevation 
model were employed to generate the Fe2O3, Al2O3, and SiO2 maps, using the Random Forest algorithm. The 
predicted maps of oxides covered nearly 3.48 million km2 (~40 % of the national territory). The best predictions 
were observed for Fe2O3 in the 0–20 cm layer (RMSE = 49.8 g.kg− 1, RPIQ = 1.82, and R2 = 0.62), while the 
worst predictions were for SiO2 in the 80–100 cm layer (RMSE = 65.3 g.kg− 1, RPIQ = 1.50 and R2 = 0.22). It was 
possible to infer soil weathering using the Ki index. Despite the models not showing such high R2 values, the 
results are aligned with legacy maps, highly weathered soils were observed in the plateaus of the Cerrado biome, 
while younger soils were observed in the arid Caatinga biome and waterlogged soils in the Pantanal biome. The 
generated maps also demonstrated a high potential for grouping pedological soil classes. They also revealed a 
relationship between oxide contents and the NDVI of sugarcane crops, indicating potential applications in crop 
management. Moreover, this satellite-based technique, supported by ML, presents a plausible approach to predict 
oxide fraction at high spatial resolution for large areas.

1. Introduction

Soil is involved in several ecosystem services (ES) that are of utmost 
importance for the maintenance of life on the planet (McBratney et al., 
2014), such as provisioning (food, fiber, and timber production), regu
lating (climate, flood, and water regulation), cultural and supporting 
(nutrient cycling, soil formation) (Silvero et al., 2023). This ability is 
determined by various intrinsic soil properties, such as texture, organic 
carbon content, depth, bulk density, available water, and cation 

exchange capacity (Adhikari and Hartemink, 2016; Hewitt et al., 2015). 
These properties have different spatial distributions and can vary 
considerably across the Earth’s crust, influencing the soil’s capacity to 
supply ecosystem services (Adhikari and Hartemink, 2016). In tropical 
soils, characterized by a high degree of weathering, the clay fraction 
oxides are distinguished in provisioning ES (Kirsten et al., 2021; Silva 
et al., 2021). Soil oxides play several roles in the soil matrix, influencing 
the maintenance of soil structure, potential for organic carbon and water 
retention, the pH level, and availability of nutrients for plants, among 
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others (Kirsten et al., 2021; Ukabiala et al., 2021). Thus, quantifying 
these oxides can help in understanding the ability of soil to provide ES.

The clay fraction (particles <0.002 mm) major oxides of tropical 
soils are iron oxides (Fe2O3), aluminum oxides (Al2O3), and silicon ox
ides (SiO2) (Schaefer et al., 2008), and they are used in the Brazilian soil 
classification system (SiBCS). The Fe2O3 content is used in SiBCS for 
classification at the third level of the classification hierarchy, while 
Al2O3 and SiO2 are used to measure the degree of soil weathering 
(Embrapa, 2018). Despite the influence of these oxides on the soil, there 
is a lack of effort to map them in the tropical regions of the world. 
Principally because, laboratory methodologies are expensive, time- 
consuming, and have a high potential for environmental pollution (its 
quantification is performed by using acid digestion with strong acids 
such as sulfuric acid), making it difficult to obtain information on these 
oxides for large areas, with high spatial resolutions (Silva et al., 2020). 
However, despite the challenge of mapping the contents of these oxides, 
innovative techniques for digital soil mapping (DSM) have the potential 
to create high-resolution maps detailing oxide contents, even with low 
sample densities and challenging conditions of complexity inherent in 
soil systems (de Mendes et al., 2022; Safanelli et al., 2021b).

The DSM approach involves deploying robust mathematical models 
capable of predicting a given soil property based on environmental 
covariates (Hengl et al., 2017; Vaysse and Lagacherie, 2015). Due to 
advances in computational techniques, it is currently possible to 
implement robust machine learning (ML) algorithms that aim to 
generate predictions with enhanced accuracy and precision (Wadoux 
et al., 2020). The Random Forest (RF) algorithm has been the most 
widely used in DSM studies (Padarian et al., 2020). RF creates robust 
models composed of multiple decision trees with low correlation among 
each other. Due to these characteristics, RF is able topredict with high 
accuracy and a minimal overfitting rate in the models (Sheykhmousa 
et al., 2020; Wadoux et al., 2020).

The final quality of DSM outputs depends on the environmental 
covariates used for the prediction of specific soil properties. The envi
ronmental covariates express soil formation factors and represent parts 
of the physical, chemical and organisms processes that govern the 
spatial variation of soil (McBratney et al., 2003; Wadoux et al., 2020). 
Among the environmental covariates, the most commonly used ones are 
digital elevation models, vegetation indices, climate covariates, 
geological maps, and surface reflectance obtained by satellites 
(Lamichhane et al., 2019; Ma et al., 2019). In addition to these cova
riates, recent studies propose using environmental covariates that 
represent bare soil reflectance (Roberts et al., 2019; Rosin et al., 2023; 
Safanelli et al., 2021b). Despite the great potential of bare soil reflec
tance in DSM, obtaining this reflectance is a major challenge primarily 
due to the persistent presence of vegetation covering soil surfaces 
throughout the year. To solve this problem, Demattê et al. (2018)
developed an algorithm (Geospatial Soil Sensing System − GEOS3) 
capable of retrieving bare soil reflectance from a historical series of 
Landsat images by aggregating the pixels that were exposed at least once 
throughout the historical series into a synthetic soil image (SYSI).

Several studies worldwide have demonstrated the potential of 
exposed soil reflectance for soil attribute mapping (Gasmi et al., 2021; 
Rizzo et al., 2020; Roberts et al., 2019; Silvero et al., 2021a; Yang et al., 
2020). The prediction of soil attributes based on reflectance has been 
consolidated through the use of laboratory spectroscopy (Barra et al., 
2021). Soil attributes concentrations alters their spectral signature, at 
specific wavelengths or across the entire electromagnetic spectrum, such 
as the iron oxide content altering reflectance in the red region, or clay 
content altering reflectance intensity across the spectrum (Ackerson 
et al., 2015; Demattê et al., 2007). This characteristic makes the 
reflectance of exposed soil when applied in DSM, one of the most 
important environmental covariate in predicting soil attributes (Poppiel 
et al., 2019; Rosin et al., 2023).

We expect that the reflectance of topsoil measured by satellite will be 
related to the contents of Fe2O3, Al2O3, and SiO2 oxides present in the 

clay fraction, as these oxides influence electronic transitions and mo
lecular vibrations in the 350–2500 nm spectral range. Thus, we aimed 
to: (i) quantify and map the contents of Fe2O3, Al2O3, and SiO2 using 
remote sensing data integrated with ML techniques at both surface and 
subsurface soil depths; and (ii) evaluate whether the resulting oxide 
maps can be used to infer the degree of weathering in Brazilian agri
cultural soils, support soil classification, and assist in agricultural crop 
management. The high-resolution maps (30 m of spatial resolution) 
generated for all agricultural areas of Brazil are expected to support 
researchers, farmers, and consultants in better understanding soil dy
namics and guiding more informed land use decisions.

2. Materials and methods

2.1. Study area

The study area is represented by the entire agricultural territory of 
Brazil. Brazil is a country with large dimensions (approximately 8.5 
million km2) and high soil variability. This soil variability is due to the 
formation factors, mainly, the climate, the time of formation, the parent 
material, and the topography (Schaefer et al., 2023). Brazil’s climate 
varies across the territory between tropical, subtropical and semiarid 
(Alvares et al., 2013). The time formation of parent material that gave 
rise to Brazilian soils primarily occurred during the Cenozoic, Mesozoic, 
Neoproterozoic, and Paleoproterozoic eras (Schaefer et al., 2023). 
Regarding the parent material, the majority of rocks are sedimentary, 
formed by sediments with diverse origins, such as weathering of the 
Andes (Amazon basin), ocean floor (São Francisco craton region), and 
desert sediment as in the Bauru and Botucatu formations (Schaefer et al., 
2023). In addition to sedimentary rocks, a large part of Brazil’s geology 
is composed of volcanic and plutonic rocks (de Alkmim, 2015). In the 
region encompassing the states of Paraná, São Paulo, Rio Grande do Sul, 
Minas Gerais, Goiás, and Mato Grosso do Sul, there is a large mass of 
basaltic rocks formed from basaltic eruptions (de Alkmim, 2015). These 
rocks are extrusive and contain higher levels of iron and easily weath
erable minerals (Schaefer et al., 2008). Along the Brazilian coastline, 
many plutonic rocks were formed underground (i.e., intrusives) during 
the continental drift (de Alkmim, 2015). These rocks possess highly 
crystallized minerals like quartz. Another factor of formation with high 
variability in Brazil is the topography. Many mountains are present in 
coastal regions, while the interior of the country has large plateaus that 
favor soil weathering (Schaefer et al., 2023). There are also extensive 
floodplain basins, such as the Pantanal (Couto et al., 2023). All of these 
variations in soil formation factors contribute to the existence of soils 
with different levels of weathering and, consequently, different levels of 
oxides that were mapped in this study.

2.2. Soil observations

The soil observations were derived from two sources: i) publicly 
available national soil profile databases with nearly 9119 sites (Samuel- 
Rosa et al., 2019), and ii) the Brazilian Soil Spectral Library with nearly 
45,000 sites (Demattê et al., 2019). The final database containing the 
soil observations used in this study was consolidated and modified in 
four different steps. The first step was to eliminate the sites with inac
curate coordinates (i.e., accuracy less than 100 m). In the second step, all 
the sites with information on at least one of the Fe2O3, SiO2, and Al2O3 
oxides were filtered. The pseudo-total concentrations of these oxides 
were obtained by sulfuric acid digestion, as proposed by Vettori (1969), 
with modifications proposed by Raij and Valadares (1974). This 
extraction method can access the oxides in the secondary minerals. 
Therefore, the extracted oxides mostly reflect the clay fraction of the 
soil.

Once the second step was completed, a total of 5330 sites were ob
tained, covering the entire Brazilian territory. These sites were submit
ted to a third step, which consisted of detecting those located in the areas 
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covered by SYSI. In the fourth step, the sites with irregular sampling (i. 
e., soil profiles), were subjected to interpolation along the profile to 
standardize the depths, making them suitable for our study, while the 
sites with 0–20 cm and 80–100 cm depths were maintained without 
interpolation. The interpolation method was the quadratic spline func
tion implemented in the GSIF R package (Hengl and Macmillan, 2019). 
The use of the quadratic spline function for the interpolation of soil at
tributes along the profile was proposed by Bishop et al. (1999), who 
showed that, in tests comparing it with other similar methods, it out
performed the alternatives; since then, it has been widely used in soil 
science studies s (Ellili-Bargaoui et al., 2020; Sulaeman et al., 2013; 
Tayebi et al., 2021). After interpolation, we obtained layers of 20 cm, 
starting at the soil surface to 100 cm depth. The 0–20 and 80–100 cm 
depths were used in this study because: 1) There are more observation 
points in these layers (because some points are sampled at these depths; 
2) We wanted to show the differences between the surface (A horizon) 
and the subsurface layers (B horizon), being the intermediary horizons 
less important for pedology studies in this case, where the SiBCS is 
considered and 3) The digital soil mapping for Brazilian territory is 
highly time-consuming. After all the steps were taken, the database was 
ready to be used. In the final database, each oxide had a different 
number of sites. In addition, the sampling density was also different for 
each depth used (Table 1).

2.3. Environmental covariates

The RF algorithm was used to fit predictive models for Fe2O3, Al2O3, 
and SiO2 oxides using the synthetic soil image (SYSI) and terrain attri
butes as covariates. A flowchart of the prediction process is shown in 
Fig. 1.

The concentrations of the oxides are directly associated with soil 
formation factors, which was one of the criteria for choosing the envi
ronmental covariates. Despite the great importance of all soil formation 
factors, only the relief factor was considered. It was impossible to use 
factors such as parent material and time due to low spatial resolution or 
lack of information. The climatic factor was not included because the 
covariates available in WordClim have a spatial resolution of 1 km. 
Additionally, these variables exhibit artifacts across the Brazilian terri
tory, such as unrealistic geometric patterns and longitudinal lines. 
Furthermore, for the organism factor, vegetation indices calculated from 
spectral information of the surface are commonly employed. According 
to Lamichhane et al. (2019), covariates of this nature exhibit an indirect 
relationship with soil properties. Consequently, we opted not to incor
porate them into our analysis. To represent the relief factor, we used 
environmental covariates that were previously used to predict soil at
tributes with satisfactory results in Safanelli et al (2021a). These terrain 
attributes were as follows: slope, altitude, north and east slope, hori
zontal curvature, vertical curvature, and a relief shape index. These 
variables were based on a digital elevation model (DEM) from the 
Shuttle Radar Topography Mission (SRTM) with 30 m spatial resolution 
(Farr and Kobrick, 2000). To calculate the environmental variables, the 
Terrain Analysis in Google Earth Engine (TAGEE) algorithm proposed by 

Safanelli et al. (2020b) was used. The individual information on the 
environmental covariates derived from the DEM is shown in Table 2.

For choosing the environmental covariates, we also adopted the bare 
soil spectral signature. Several studies have demonstrated that these 
oxides alter the reflectance intensity of soils (Demattê et al., 2009; Terra 
et al., 2018). Thus, it is possible to estimate their concentrations from 
spectral information. To obtain the spectral variables, the GEOS3 algo
rithm (Demattê et al., 2020, Demattê et al., 2018), developed within the 
Google Earth Engine, was used to generate the multispectral composite 
of bare soil and the frequency of soil exposure from 1982 to 2020, using 
the Landsat Surface Reflectance Collections at 30 m resolution (USGS, 
2021a; 2021b). GEOS3 is a data mining algorithm that extracts soil 
features from the historical collection of satellite images and aggregates 
the spatially sparse discovered soil fragments into a SYSI. The SYSI is the 
reflectance image, composed of six spectral bands (blue – band 1, green 
– band 2, red – band 3, NIR – band 4, SWIR1 – band 5, and SWIR2 – band 
6).

A set of rules was used to identify bare ground pixels in satellite 
images, based on spectral indices coupled with quality assessment bands 
to remove clouds, cloud shadows, inland water, photosynthetic vege
tation, and non-photosynthetic vegetation (e.g., harvest residues).. A 
pixel was considered bare soil when it had Normalized Difference 
Vegetation Index (NDVI) values between − 0.05 and 0.30 (masking 
green vegetation) and Normalized Burn Ratio 2 (NBR2) values between 
− 0.15 and 0.15 (masking crop residues). Pixels detected as bare soil 
were selected to compose the multitemporal collection. Each pixel that 
makes up the SYSI refers to the median value calculated among all pixels 
in the multitemporal collection for a given position. Thus, GEOS3 pro
duced an almost continuous representation of the topsoil reflectance, 
increasing the mapped area of the soil surface by combining and aver
aging the estimates frommultitemporal measurements. Detailed infor
mation on GEOS3, spectral indices, and sensitivity analysis can be found 
in previous studies (Demattê et al., 2020; Fongaro et al., 2018; Gallo 
et al., 2018; Safanelli et al., 2020a). All six SYSI bands were used as 
environmental variables to predict oxides; they are shown in Table 2.

2.4. Soil clay fraction major oxides prediction by random forest

In this study, a quantile regression forest (QRF) ML algorithm, an 
extension of the RF algorithm, was implemented to map the content of 
major oxides in the soil clay fraction across Brazilian agricultural areas. 
The RF, proposed by Breiman (2001), is a ML algorithm that operates by 
constructing a set of independent decision trees. Each tree is trained on a 
random sample of the training data. During prediction, each tree gen
erates an estimate, and the final prediction is determined by combining 
the estimates from all the trees (Breiman, 2001). The QRF proposed by 
Meinshausen (2006) provides a set of prediction quantiles using an 
empirical probability distribution rather than just a median value. These 
quantiles can be used to determine the prediction interval (PI), allowing 
inference about prediction uncertainties.

2.4.1. Model tuning, performance, and validation
The selected environmental covariates were used as independent 

variables to obtain soil oxide prediction models. At each soil sampling 
point, the values of the environmental covariates were collected using 
the bilinear sampling method, which considers some neighboring pixels 
within a radius of 100 m around the coordinate point. The bilinear 
sampling aims to reduce the effects of noisy pixels and the effect of 
coordinates with lower accuracy.

To optimize the best combination of hyperparameters for RF, a grid 
search procedure was performed to improve prediction accuracy. The 
following values were tested for each hyperparameter: number of trees 
in the forest (FS): 30, 60, 100, 200, and 500, number of random pre
dictors tested at splits of each tree (nRP): 3, 5, 9, 11, and 13, and min
imum number of samples at the tree (minSL): 10, 20, 30, 40, 50, 100, 
200, and 500.

Table 1 
Number of soil observations for each oxide throughout Brazil and in areas 
covered by SYSI.

Oxide Layer N◦ observations

Brazil SISY Coverage

Fe2O3 0–20 cm 5211 2715
80–100 cm 3671 1874

Al2O3 0–20 cm 4551 2253
80–100 cm 3262 1608

SiO2 0–20 cm 4750 2380
80–100 cm 3393 1697

SYSI: Synthetic Soil Image.
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Fig. 1. Flowchart of the soils clay fraction major oxides prediction and its possible applications tested. GEOS3: Geospatial Soil Sensing System; SYSI: Synthetic Soil 
Image; DEM: Digital Elevation Model; STRM: Shuttle Radar Topography Mission; TAGEE: Terrain Analysis in Google Earth Engine; TA: Terrain Attributes; RF: 
Random Forest; Ki: Weathering index.
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Bootstrapped sampling was used to determine the training dataset 
for the model, while the validation dataset was defined by the remaining 
samples (out-of-bag) that were not selected in each bootstrapping. 
Bootstrapping is a method that randomly samples observations from the 
original dataset to create a new dataset for training prediction models. 
This training dataset is generally composed of approximately 67 % of the 
original dataset. We applied the bootstrap method up to 500 times, 
which corresponds to the maximum number of trees tested for the 
random forest.

The optimal combination (FS, nPR, and minSL) with the smallest 
Root Mean Squared Error (RMSE) for the validation set was selected for 
each soil attribute. The accuracy of the developed models was evaluated 
by the coefficient of determination (R2), RMSE, and Ratio of Perfor
mance to InterQuartile distance (RPIQ) of the calibration, validation, 
and test data sets. The calculation of these parameters was performed 
according to the equations (1) to (5). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(∑n
i=1(ŷi − yi)

2

n

)√
√
√
√ (1) 

R2 = 1 −
SSresiduals

SStotal
(2) 

SSresiduals =
∑n

i=1
(ŷi − yi)

2 (3) 

SStotal =
∑n

i=1
(yi − y)2 (4) 

RPIQ =
IQRy

RMSEŷ
(5) 

where y is the vector of measured values, ŷ is the vector of predicted 
values, y is the mean of vector y, n is the number of soil observations 
and, IQR is the interquartile range.

2.4.2. Evaluation of predictions
The evaluation of predictions was conducted following the selection 

of predictive models. For this evaluation, 400 geo-referenced sites 
covering the entire Brazilian territory were provided by private sources, 
exclusively for map validation purposes, with all site data de-identified. 
Each site consisted of two soil samples, one for each mapped layer. The 
sulfuric acid digestion method described in Section 2.2 was used to 
determine Fe2O3, Al2O3, and SiO2. These samples comprised a new 
database called the test database, to which environmental covariates 
were also added, as described previously. The test database was not 

utilized during any of the training and validation steps. The selected 
predictive models were applied to this new database to predict the oxide 
contents. After the predictions, accuracy was assessed using the R2, 
RMSE, and RPIQ metrics.

2.4.3. Soil clay fraction major oxides and uncertainty mapping
The best combination of FS, nPR, and minSL, was used to predict the 

major soil oxides for the study area. The raster files corresponding to the 
environmental covariates were used as input data in Fe2O3, Al2O3, and 
SiO2 models, and the output consisted of the respective maps. The final 
estimated value for each pixel in the final maps was formed by the 
aggregated mean of the estimations obtained by each regression tree 
(Equation (6)). 

f̂ p =
1
B
∑B

b=1
fb
(
Xp
)

(6) 

where X p is the set of environmental features for pixel; B is the forest 
size determined by the number of bootstrapping samples b; fb is the 
regression tree fitted to each bootstrapped sample b; ̂f p is the mean of the 
pixel.

The uncertainties of the predictions were inferred by calculating the 
ratio of the interquartile range over the median (prediction interval 
ratio, PIR) proposed by Poggio et al. (2021). The main reason for 
choosing PIR was its ability to compare models for predicting different 
oxides at different depths. The 90th prediction interval (PI90) was 
adopted in this study. The PIR maps were derived (Equation (7) from the 
maps corresponding to the quantiles of 0.05 (q0.05), 0.5 (q0.5), and 
0.95 (q0.95), obtained through QRF. The PIR value ranges from 0 to 1, 
where a higher value indicates greater uncertainty in the prediction. 

PIR =
q0.95 − q0.05

q0.50
(7) 

where q0.95 is the 95 % quantile of the modeled predictions; q0.05 is the 
5 % quantile of the modeled predictions and, q0.5 is the 50 % quantile of 
the modeled predictions.

2.5. Oxide maps interpretation

Brazilian soils are typically highly weathered and exhibit advanced 
stages of pedogenesis, primarily due to the prevailing tropical and 
subtropical climates that have shaped the landscape over geological 
timescales. Much of the parent material is also rich in iron-bearing 
minerals. As a result of intense weathering and pedogenetic processes, 
particularly ferralitization, latosolization, and clay illuviation, adapta
tions to international soil classification systems, such as the WRB and 
USDA Soil Taxonomy, have been necessary, especially with regard to 
iron oxide (Fe2O3) content. To support these classifications, Fe2O3 
content determined through sulfuric acid digestion has been categorized 
into four groups: (i) hypoferric (<80 g kg− 1), (ii) mesoferric (80 to <180 
g kg− 1), (iii) ferric (180 to <360 g kg− 1), and (iv) hyperferric (≥360 g 
kg− 1). These thresholds are critical for distinguishing soil types and 
understanding the genesis, evolution, and functional properties of 
tropical and subtropical soils, as well as guiding land use and manage
ment strategies. This Fe2O3 based classification is especially relevant for 
Latosols, Nitosols, and Argisols, dominant soil types in Brazil which 
correspond to Ferralsols, Oxisols, Acrisols, Lixisols, and Alisols in in
ternational systems.

Fe2O3 content is also used to assess the degree of ferralitization, a 
pedogenetic process marked by intense chemical weathering and re
sidual iron enrichment, primarily in the form of iron oxides (Schaefer 
et al., 2008; van Breemen & Buurman, 1998). These oxides contribute to 
the formation of oxic horizons (Soil Survey Staff, 2017) or ferralic B 
horizons (WRB, 2014), composed of highly weathered mineral constit
uents with variable grain sizes. The formation of such horizons generally 
requires iron-rich parent material, a climate conducive to deep 

Table 2 
Environmental covariates used for prediction of major oxides.

Environmental covariate Source (spatial 
resolution)

References

SYSI blue (450–520 nm) Landsat collection (30 m) (Demattê et al., 2018)
SYSI green (520–600 nm) Landsat collection (30 m) (Demattê et al., 2018)
SYSI red (630–690 nm) Landsat collection (30 m) (Demattê et al., 2018)
SYSI NIR (760–900 nm) Landsat collection (30 m) (Demattê et al., 2018)
SYSI SWIR1 (1550–1750 

nm)
Landsat collection (30 m) (Demattê et al., 2018)

SYSI SWIR2 (2080–2350 
nm)

Landsat collection (30 m) (Demattê et al., 2018)

Elevation SRTM (30 m) (Farr and Kobrick, 
2000)

Slope TAGEE/SRTM (30 m) (Safanelli et al., 2020b)
Northness TAGEE/SRTM (30 m) (Safanelli et al., 2020b)
Eastness TAGEE/SRTM (30 m) (Safanelli et al., 2020b)
Horizontal curvature TAGEE/SRTM (30 m) (Safanelli et al., 2020b)
Vertical curvature TAGEE/SRTM (30 m) (Safanelli et al., 2020b)
Terrain shape index TAGEE/SRTM (30 m) (Safanelli et al., 2020b)

SYSI: Synthetic Soil Image; TAGEE: Terrain Analysis in Google Earth Engine; 
SRTM: Shuttle Radar Topography Mission.
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weathering, and prolonged exposure to weathering processes. The de
gree of ferralitization can be quantitatively assessed using the Ferrali
tization Index (SiO2/Fe2O3), based on sulfuric acid digestion. 
Accordingly, the concentrations of Fe2O3 and SiO2 measured as part of 
the Brazilian Soil Classification System (SiBCS) are essential for classi
fying soils and interpreting their formation.

Additionally, due to the advanced weathering typical of Brazilian 
soils, Al2O3 and SiO2 contents (also obtained through sulfuric acid 
digestion) are used to estimate the degree of chemical weathering 
through the weathering index Ki (Equation (8). This index provides 
further insight into soil development and mineral transformation in 
tropical environments. The interpretation of the oxide maps obtained in 
the prediction was conducted using two distinct approaches. The first 
approach involved reclassifying the maps based on their oxide contents 
into three distinct classes. Subsequently, the percentage of the area 
encompassed by each class was quantified.

The Fe2O3 maps were divided according to the SiBCS classification 
system, where hypoferric, mesoferric, and ferric. However, for the Al2O3 
and SiO2 maps, this classification system was not applicable. Therefore, 
we proposed patterned intervals based on the range of oxide contents 
obtained in the maps. We defined soils with oxide contents less than 80 
g.kg− 1 as low, soils ranging from 80 to < 150 g.kg− 1 as medium, and 
soils with oxide contents above 150 g.kg− 1 as high, for both oxides.

The second interpretation was conducted based on the parent ma
terials. We utilized a geological map constructed by Gómez et al. (2018)
and calculated the average oxide contents for each parent material.

2.6. Soil clay fraction major oxides maps applications

We tested two applications of the soil oxide maps: Infer the degree of 
chemical weathering of soils and potential to contribute to the devel
opment of high-resolution soil class maps.

2.6.1. Chemical weathering index calculation
To infer the chemical weathering of soils, we calculated the Ki index 

(Equation (8) proposed by Embrapa Solos (1997). The Ki calculation was 
performed on a pixel-by-pixel basis using the maps of SiO2 and Al2O3. 
The Ki weathering index expresses clay mineral destruction and Si 
leaching by the soil weathering process. The higher the index value, the 
lower the degree of weathering of the soil. Ki is one of the most widely 
used indices in Brazil, as it indicates soil mineralogy and weathering. 
The Ki index is used in the SiBCS to characterize and identify horizons “B 
latossolicos”, an equivalent to ferralic horizons, which should have 
values below 2.2, indicating a high degree of weathering (Embrapa 
Solos, 2018). Low Ki values indicate processes of monosiallitization, 
ferralitization and alitization, leading to the formation of 1:1 clay 
minerals, iron and aluminum oxides, respectively (Lima et al., 2022). On 
the other hand, higher Ki values (greater than 2.2) indicate the occur
rence of bissiallitization processes with a higher presence of 2:1 clay 
minerals, indicating a lower degree of weathering (Guimarães et al., 
2021). 

Ki =
SiO2

(
g.kg− 1)

Al2O3
(
g.kg− 1)X1.70 (8) 

2.6.2. Application in pedological maps
Considering that, in the Brazilian Soil Classification System (SiBCS), 

the content of pedogenic oxides and the degree of weathering are used as 
criteria for soil classification, the generated maps were evaluated for 
their potential applicability. To this end, a 182 ha farm located in the 
municipality of Rafard, São Paulo state (Fig. 1), was selected to test the 
contribution of these maps to the development of pedological maps. The 
chosen area exhibits significant variations in lithology, with a predom
inance of immature psammites with heterogeneous grain sizes, tran
sitioning to feldspathic psammites and even arkosic sandstones. 
Concurrently with this lithology, eruptive elements of dikes from the 

Serra Geral formation occur, composed of intrusive bodies of tholeiitic 
basalt (Nanni et al., 2019). This complex lithology has contributed to the 
formation of different soil classes. A conventional soil class map was 
constructed by Bazaglia Filho et al. (2013) for the area. In this map, five 
soil classes were identified at the first categorical level of SiBCS.

Using our oxide maps, we performed an unsupervised classification 
using the K-means algorithm. This classification generated a map con
taining groups based on the content of oxides. All six oxide maps (Fe2O3, 
Al2O3, and SiO2 in the 0–20 cm and 80–100 cm layers) were used as 
input variables in the classification. Additionally, we included the Ki 
maps from both layers as input variables. The number of groups was set 
to five, representing the number of soils from the conventional soil class 
map. Finally, we compared the resulting map from the unsupervised 
classification with the conventional soil class map.

3. Results and Discussion

3.1. Descriptive statistics

The main soil oxide contents are highly variable among samples and 
depths (Fig. 2). The Fe2O3 contents ranged from 0 to 385 g kg− 1, SiO2 
varied from 0 to 390 g kg− 1, and Al2O3 ranged from 0.34 to 396 g kg− 1. 
The contents of these oxides in the soil clay fraction are related to two 
factors: the type of parent material and its degree of weathering 
(Schaefer et al., 2008). The high variability observed in oxide contents is 
explained by the extensive geodiversity throughout the Brazilian terri
tory ( de Paula Silva et al., 2021). Differences were also observed in the 
contents between the evaluated layers. All studied oxides have higher 
concentrations in the 80–100 cm layers (Fig. 2). Minor differences were 
observed for Fe2O3, where the median content in the 0–20 cm layer was 
41 g kg− 1, and in the 80–100 cm layer it was 57 g kg− 1. On the other 
hand, for SiO2 and Al2O3 oxides, the differences were more pronounced, 
with median contents in the 0–20 cm layer of 118 and 100 g kg− 1, and in 
the 80–100 cm layer of 163 and 154 g kg− 1, respectively. The surface 
layers have greater interaction with the weathering agents causing a 
more intense loss of elements than in the deeper layer, especially in 
tropical regions, resulting in lower quantities of oxides in the surface 
layers (Guimarães et al., 2021).

3.2. Spearman correlation between soil clay fraction major oxides and 
environmental covariates

The Spearman correlation analysis between the environmental 
covariates and the oxides revealed that, for all the oxides, the bands of 
SYSI showed the highest correlations (Fig. 3a). Among the bands of the 
SYSI, SWIR2 showed the highest correlation values, ranging from − 0.46 
(for SiO2 in the 80–100 cm layer) to − 0.63 (for Fe2O3 in the 0–20 cm 
layer). Pedogenic oxides are components of the soil clay fraction, and an 
increase in their content tends to reduce the reflectance intensity 
throughout the spectrum, resulting in a negative correlation in the re
gions of the spectrum covered by the SYSI bands, principally in the SWIR 
region (Terra et al., 2018). Different correlation values of oxides with 
SYSI were observed among the studied soil layers, with the 0–20 cm 
layer consistently showing higher correlations when compared to the 
80–100 cm layer. This is due to the reflectance collected by satellites 
only comprises the surface layer of the soil, thus ensuring a direct 
relationship with oxide content in the 0–20 cm layer and an indirect 
relationship in the 80–100 cm layer ( de Mendes et al., 2019; Rosin et al., 
2023).

Regarding the remaining environmental covariates (terrain attri
butes), a positive correlation with oxide concentrations was observed. 
According to Marques et al. (2004), most high-altitude areas in Brazil 
are characterized by older parent materials that have undergone more 
intensive weathering, resulting in higher concentrations of pedogenic 
oxides in the clay fraction of the soil. Among the terrain attributes, 
elevation and slope had the highest correlation values with oxides. Only 
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SiO2 in the 80–100 cm layer showed no correlation with elevation. The 
correlations with elevation ranged from 0.21 for SiO2 in the 0–20 cm 
layer to 0.40 for Fe2O3 in the 0–20 cm layer. In addition, the correlations 
with slope ranged from 0.15 for SiO2 in the 80–100 cm layer to 0.27 for 
Fe2O3 in the 0–20 cm layer. The higher correlation values observed 
between elevation, slope, and Fe2O3 content can be attributed to the 
presence of a basaltic lithological substrate (basalt from the Serra Geral 
Formation, which is rich in iron) and the occurrence of flattened sum
mits. These geomorphological and geological conditions favor intense 
chemical weathering, soil homogenization, and ferralitization processes, 
leading to the development of deeper soils with elevated Fe2O3 contents 
(Mello et al., 2022, 2023). In contrast, soils at lower elevations are 
typically formed over siltstone substrates and fluvial sediments, which 
contain lower iron concentrations. In these areas, ferralitization is less 
advanced, and clay illuviation predominates, resulting in lower Fe2O3 
contents. Additionally, drainage is often impeded by the presence of 
argillic horizons, and elutriation processes in the surface horizons 
further reduce iron accumulation by leaching fine particles, thereby 
increasing the relative concentration of SiO2 (Mello et al., 2022, 2023).

3.3. Performance of RF models for soil clay fraction major oxides 
prediction

The best model performances were observed in the surface layers, for 
all oxides, especially for Fe2O3 in the 0–20 cm layer (RMSE = 49.8 g. 
kg− 1, RPIQ = 1.82 and R2 = 0.62) (Fig. 3b). Conversely, Si2O3 pre
sented the lower values, mainly for the 80–100 cm layer (RMSE = 65.3 
g.kg− 1, RPIQ = 1.50 and R2 = 0.22). This superior performance in the 
surface layer can be attributed to the SYSI bands that represent the soil 
surface reflectance, and as demonstrated in section 3.2, showed the 
highest correlations with the oxides among all environmental 
covariates.

The Fe2O3 oxide showed more accurate models than SiO2 and Al2O3 
(Fig. 3b). It occurred due to the less generalized occurrence of Fe2O3 in 
soil, being present in higher concentrations under specific conditions of 
relief, climate, and parent material (Bigham et al., 2002; Wir
iyakitnateekul et al., 2007). On the other hand, SiO2 and Al2O3 are 
present in several soil minerals, such as kaolinite, illite, feldspar, and 
others, with generalized occurrence in Brazilian territory (Schaefer 
et al., 2008). Besides, the Fe2O3 showed higher Spearman correlations 
with environmental covariates, than SiO2 and Al2O3, mainly with SYSI 
bands and elevation, as explained above, which is key to explaining the 
accuracy of RF prediction models.

3.4. Soil clay fraction major oxides maps

The predicted maps of oxides (Fig. 4) comprised nearly 3.48 million 
km2 (~40 % of the national territory), which matches the area covered 
by the SYSI with bare soils between 1982 and 2021. These maps mainly 
span the agricultural areas of the country, where land cover tends to be 
removed due to agricultural practices. The maps for the 80–100 cm layer 
showed higher concentrations for all oxides, mainly SiO2, following the 
patterns observed in the soil dataset (Fig. 2). On the other hand, the 
maps of the 0–20 cm layer exhibited greater spatial variability. The 
increased spatial variability observed in the surface layer is a attributed 
of more intense weathering processes than in the subsurface layer 
(Poppiel et al., 2019; Rossel, 2011).

Fe2O3 exhibited the highest variation: 17.5–232 g.kg− 1 (0–20 cm 
layer) and 29–211 g.kg− 1 (80–100 cm layer). Subsequently, Al2O3 
ranged from 26-207 g.kg− 1 (0–20 cm layer) to 88–192 g.kg− 1 (80–100 
cm layer), while SiO2 ranged from 50.5-170 g.kg-1 (0–20 cm layer) to 
116–200 g.kg− 1 (80–100 cm layer). Despite having slightly higher 
contents in the 80–100 cm layer, the spatial distribution of Fe2O3 con
tents is similar in both mapped layers (Fig. 4a and 4b). Approximately 
61 % of the mapped area in the 0–20 cm layer and 57 % in the 80–100 
cm layer consist of soils with low iron content (hypoferric soils). Addi
tionally, 9 % and 18 % correspond to soils with moderate iron content 
(mesoferric soils), while 30 % and 25 % represent soils with high iron 
content (ferric soils), respectively. Moreover, the clay translocation that 
occurs in some locations can increase the variability in the surface layer 
and decrease it in the subsurface (Schaefer et al., 2008).

Oxides Al and Si exhibit distinct spatial behaviors between the 
evaluated layers (Fig. 4d, 4e, 4g, and 4h). The contents of these oxides 
are significantly higher in the subsurface layer throughout the mapped 
area. In the 0–20 cm layer, 49 % and 38 % of the mapped area consist of 
soils with low contents (<80 g.kg− 1) of Al3O2 and SiO2, respectively 
(Fig. 4f and 4i). In contrast, in the 80–100 cm layer, there are no soils 
containing low contents. Instead, approximately 64 % of the mapped 
areas contain soils with Al2O3 contents ranging from 80 to 150 g.kg− 1, 
and 62 % contain SiO2 contents above 150 g.kg− 1. In tropical soils, the 
majority of aluminum (Al) and silicon (Si) are found within the struc
tures of clay minerals, primarily in kaolinite, resulting from the process 
of monosialization. Due to the process of clay illuviation, these elements 
are transported to subsurface horizons (Quénard et al., 2011; Schaefer 
et al., 2008). On the other hand, iron (Fe) is predominantly found in 
pedogenic oxides such as hematite and goethite, which are products of 
intense weathering (Schwertmann and Taylor, 1989). The main pedo
genetic process in soils with high iron content and intense weathering is 

Fig. 2. Descriptive statistics of major soil oxides data observed in the study area.
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ferralitization (Breemen and Buurman, 1998). Iron oxides form stable 
complexes with organic matter and other soil particles, limiting their 
movement within the soil profile (Schwertmann and Taylor, 1989; Van 
Wambeke et al., 1983).

The predicted oxide contents are strongly correlated with parent 
materials. The highest contents were observed in regions composed of 
the basaltic flows of the Serra Geral formation, while the lowest contents 
were found in soils formed on sandstones (Fig. 5a). A more detailed view 
of the oxide contents across the main parent materials of Brazilian soils 
is presented in Fig. 5b. The highest average oxide contents were 
observed in soils developed on volcanic basaltic rocks (Vb) (Fe2O3: 172 
and 162; Al2O3: 143 and 168; SiO2: 140 and 188 g.kg− 1 in the 0–20 and 
80–100 cm layers, respectively), followed by soils derived from volcanic 
rhyolitic rocks (Vr) (Fe2O3: 133 and 133; Al2O3: 121 and 151; SiO2: 125 

and 180 g.kg− 1 in the 0–20 and 80–100 cm layers, respectively). The 
lowest contents were observed in soils derived from metamorphic me
dium to high-grade rocks (Mmhg) (Fe2O3: 78 and 85; Al2O3: 83 and 121; 
SiO2: 92 and 153 g.kg-1 in the 0–20 and 80–100 cm layers, respectively) 
and sedimentary siliciclastic rocks (Ss) (Fe2O3: 88 and 195; Al2O3: 91 
and 126; SiO2: 99 and 159 g.kg− 1 in the 0–20 and 80–100 cm layers, 
respectively).

Volcanic rocks are rich in minerals such as amphiboles, pyroxene, 
and olivine, which are less crystallized and more susceptible to chemical 
and physical weathering (Schenato et al., 2003). Additionally, these 
minerals contain significant amounts of iron, giving rise to ferric soils 
(Araujo et al., 2014; Schaefer et al., 2008). Due to the advanced 
weathering of these soils, they also tend to have higher clay contents, 
resulting in elevated concentrations of silicon and aluminum, which are 

Fig. 3. Performance evaluation of soil clay fraction major oxides prediction using out-of-the-bag validation. (a): Spearman’s correlation analysis of environmental 
covariates with soil oxides, (b) metrics evaluating the models used to predict soil oxide maps, (b.1): Root Mean Squared Error (RMSE), (b.2): Ratio of Performance to 
InterQuartile distance (RPIQ), (b.3): coefficient of determination (R2), * Significant at 5% probability level.
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Fig. 4. Soils clay fraction major oxides predicted maps. (a) Fe2O3 map in the 0–20 cm layer; (b) Fe2O3 map in the 80–100 cm layer; (c) percentage of the mapped area 
as a function of Fe2O3 content; (d) Al2O3 map in the 0–20 cm layer; (e) Al2O3 map in the 80–100 cm layer; (f) percentage of mapped area as a function of Al2O3 
content; (g) SiO2 map in the 0–20 cm layer; (h) SiO2 map in the 80–100 cm layer; (i) percentage of mapped area as a function of SiO2 content.
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constituents of kaolinite and gibbsite (Schaefer et al., 2008). The lower 
contents observed in soils derived from Mmhg rocks are due to their 
chemical composition. These rocks are typically gneisses, which have 
undergone significant transformations in their mineralogy due to 
intense metamorphism (White et al., 2017). Despite the mineralogical 
and structural variations, gneisses predominantly exhibit minerals that 
are resistant to weathering, such as K-feldspars, muscovite, and quartz, 
along with accessory minerals like zircon (Buol and Weed, 1991; 
Câmara et al., 2021). Similar to Mmhg rocks, Sedimentary Siliciclastic 
rocks also predominantly consist of minerals that are highly resistant to 
chemical weathering, particularly quartz (Garzanti, 2019). This results 
in soils with lower clay contents and consequently lower oxide con
centrations (Martins et al., 2005; L. S. Silva et al., 2019).

In soils developed from plutonic rocks, the oxide contents were 
higher in Plutonic Gabbroic and Ultramafic (Pgu) rocks compared to 
Plutonic Granitic (Pg) rocks. Pgu rocks have a mineralogical composi
tion similar to basalt, with a notable presence of ferromagnesian min
erals that are more easily weathered (Guimarães et al., 2017; Silva et al., 

2022). On the other hand, Pg rocks are predominantly composed of 
highly crystallized minerals that are strongly resistant to chemical 
weathering (Heuze, 1983). Median oxide contents exceeding 80 g⋅kg− 1 

were observed in soils developed on Sedimentary Carbonatic (Sc) rocks. 
These values differ from those commonly reported in the literature, 
especially for Fe2O3, as soils formed on Sc rocks usually exhibit contents 
below 80 g⋅kg− 1 (de Souza Oliveira et al., 2021; Pinheiro Junior et al., 
2021; Silva et al., 2017). This inconsistency may be attributed to the 
coarse lithological mapping scale (1:5,000,000), in which regions 
interpreted as Sc rocks may actually include other lithologies with 
higher iron contents.

3.4.1. Soil clay fraction major oxides predictions uncertainty
The uncertainties of the predictions were represented by the PIR 

(Fig. 6). In general, PIR values ranged from 0.1 to 0.5, with higher values 
observed in the subsurface layers. The lowest uncertainties were 
observed in the Fe2O3 maps, which also exhibited the highest prediction 
accuracy metrics. Across all maps, higher PIRs were observed in regions 

Fig. 5. Interpretations of soils clay fraction major oxides predicted maps. (a) Comparison between the predicted oxide maps in the 0–20 cm layer with the geological 
map; (b) Oxide content in soils as a function of parent material. Vr: Volcanic Rhyolitic; Vb: Volcanic Basaltic; Su: Sedimentary Undifferentiated; Ss: Sedimentary 
Siliciclastic; Sc: Sedimentary Carbonatic; Pgu: Plutonic Gabbroic and Ultramafic; Pgr: Plutonic Granitic; Mmhg: Metamorphic Medium to high grade; Mlmg: 
Metamorphic Low to medium grade.
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with lower sampling densities. As suggested by Wadoux et al. (2020), 
the estimation of uncertainties can be used to identify under-sampled 
locations and guide future sampling efforts. The widest PIR ranges 
were observed for Al2O3, and SiO2 in the 80–100 cm layer, indicating 
that these maps are the least reliable among those generated in this 
study.

3.5. Soil clay fraction major oxides maps applications

3.5.1. Maps of weathering index (Ki)
The Ki index maps calculated based on SiO2 and Al2O3 contents are 

presented in Fig. 7. We generated Ki maps for two soil layers (0–20 cm 
and 80–100 cm). The map of the surface layer (Fig. 7a) revealed greater 
spatial variability in Ki values, ranging from 0.67 to 4.2, with values 
below 2 predominating across most of the mapped area. In contrast, the 
subsurface layer map showed lower spatial variability, with values 

Fig. 6. Uncertainty Predicted major soil oxides.
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Fig. 7. Maps of Ki index. (a) Ki map of the 0–20 cm layer; (a.1) Region representing the Cerrado biome with highly weathered soils; (a.2) Region representing the 
Caatinga biome with less weathered soils; (a.3) Region representing the Pantanal biome with less weathered hydromorphic soils; (a.4) Region exhibiting a contrast 
between highly weathered and less weathered soils; (b) Ki map of the 80–100 cm layer; (b.1) Region with different geological formations; (c) Descriptive statistics of 
the Ki index calculated from laboratory analyses in the two studied layers. The pedological map used for comparisons was the legacy soil map of Brazil published by 
IBGE, (2021); The geological map used for comparisons was published by Gómez et al. (2018).

J.T.F. Rosas et al.                                                                                                                                                                                                                               Geoderma 460 (2025) 117425 

12 



between 1.5 and 2.9 (Fig. 7b), and a significant prevalence of areas 
containing Ki values above 2. These maps are consistent with the Ki 
values calculated from laboratory-analyzed soil samples, as shown in 
Fig. 7c.

Ki values predominantly equal to or below 1.5 (in the 0–20 cm layer) 
are observed in the region represented in Fig. 7a.1. This region corre
sponds to a portion of the Cerrado biome, where the predominant soils 
are Ferralsols. The Ferralsols of the Cerrado exhibit varying origins, 
ranging from sedimentary rocks such as the sandstones of the Paraná 
Basin to basaltic rocks of the Serra Geral Formation and Cenozoic 
Lateritic Cover (Oliveira et al., 2023). The occurrence of plateaus asso
ciated with the tropical climate has contributed to an intense degree of 
weathering of these soils, making them the most weathered in Brazil 
(Curi and Franzmeier, 1984; Oliveira et al., 2023). In general, their 
mineralogy exhibits a lower presence of primary weatherable minerals 
and a higher presence of kaolinite and oxides, with the soils tend to be 
more gibbsitic in the higher areas of the plateaus (Schaefer et al., 2008).

The Ki maps represent the spatial variations in the degree of 
weathering in soils formed under different circumstances, as can be 
observed in Fig. 7a.4. The delimited area in the figure encompasses a 
region between the states of Bahia and Tocantins, as well as the northern 
part of Goiás. This region exhibits a strong contrast between highly 
weathered soil classes (Ferralsols) on one side, which are found in the 
extensive plateau of the Urucuia geological formation, and Cambisols 
and Regosols formed on the Bambuí group on the other side. Values of Ki 
ranging from 1.91 to 3.10 were observed by Maranhão et al, (2016)
when studying profiles formed on the Bambuí group in this region, 
which is consistent with our results.

Higher values of Ki in the surface layer (predominantly ≥ 2) are 
observed in the regions encompassing the Pantanal and Caatinga bi
omes, where younger soils such as Leptosols, Regosols, Luvissols, Pla
nosols, Solonetz, and Vertisols are predominant. Fig. 7a.2 and 7a.3 
provide a zoom-in on these regions, offering a more detailed visualiza
tion. The Pantanal is a vast floodplain, and as such, hydromorphism is 
the main pedogenetic process in its soils, reducing weathering rates (de 
Coringa et al., 2012). Additionally, the parent materials in the Pantanal 
region often consist of carbonate sediments or exhibit a significant 
presence of sodium (Andrade et al., 2020; de Oliveira et al., 2021). The 
chemical elements released during the weathering of these sediments 
that remain in the soil solution increase the pH, favoring the neo
formation of 2:1 clay minerals (Couto et al., 2023). Contrary to the 
Pantanal, the Caatinga biome is one of the largest tropical dry areas in 
the world (Araujo et al., 2022). Furthermore, the Caatinga is the oldest 
semiarid landscape in South America, and its semiarid climate strongly 
influences the formation of its soils (Araújo Filho et al., 2023). The 
majority of soils in this biome contain significant amounts of primary 
minerals and 2:1 clay minerals due to the low rates of weathering 
(Oliveira et al., 2019).

The map of the 80–100 cm layer showed that subsurface soils are less 
weathered and more similar to the parent material than the surface soils. 
It is possible to observe that lower Ki values are found in regions 
composed of rocks that undergo weathering more easily, such as basalt. 
In Fig. 7b.1, we selected a region where soils have developed on 
different parent materials. Soils derived from quartzose rocks (Bauru 
Group Formation, Botucatu Formation, and Passa Dois Formation) 
exhibit Ki values above 2 in the subsurface layer. On the other hand, 
soils formed on the Serra Geral Formation (ultramafic basaltic rocks) 
display Ki values lower than 2, indicating greater weathering in the 
subsurface.

As observed by Wilford (2012), the intensity of weathering plays a 
crucial role in the transformation of primary minerals into secondary 
components, such as clays and oxides, which in turn influence the hy
drological, geochemical, and geophysical properties of soils. Although 
our research focused on spectral and terrain covariates, other method
ologies—such as the approach proposed by Wilford (2012)—provide 
valuable insights into how the integration of topographic and 

radiometric data can enhance our understanding of regolith properties.
Weathering intensity, which integrates airborne gamma-ray spec

trometry data with elevation information from the Shuttle Radar 
Topography Mission (SRTM), can serve as a promising tool to improve 
soil property modeling, particularly in areas where soil characteristics 
exert strong influence. Although we did not incorporate radiometric 
data in our study due to the lack of high-resolution information, the 
weathering intensity methodology using radiometric inputs may be 
employed in future research, should such data become available—thus 
refining the prediction of soil attributes in our study area.

Moreover, Wilford’s (2012) methodology can be adapted to assess 
weathering intensity across different landscapes and regions, as 
demonstrated by Mello et al. (2023) in tropical landscape soils, 
providing complementary insights to our terrain-based analysis.

3.5.2. Application in pedological maps
The study area comprises five soil classes: Cambisols, Chernozems, 

Nitisols, Lixisols, and Leptosols (Fig. 8a), with a predominance of Lix
isols. Unsupervised classification, performed using the oxide maps, 
created groups that represented the observed soil classes on the pedo
logical map (Fig. 8b). The best representations were found in the regions 
corresponding to Nitisols and Lixisols, represented by groups (1) and (2), 
respectively. The Nitisols in these regions developed over iron-rich 
basaltic rocks and easily weatherable primary minerals, thus exhibit
ing high oxide content (Silvero et al., 2021b), due to intense weathering 
and ferralitization processes, in contrast to the other soils in the area that 
have developed on parent materials moderately rich in quartz (Nanni 
et al., 2019). This characteristic allowed for the distinction of this soil 
class from the others due to its high oxide content and pronounced de
gree of weathering. In contrast, in this region, Lixisols are soils with a 
moderate degree of weathering when compared to Nitisols, where the 
pedogenetic process of clay illuviation is predominant (Embrapa Solos, 
2018). This process favors the formation of sandy surface layers and 
clayey subsurface layers. As a result, there are significant differences in 
oxide content between the layers (Quénard et al., 2011). This charac
teristic allowed for the discrimination of these soils into a single group.

In the regions encompassing the soil classes Cambisols, Chernozems, 
and Leptosols, there was no clear discrimination between the groups. 
These soils share common characteristics such as a low degree of 
weathering, significant amounts of primary minerals and 2:1 clay min
erals, and shallow depth (Embrapa Solos, 2018). We believe that due to 
these similarities, it was challenging to individualize these soils into 
distinct groups.

3.6. Limitations and challenges

Mapping large territories, such as Brazil, is a laborious task that poses 
several challenges, especially when soil attributes are difficult to 
determine in the laboratory. In this study, clay fraction oxides were 
mapped, which are difficult to determine in the laboratory due to the 
high costs of analysis and the polluting potential of the reagents 
involved. However, these oxides are of great importance for the un
derstanding of soils.

One of the major limitations of this study was the low sampling 
density, with many areas still under-sampled. The uncertainty maps 
indicate that many locations require further efforts for future collections 
and analyses. Another limitation was the absence of environmental 
covariates that represented the parent material in greater detail since 
soil oxides have a direct relationship with this formation factor. Despite 
this, the soil oxides obtained were consistent with the existing geological 
maps at coarse scales.

The soil maps showed great agreement with the legacy pedological 
maps and the understanding of Brazilian soils. However, the accuracy 
metrics, especially R2, were not high, ranging from 0.22 to 0.62, and the 
RMSE was not so low, ranging from 49.8 to 65.3 g.kg− 1, suggesting that 
the maps may contain significant errors in some regions, as shown in the 
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uncertainty maps, especially in the subsurface maps. Despite this, the 
maps follow the expected spatial distribution. Another major limitation 
is the mapping in areas where native vegetation remains intact. In our 
study, SYSI was the most important covariate, but it is not possible to 
obtain this covariate for the entire Brazilian territory, limiting the map 
only to agricultural areas.

In future soil mapping, some major challenges remain, including: (I) 
improving the database to contain data from under-sampled areas; (II) 
developing covariates that represent parent materials with greater 
detail; and (III) developing covariates that can map these oxides in areas 
where vegetation has never been removed and where SYSI cannot be 
obtained.

4. Conclusions

It was possible to predict soil clay fraction major oxides (Fe2O3, SiO2, 
Al2O3) with high spatial resolution (30 m) using satellite-derived data 
and ML. Furthermore, the prediction of our maps was considered 
satisfactory, although the R2 values are not high, ranging from 0.22 to 
0.62, and the RMSE was not as low, ranging from 49.8 to 65.3 g.kg− 1. 
The predicted oxide maps covered approximately 3.48 million km2 

(~40 % of the national territory), encompassing all areas that were used 
for agriculture during the period from 1982 to 2022.

The oxide contents were strongly related to the pedogenetic pro
cesses of soil formation, such as hydromorphism, clay illuviation, 
monosialitization, and ferralitization. Additionally, a significant rela
tionship between soil-forming factors, such as parent material and 
climate, was observed.

The maps of soil clay fraction major oxides showed potential for 
inferring the degree of weathering of soils using the weathering index Ki. 
The Ki index demonstrated consistency with legacy pedological maps, 
where higher weathering was observed in regions predominantly 
composed of Ferralsols, while less weathered soils were found in regions 
dominated by Neosols, Luvissols, Planosols, Solonetz, and Vertisols.

Oxide maps exhibited potential to assist in the construction of 
pedological maps, capable of distinguishing regions belonging to the 
same soil class. Furthermore, the findings provide valuable information 
for all agricultural regions in Brazil, with high spatial resolution. This 

information can aid researchers, farmers, and consultants in under
standing the dynamics of their soils and making informed decisions. For 
future mappings, major challenges include improving the database by 
incorporating data from under-sampled areas and developing detailed 
covariates to represent parent materials. Additionally, there is a need to 
develop covariates capable of mapping oxides in areas where natural 
vegetation remains and SYSI data cannot be obtained.

CRediT authorship contribution statement

Jorge Tadeu Fim Rosas: Writing – review & editing, Writing – 
original draft, Methodology, Investigation, Formal analysis, Data cura
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Nanni, M.R., Demattê, J.A.M., 2006. Spectral reflectance methodology in comparison to 
traditional soil analysis. Soil Sci. Soc. Am. J. 70, 393–407. https://doi.org/10.2136/ 
SSSAJ2003.0285.

Oliveira, G.D.C., Francelino, M.R., Arruda, D.M., Fernandes-Filho, E.I., Schaefer, C.E.G. 
R., 2019. Climate and soils at the Brazilian semiarid and the forest-Caatinga 
problem: new insights and implications for conservation. Environ. Res. Lett. 14, 
104007. https://doi.org/10.1088/1748-9326/AB3D7B.

de Oliveira, N.S., Schiavo, J.A., Cirilo de Souza, A., Laranjeira, L.T., Viana de Moraes, E. 
M., Pereira, M.G., 2021. Mineralogy and genesis in an alkaline soil system in the 
southern Pantanal wetland, Brazil. J. South Am. Earth Sci. 111, 103456. https://doi. 
org/10.1016/J.JSAMES.2021.103456.

Oliveira, V.A., Santos, G.G., Ker, J.C., Couto, E.G., Jacomine (in memoriam), P.K., 
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Rosin, N.A., Demattê, J.A.M., Poppiel, R.R., Silvero, N.E.Q., Rodriguez-Albarracin, H.S., 
Rosas, J.T.F., Greschuk, L.T., Bellinaso, H., Minasny, B., Gomez, C., Marques 
Júnior, J., Fernandes, K., 2023. Mapping Brazilian soil mineralogy using proximal 
and remote sensing data. Geoderma 432, 116413. https://doi.org/10.1016/J. 
GEODERMA.2023.116413.

Rossel, R.A.V., 2011. Fine-resolution multiscale mapping of clay minerals in Australian 
soils measured with near infrared spectra. J. Geophys. Res. Earth Surf. 116, 4023. 
https://doi.org/10.1029/2011JF001977.

Safanelli, J.L., Chabrillat, S., Ben-Dor, E., Demattê, J.A.M., 2020a. Multispectral Models 
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Silvero, N.E.Q., Demattê., J.A.M., Minasny, B., Rosin, N.A., Nascimento, J.G., Rodríguez- 
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