
Physica A 391 (2012) 6463–6469

Contents lists available at SciVerse ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Exact field-driven interface dynamics in the two-dimensional stochastic
Ising model with helicoidal boundary conditions
J. Ricardo G. Mendonça ∗

Instituto de Física, Universidade de São Paulo – Caixa Postal 66318, 05314-970 São Paulo, SP, Brazil
Instituto de Física, Universidade Federal de Uberlândia – Caixa Postal 593, 38400-902 Uberlândia, MG, Brazil

a r t i c l e i n f o

Article history:
Received 28 May 2012
Received in revised form 2 July 2012
Available online 31 July 2012

This paper is dedicated to Professor Sílvio R.
A. Salinas (IF/USP, Brazil) on the occasion of
his 70th birthday.

Keywords:
Stochastic Ising model
Bethe ansatz
RSOS growth model
Zero range process
Exclusion process
XXZ quantum chain
KPZ universality class

a b s t r a c t

We investigate the interface dynamics of the two-dimensional stochastic Ising model in
an external field under helicoidal boundary conditions. At sufficiently low temperatures
and fields, the dynamics of the interface is described by an exactly solvable high-
spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero
range process. Generally, the critical dynamics of the interface fluctuations is in the
Kardar–Parisi–Zhang universality class of critical behavior. We remark that a whole family
of RSOS interface models similar to the Ising interface model investigated here can be
described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mappings from two-dimensional (2D) Isingmodel interface configurations to diffusion processes are known at least since
the work of Rost [1], and have been explored many times since then [2–11]. In some cases [2–4], the interface dynamics of
the model at zero temperature in the absence of an external field was mapped into the one-dimensional symmetric simple
exclusion process, with themain result being the solution of a first-passage time problem showing that themean lifetime of
a shrinking domain is proportional to its initial area, providing a microscopic derivation for this well known experimental
fact. It was also recognized that the resulting exclusion process can be recast as a probabilistic cellular automaton with a
transition matrix equivalent to the transfer matrix (in a diagonal direction) of the symmetric six-vertex model in one of its
critical lines [3,4].

The relationship between interfaces, exclusion processes, and vertex models was explored further [12–15], and it was
realized that a Heisenberg Hamiltonian with pure imaginary Dzyaloshinsky–Moriya interaction that commutes with the
transfer matrix of a six-vertex model describes the single-step surface growth model [16,17], as well as a discrete-velocity
version of thenoisy Burgers equation,which in turn is equivalent to theKardar–Parisi–Zhang equation [18]. In the interacting
particle system scenario, the above mentioned Hamiltonian is but the infinitesimal generator of the asymmetric simple
exclusion process [12,14]. Conversely, a host of results concerning symmetric and asymmetric simple exclusion processes
have been translated into the Ising interface problem and, in particular, the investigation of the motion of tagged particles,
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as first introduced in the study of the hydrodynamic behavior of exclusion-type processes [19,20], has provided a partial
explanation for the relationship between the characteristics of different asymptotic growth regimes in some (1 + 1)-
dimensional stochastic growth models [6,7,9].

In this article we show that under suitable generalized, but otherwise quite natural periodic boundary conditions the
dynamics of an interface in the 2D stochastic Ising model in the presence of an external driving field can be mapped
via a particle-height transformation into the dynamics of hopping particles without exclusion known as the zero range
process [21–27]. The infinitesimal generator of the zero range process is equivalent to a high-spin, in general asymmetric
quantum Hamiltonian that is exactly solvable by the Bethe ansatz [28–30]. We argue that the critical behavior of a
generalized particle-height model must be on the Kardar–Parisi–Zhang universality class of critical behavior, since this is
the critical behavior of the corresponding generalized quantum chains. This may have implications in the study of related
models such as the dynamics of k-mers and other Ising-type lattice configurations.

The article is organized as follows. In Section 2 we introduce the 2D Ising model in an external field and the single-spin
flip rates in terms of which the dynamics of the Ising contours will be analyzed, and in Section 3 we show that it can be
described by diffusing particles without exclusion and exhibit the infinitesimal generator of the process. Section 4 contains
a brief exposition of the exact solution of the zero range process by the Bethe ansatz and a discussion on its dynamical critical
exponent. In Section 5, we show that a whole class of interface models similar to the Ising interface model can be described
by exactly solvable, generalized restricted XXZ-type Hamiltonians withmanymodeling possibilities. Finally, in Section 6we
summarize our results and indicate some directions for further investigation.

2. The 2D stochastic Ising model in a field

The 2D Ising model in an external field is described by the Hamiltonian

H(S) = −J

⟨r,r′⟩

SrSr′ − B

r

Sr, (1)

where S = {Sr : r ∈ ΛN
L } with Sr ∈ {−1, +1} are Ising spins, ΛN

L ⊂ Z2 is a member of a family of semi-infinite lattices of
|ΛN

L | = L×∞ sites, and ⟨r, r′⟩denotes pairs of nearest neighbor sites onΛN
L . The integer indexN inΛN

L refers to the boundary
conditions, that are free in the infinite direction and helicoidal with pitchN in the finite direction, i. e., r+Lx+Ny ≡ r for all
r ∈ ΛN

L . When N = 0 we recover the usual periodic boundary condition, which is however uninteresting for our purposes,
as we will see later. In the above Hamiltonian we take J > 0, making the model ferromagnetic, and for definiteness we take
B > 0.

We introduce a dynamics on the Ising spins through the master equation

d
dt

P(S, t) =


S̃∈ Ω(ΛN

L )


W (S̃ → S)P(S̃, t) − W (S → S̃)P(S, t)


(2)

for the probability P(S, t) of observing the configuration S ∈ Ω(ΛN
L ) = {−1, +1}ΛN

L at instant t , where W (S → S̃) is the
rate at which configuration S̃ is reached from configuration S per unit time. The rates W (S → S̃) should be translation
invariant and verify the condition of detailed balance W (S̃ → S)P(S̃) = W (S → S̃)P(S), with P(S) ∝ exp[−βH(S)] the
Gibbs equilibrium probability distribution and for the sake of notational economy we omitted the dependence of P(S) and
W (S → S̃) on J, B, and the inverse temperature β = 1/kBT . In this work we consider heat-bath single-spin flip transition
rates given by

W (S → S̃) ≡ W (Sr → S̃r) =
1
Zr

exp[−βH(Sr)], (3)

with

H(Sr) = −J

⟨r′: r⟩

SrSr′ − BSr and Zr =


Sr ∈ {−1,+1}

exp[−βH(Sr)], (4)

where ⟨r′ : r⟩ = {r′ ∈ ΛN
L : |r′ − r| = 1}.

Let w(Sr) =
1
2


⟨r′:r⟩ |Sr′ − Sr| be the number of spins neighboring Sr that have the sign opposite to it. In terms of this

quantity, the single-spin flip rates read

W (Sr → S̃r) =
1

1 + exp[4βJ(2 − w(Sr)) + 2βBSr]
. (5)

At sufficiently low temperatures, as long as B < 2J spins with w(Sr) = 0, 1 will hardly flip, because their transition rates
become exponentially small when compared with the other rates, of the order of exp[−2β(2J − B)] at maximum. Processes
with w(Sr) = 3, 4 correspond to fast processes, since at sufficiently low temperatures and again in the range B < 2J
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Fig. 1. Staircase-like 2D Ising interface separating the ‘‘+’’ and the ‘‘−’’ phases. In this figure, L = 18 and N = 15. When B > 0 (B < 0), the ‘‘+’’ (‘‘−’’)
phase invades the ‘‘−’’ (‘‘+’’) phase, while for B = 0 the interface only fluctuates about its initial shape. When β → ∞ and |B| < 2J , the number of bonds
N is conserved.

their rates become close to unity, W (Sr → S̃r) > 1 − exp[−2β(2J − B)]. In the low-temperature limit and in the range
B < 2J , thus, the heat-bath single-spin flip rates (5) define a process in which only spins withw(Sr) > 2 have an appreciable
flipping rate, and henceforth we ignore the flipping of spins with w(Sr) < 2.1 Spins with w(Sr) = 3, 4, in turn, can be
avoided by choosing initial configurations in which the ‘‘+’’ phase is separated from the ‘‘−’’ phase by a single-valued, non-
self-intersecting staircase-like interface as in Fig. 1. With initial configurations of this type and within the regime of low
temperatures and fields, we are left with a process in which only spins withw(Sr) = 2 flip. Since spins withw(Sr) = 2 lie at
the interface, the above-defined spin flip dynamics actually defines an interface dynamics. In the next section we map this
dynamics into an interacting particle system on the integers.

3. Mapping to the zero range process

Various possibilities exist tomap the dynamics of 2D Ising interfaces into a systemof interacting particles on the line. One
possible map is obtained by associating with every vertical bond in the interface a particle and with every horizontal bond
a hole [3]. In this way we end up with a simple exclusion process in which particles hop in an augmented one-dimensional
lattice. Another possibility was given in Refs. [6,7]. In this case, one considers a set of L particles on a one-dimensional lattice
occupying the positions xℓ, 1 6 ℓ 6 L. If one associates the particle labels ℓ with a horizontal coordinate, and the particle
positions xℓ with the heights of an interface, then one has a one-to-one map between the set of particles and an interface.
With the additional constraint xℓ+1 − xℓ > 1, the resulting model was called the particle-height model. The particle-height
model thus establishes amap between the low-temperature dynamics of an Ising interface and the simple exclusion process,
although the constraint on the particles’ positions seems a bit artificial in the interface scenario.

Ourmapping of the Ising interface to a set of hopping particles on the integers is equivalent to the particle-heightmapping
with xℓ+1 − xℓ > 0. Let Γ N

L be the set of all single-valued, non-self-intersecting staircase-like Ising interface configurations
γ N
L of length |γ N

L | = L + N,N > 0, in the infinite strip ΛN
L of width L with helicoidal boundary condition r + Lx + Ny ≡ r.

The dynamics of the γ N
L interfaces under the action of the flipping rates W (Sr) in the regime where β → ∞ and B < 2J

preserves the length of the interfaces, i. e., given an initial configuration γ N
L (t = 0) ∈ Γ N

L , all subsequent configurations
γ N
L (t > 0) ∈ Γ N

L . The numberN of vertical bonds in the interface thus decomposes the state space of interface configurations
into an infinite number of disjoint sectors, ΓL =


N>0 Γ N

L .
The interface configurations γ N

L are single-valued functions with respect to the horizontal coordinate. Let hℓ ∈ Z, 1 6
ℓ 6 L denote the height of the Ising interface at site ℓ. Then the height differences nℓ = hℓ+1 − hℓ are nonnegative due
to the special form of γ N

L , and their dynamics relates to the dynamics of the interface as follows. Let us consider the case

1 In realistic pseudo-two-dimensional S =
1
2 Ising-like materials, e. g. in the antiferromagnetic compounds K2XF4 with X = Mn, Fe, Co, or Ni, J/kB ∼

1–100 K, such that βJ ≫ 1 implies T < 1 K [31]. The values for which B < 2J thus lie in the range B . 1.5 T, of the order of half the magnetic field strength
of a typical medical MRI system.
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0 < B < 2J , and that the ‘‘+’’ phase lies below the ‘‘−’’ phase, as in Fig. 1. In this way, every ‘‘−’’ (‘‘+’’) spin that flips
contributes to the growth of the ‘‘+’’ (‘‘−’’) phase, increasing (decreasing) the height variable associated with its horizontal
position by one unit. The single-spin flipping rates are given by

− → + : p =
1

1 + e−2βB
and + → − : q =

1
1 + e2βB

= 1 − p. (6)

When B = 0, we have a spin (time) reversal invariant system, and the interface does not move bodily. Otherwise, when
0 < B < 2J and β → ∞, p = 1 and q = 0, and the surface can only grow. The general situation 0 < q < p < 1 is obtained
by taking β → ∞ and B → 0with βB = constant. The height differencesmoves corresponding to the flipping processes are
(nℓ−1, nℓ) → (nℓ−1 − 1, nℓ + 1) when hℓ → hℓ + 1, and (nℓ−1, nℓ) → (nℓ−1 + 1, nℓ − 1) when hℓ → hℓ − 1. The maximum
possible height difference in ΛN

L is nℓ = N , in which case h1 = h2 = · · · = hℓ = 0 and hℓ+1 = hℓ+2 = · · · = hL = N for
some ℓ. More generally, we have

L−1
ℓ=1 nℓ = hL−h1 = N . Nowone appreciates the role of the helicoidal boundary conditions

onΛN
L : the pitch N gives the total number of interacting particles in the height differences scenario. The boundary condition

in the height differences scenario is simply periodic.
The dynamics of the variables nℓ is but the zero range dynamics, in which particles hop on the lattice without

exclusion [21–27]. Except for the (immaterial) absolute values of the heights, the dynamics of the nℓ variables contains
all the information about the evolving Ising interface. The elementary processes for the nℓ variables are

(nℓ−1 + 1, nℓ)
p


q
(nℓ−1, nℓ + 1), 0 6 nℓ−1, nℓ 6 N − 1, 2 6 ℓ 6 L. (7)

As is well known [32,33], wemaywrite themaster equation for reaction–diffusion processes on the lattice as a Schrödinger-
like equation in Euclidean time, the infinitesimal generator of the Markov semigroup playing the role of the quantum
Hamiltonian. In this scenario, the infinitesimal generator of the above zero range process is given by the NL

× NL operator

HN =

L
ℓ=1

N−1
m+n=0


p

Em+1,m+1

ℓ En,n
ℓ+1 − Em,m+1

ℓ En+1,n
ℓ+1


+ q


Em,m

ℓ En+1,n+1
ℓ+1 − Em+1,m

ℓ En,n+1
ℓ+1


, (8)

where Em,n
ℓ = 1 ⊗ · · · ⊗ 1 ⊗ Em,n

⊗ 1 ⊗ · · · ⊗ 1, with 1 the N × N identity matrix and (Em,n)i,j = δi,mδj,n the N × N
matrix with a single unit element in rowm and column n occupying the ℓ-th position in the direct product. The operator HN
can be diagonalized by the coordinate Bethe ansatz and, indeed, it has been diagonalized by this and related methods many
times in the literature [28–30,34]. We will thus not reproduce a complete resolution of (8) here. Instead, we just outline the
technique and quote the main results regarding the process defined by HN of interest to us.

4. Bethe ansatz solution

4.1. Bethe ansatz equations

We are interested in the solutions of the eigenvalue equation

HN |ΨN⟩ = EN |ΨN⟩, (9)

where HN is given in (8) and

|ΨN⟩ =


x1 6 x2 6 ··· 6 xN

Φ(x1, x2, . . . , xN)|x1, x2, . . . , xN⟩ (10)

is the eigenfunction written in the basis that specifies the positions of the N particles in the system, with Φ(x1, x2, . . . , xN)
the coefficient for the configuration |x1, x2, . . . , xN⟩. Notice that since there is no exclusion, particle positions can coincide.

If the positions of the particles obey xj+1 > xj, 1 6 j 6 N , the eigenvalue equation (9) is satisfied by the ansatz (10) with
coefficients

Φ(x1, x2, . . . , xN) =


P

AP(1)P(2)···P(N) exp


i

N
j=1

kP(j)xj


(11)

and eigenvalue

EN(k1, k2, . . . , kN) =

N
j=1

ϵ(kj), (12)

where ϵ(k) = 1− pe−ik
− qeik is the ‘‘single particle energy,’’ the first summation in (11) is over all the N! permutations P of

the indices (1, 2, . . . ,N) used to label the positions of the particles, and the ‘‘wave numbers’’ k1, k2, . . . , kN are chosen so
that |ΨN⟩ satisfies (9). We see that when the particles are far apart, in the case being just not on the same site, they behave
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as if they were free, and the total ‘‘energy’’ of the system is the sum of the ‘‘energies’’ of single particles. When a pair of
particles sit on the same site, xj+1 = xj, we obtain from (9)–(12) that the amplitudes AP(1)P(2)···P(N) should satisfy

AP(1)P(2)···P(j)P(j+1)···P(N)

AP(1)P(2)···P(j+1)P(j)···P(N)

= −
eikP(j+1)

eikP(j)
eiΘP(j)P(j+1) , (13)

where the ‘‘two-particle scattering phase’’ Θjℓ is defined by

eiΘjℓ =
p + qei(kj+kℓ) − eikj

p + qei(kj+kℓ) − eikℓ
. (14)

The boundary condition Φ(x2, x3, . . . , x1 + L) = Φ(x1, x2, . . . , xN) furnishes the additional relation

AP(1)P(2)···P(N) = eikP(1)LAP(2)P(3)···P(1). (15)

Iterating relation (13) N times, (15) gives us the Bethe ansatz equations for the ‘‘wave numbers’’ kj in the N-particle sector,

eikjL = (−1)N−1
N

ℓ=1


eikℓ

eikj


eiΘjℓ = (−1)N−1

N
ℓ=1


eikℓ

eikj


p + qei(kj+kℓ) − eikj

p + qei(kj+kℓ) − eikℓ
, 1 6 j 6 N. (16)

The solutions k1, k2, . . . , kN of these equations give through (12) the eigenvalues of (8). Notice that since HN is in general
nonhermitian, the kj are in general complex numbers.

The eigenfunctions (10) with the coefficients (11) should also be eigenfunctions of the translation operator T that shifts
the positions of the particles to the left by one site, since [H, T ] = 0. The eigenvalues eiP of T are given by

T |ΨN⟩ = eiP |ΨN⟩ =


N
j=1

eikj


|ΨN⟩, (17)

where we have defined the total momentum-like P by

P =

N
j=1

kj(mod 2π) =
2πℓ

L
, 0 6 ℓ 6 L − 1. (18)

With P defined above, Eq. (16) can be rewritten as

eikj(L+N)
= (−1)N−1ei

N
ℓ=1 kℓ

N
ℓ=1

eiΘjℓ = (−1)N−1eiP
N

ℓ=1

p + qei(kj+kℓ) − eikj

p + qei(kj+kℓ) − eikℓ
, 1 6 j 6 N. (19)

The learned reader will recognize in (19) the Bethe ansatz equations for the asymmetric simple exclusion process of N
particles in a lattice of L + N sites with twisted boundary conditions, the angle of twist being given by the total momentum
P of the system. For stochastic processes, the relevant momentum sector is the P = 0 sector, since the coefficients
Φ(x1, x2, . . . , xN) have to be all real and positive. In this sector, the correspondence between the zero range process and
the asymmetric simple exclusion process is exact.

4.2. The dynamical critical exponent

Numerical simulations together with theoretical arguments and explicit calculations indicate that the critical behavior
of the interface is independent of the particular values of p and q as long as p ≠ q [13–15,17]. It has then become usual to
investigate the Bethe ansatz equations (16) with p = 1, q = 0, since this facilitates the analysis considerably. The more
general cases 0 < q < p < 1 were investigated in Refs. [15,35]. The p = 1, q = 0 case corresponds to a 2D Ising interface
evolving in a finite field B > 0 but at zero temperature. However, at least for very low (but nonzero) temperatures, one has
the same kind of critical behavior as observed at zero temperature [36]. In the totally asymmetric simple exclusion process,
another simplification of the Bethe ansatz equations comes with the choice of the half-filled sector 2N = L. The analogous
choice for the zero range process is to consider the sector with N = L, which corresponds in the interface scenario to an
interface with average slope π/4.

The dynamical critical exponent z, that measures the degree of anisotropy between the spatial and temporal correlation
lengths, can be determined from the asymptotic behavior of the gap E(1)

N (L) of HN through Re{E(1)
N (L)} ∼ L−z . For the

asymmetric exclusion process with arbitrary p ≠ q and ϱ = N/L, the large L asymptotic value of E(1)
N (L) is given by

E(1)
N (L) = −2C |p − q|


ϱ(1 − ϱ) L−3/2

± 2π i|(p − q)(1 − 2ϱ)| L−1, (20)

with an exact (numerically evaluated) C = 6.509 189 · · · [35]. The dynamical critical exponent of the asymmetric exclusion
process is then z = 3/2, indicating that it belongs to the Kardar–Parisi–Zhang universality class of critical behavior [18].
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For the zero range process, the available calculations of E(1)
N (L) are based on the analysis of slightly generalized models,

with non-uniform hopping rates or in which particles can hop together [26,27]. The totally asymmetric zero-range process
with uniform rates in the N = L sector was solved in Refs. [29,30], with the result that the first gap behaves like

E(1)
N (L) ∼ a0 L−3/2

− i
π

2
L−1, (21)

with an exact (numerically evaluated) a0 = 2.301 345 · · ·, first obtained in Ref. [14]; see also [15].2 We thus see that, in
either case, the gap behaves asymptotically as E(1)

N (L) ∼ L−3/2, the dynamical critical exponent z = 3/2, and both processes
– the asymmetric simple exclusion process and the asymmetric zero-range process – belong to the Kardar–Parisi–Zhang
universality class of critical behavior, and so does the driven interface dynamics of the 2D stochastic Ising model in the
regime of low temperatures and fields.

5. Generalized particle-height model and interface dynamics

The particle-heightmodelmentioned in Section 3 can be generalized to processes inwhich the particle positions observe
the constraint xℓ+1 − xℓ > s, generating a process in which particles move only if the next particle is far apart by at least s
sites. Identifying a particle with the up spin state and a hole with the down spin state in the σ z basis, the time evolution of
this restricted exclusion processes is governed by the infinitesimal generator [29,30]

Hs = −

L
ℓ=1

Ps


pσ−

ℓ σ+

ℓ+1 + qσ+

ℓ σ−

ℓ+1 +
1
4


σ z

ℓ σ z
ℓ+1 − 1


Ps, (22)

where p and q = 1 − p are the rates at which particles hop respectively to the right and to the left,

Ps =

L
ℓ=1


1
2
(1 − σ z

ℓ ) +
1
2
(1 + σ z

ℓ )

s−1
j=1

1
2
(1 − σ z

ℓ+j)


(23)

is the operator that projects out configurations in which particles are closer than by s sites, σ±
=

1
2 (σ

x
± iσ y) and σ z are

the usual Pauli spin- 12 matrices, and 1 is the 2 × 2 identity matrix.
The infinitesimal generator Hs is exactly solvable by the Bethe ansatz for any choice of the integer s [29,30]. The s = 1

case recovers the generator of the asymmetric simple exclusion process, while the generic s > 1 case describes, e.g., the
driven diffusion of s-mers on the lattice [37]. In fact, it has been shown that an arbitrary mixture of s-mers of different
sizes, diffusing with the same rates but ruled by evolution operators Hs with different s, can be integrated exactly, with the
eigenspectrum depending only on the average size s̃ of the s-mers [29,30].

For the generalized particle-height model, either with a single type of particle or with an admixture of particles of
different sizes, the simplifying filling fraction analogous to the condition N = L in the zero-range process is given by
(1 + s̃)N = L, where s̃ is the average size of the particles in the system, not necessarily a semipositive integer. Clearly,
the larger the average particle size s̃, the smaller the average interface slope N/L = 1/1 + s̃. In this case, the spectral gap of
the process has been found to scale like [29,30]

E(1)
s (L) ∼ a0 L−3/2

+ i

s̃ − 1
s̃ + 1


π

2
L−1, (24)

with the same a0 = 2.301 345 · · · as before; compare with (21). We can then predict that the interface dynamics obtained
from the generalized particle-height model with xℓ+1 − xℓ > s also belongs to the Kardar–Parisi–Zhang universality class of
critical behavior.

Amost interesting thingwould be to vizualize how the Ising interface configurations evolve in the case of a particle-height
model that includes besides particles of positive sizes also particles with negative sizes, since in this case handles and loops
could develop. More generally, it would be of interest to find physical applications of the operator (22) for negative values
of s or s̃, since they are all exactly solvable and display the same type of critical behavior.

6. Summary and conclusions

We showed that it is possible to map the interface dynamics of the 2D stochastic Ising model in the regime of low
temperatures and fields into an exactly solvable interacting particle system of hopping particles without exclusion. The
infinitesimal generator of the process is exactly solvable by the Bethe ansatz, with an spectral gap in the asymmetric case
scaling like L−3/2 with the system size. The 2D Ising interface in the presence of a driving field then grows and fluctuates
according to the Kardar–Parisi–Zhang universality class of critical behavior. We remark that most studies (e.g., in the realm

2 Notice that the constants C in (20) and a0 in (21) are related by C = 2
√
2 a0 .
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of nucleation dynamics) of 2D Ising interfaces are carried out in zero temperature, and several results were obtained in the
absence of external fields. In our study, following [5,36], we allow for finite temperatures and fields, as long as the conditions
stated in Section 2 are met. When β = ∞ (T = 0+) or B = 0, the process becomes symmetric and the Bethe ansatz analysis
reduces to a simple spin-wave analysis. In this case the gap becomes E(1)

N (L) = 2 sin2(π/L) (independent of N as long as
N < L), with asymptotic behavior E(1)

N (L ≫ 1) = 2π2L−2, and the interface only fluctuates, without moving or growing,
according to the z = 2 Edwards–Wilkinson universality class of critical behavior [38].

It would be desirable to explore the mapping of the Ising interface to the zero range process to investigate step-step
correlation functions by tagged-particle methods within the context of exact Bethe solutions [6,7,9,19,20,23,39], as well as
the dynamics of special configurations like semi-infinite strips of the minority phase (‘‘Ising fingers’’) [40] using some of the
ideas exposed here. We hope to return to these subjects soon.
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