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Given a cocommutative Hopf algebra H over a commutative 
ring K and a symmetric partial action of H on a K-algebra 
A, we obtain a first quadrant Grothendieck spectral sequence 
converging to the Hochschild homology of the smash product 
A#H, involving the Hochschild homology of A and the partial 
homology of H. An analogous third quadrant cohomological 
spectral sequence is also obtained. The definition of the 
partial (co)homology of H under consideration is based on the 
category of the partial representations of H. A specific partial 
representation of H on a subalgebra B of the partial “Hopf” 
algebra Hpar is involved in the definition and we construct a 
projective resolution of B.
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1. Introduction

The notion of a partial group action on a C∗-algebra, gradually introduced in [28], [37]
and [29], and its successful use (see, in particular, [31]) motivated a series of algebraic 
developments (see the surveys [13] and [22]). In particular, a Galois theory based on 
partial group actions was initiated in [25], which inspired its treatment from the point 
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of view of Galois corings in [17] and the definition of a partial (co)action of a Hopf 
algebra on an algebra in [18]. In the latter paper related concepts were also considered, 
duality results were obtained and a partial Hopf-Galois theory was introduced. This 
was a starting point for rich and interesting Hopf theoretic developments around partial 
actions [4], [2], [10], [5], [20], [9], [16], [11], [8], [15], [32], [6], [11], [12], [19], [36], [40], [39], 
[41], [14].

In particular, partial representations of a Hopf algebra H were introduced in [4], 
extending the notion of a partial group representation (see [30] and [24]). Moreover, an 
algebra Hpar was associated with H in [4], called the partial “Hopf” algebra, which has 
the universal property that each partial representation of H can be factorized by an 
algebra morphism from Hpar, being thus the Hopf analogue of the partial group algebra 
(see [24]). It was also shown in [4] that there is a partial action of H on a subalgebra 
B of Hpar, such that Hpar is isomorphic to the smash product B#H, generalizing an 
earlier result from [23], established in the case of groups. In addition, if H possesses an 
invertible antipode, then Hpar has the structure of a Hopf algebroid [4]. Dual concepts 
were defined and investigated in [6].

In the present article we study the Hochschild homology and cohomology of the par-
tial smash product A#H by means of spectral sequences, where H is a cocommutative 
Hopf algebra, whose partial action on the algebra A is symmetric (see Section 2.1 for 
definitions). Earlier, in [1], group cohomology based on partial representations was in-
troduced and a Grothendieck spectral sequence was produced, relating the Hochschild 
cohomology of the skew group ring A � G by a unital partial action of G on an algebra 
A with the Hochschild cohomology of A and the partial group cohomology of G. This 
was extended in [26] to the crossed product A ∗G by a unital twisted partial action of G
on A, whose twist takes values in the base field, establishing also a similar result for the 
Hochschild homology. The treatment in [26] was based on the theory of partial projective 
group representations and the related novel concept of a twisted partial group algebra.

We begin by giving some preliminaries around partial actions and partial representa-
tions of Hopf algebras and Hochschild (co)homology in Section 2. Section 3 is dedicated 
to the Hochschild homology of the smash product A#H, where H is a cocommutative 
Hopf algebra over a commutative ring K, whose partial action on a unital algebra A
is symmetric. For the main result we also assume that H is projective over K. The 
idea is to use Grothendieck’s Theorem [38, Theorem 10.48] to obtain a first quadrant 
spectral sequence Er converging to the Hochschild homology of A#H with values in a 
A#H-bimodule M , and such that

E2
p,q = TorHpar

p (B, Hq(A,M)),

where B is the above mentioned subalgebra of Hpar.
In order to prepare the ingredients for the use of Grothendieck’s Theorem, we work 

with the right exact functors of the form
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F (−) := A#H⊗(A#H)e −, F1(−) := A⊗Ae − and F2(−) := B ⊗Hpar
−,

where Ae stands for the enveloping algebra A ⊗Aop of A, with Aop denoting the opposite 
algebra of A, and the meaning of (A#H)e is similar. Observe that the left derived functors 
of F1 and F compute the Hochschild homology of A and A#H, respectively. One of the 
main steps is to show that the functors F2F1 and F are naturally isomorphic, when 
applied to A#H-bimodules. It is obtained in Corollary 3.19 as a consequence of a more 
general fact, Proposition 3.17, which states that the bifunctors

−⊗Hpar
(A⊗Ae −) and (−⊗B A#H) ⊗(A#H)e −,

defined on Mod-Hpar×(A#H)e-Mod, are naturally isomorphic. In fact, Proposition 3.17
is a crucial technical tool, which is also used to make the second main step towards the use 
of Grothendieck’s Theorem, namely Proposition 3.24, which says that F1 sends projective 
A#H-bimodules to left F2-acyclic modules.

A considerable point is to show in Lemma 3.12 that if H is projective over K, then 
(A#H)e is projective over Ae. Consequently, any projective (A#H)-bimodule is a pro-
jective A-bimodule, so that applying the left derived functor of F1 to M via taking 
a projective resolution of M in the category of A#H-bimodules computes the usual 
Hochschild homology of A with values in the A-bimodule M (see Remark 3.13).

These facts are used to obtain the main result of the section, Theorem 3.25, which 
states the existence of the above mentioned spectral sequence. As an application, if the 
algebra A under the symmetric partial action of the cocommutative Hopf algebra H is 
separable, then we obtain an isomorphism

Hn(A#H,M) ∼= TorHpar
n (B,M/[A,M ]),

(see Example 3.26). Furthermore, if H is the group algebra KG of a group G, then the 
spectral sequence of Theorem 4.6 takes the form

E2
p,q = Hpar

p (G,Hq(A,M)) ⇒ Hp+q(A � G,M),

where Hpar
• (G, −) := TorKparG

• (B, −), the partial homology of G introduced in [3] (see 
Example 3.27).

A dual work is done in Section 4 to deal with cohomology. The main functors under 
consideration are of the form

G1 := HomAe(A,−), G2 := HomHpar
(B,−) and G := Hom(A#H)e(A#H,−).

Note that G1 is used to compute the Hochschild cohomology of A, whereas for the 
cohomology of A#H the functor G is employed. These functors are used to apply a 
variation of the Grothendieck spectral sequence [38, Theorem 10.47]. The crucial steps 
are Corollary 4.4, stating that the functor G2G1 and G are naturally isomorphic, and 
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Proposition 4.5, which says that G1 sends injective A#H-bimodules to right G2-acyclic 
modules. Both of them are obtained applying an important technical tool, Proposi-
tion 4.3, which is a result dual to the above mentioned Proposition 3.17 on bifunctor 
isomorphism. The main fact is Theorem 4.6, which asserts the existence of a third quad-
rant cohomological spectral sequence Er such that

Ep,q
2 = ExtpHpar

(B, Hq(A,M)) ⇒ Hp+q(A#H,M),

where H is a cocommutative Hopf K-algebra, projective as a K-module, whose par-
tial action on A is symmetric, and M is an arbitrary A#H-bimodule. Dually to the 
homological case, in the proof of Theorem 4.6 we use that any injective resolution of 
the A#H-bimodule M is also an injective resolution of M as an A-bimodule (see Re-
mark 4.2).

In Section 5, for a cocommutative Hopf algebra H and a left Hpar-module M , we 
define the partial Hopf homology and cohomology of H with coefficients in M by

Hpar
• (H,M) := TorHpar

• (B,M) and H•
par(H,M) := Ext•Hpar

(B,M),

respectively. Then the above mentioned spectral sequences take the following forms (see 
Theorem 5.2):

E2
p,q = Hpar

p (H, Hq(A,M)) ⇒ Hp+q(A#H,M),

and

Ep,q
2 = Hp

par(H, Hq(A,M)) ⇒ Hp+q(A#H,M).

Note that the latter sequence extends for the Hopf theoretic setting the third quadrant 
cohomological spectral sequence obtained for the case of unital partial group actions in 
[1, Theorem 4.1]. It is also shown in Section 5 that if the action of H on A is global, then 
we obtain the following global versions of our spectral sequences (see Corollary 5.9):

E2
p,q = TorHp (K,Hq(A,M)) ⇒ Hp+q(A#H,M),

and

Ep,q
2 = ExtpH(K,Hq(A,M)) ⇒ Hp+q(A#H,M).

In the final Section 6 we construct a projective resolution of B (see Proposition 6.3) 
by means of a simplicial module which gives rise to an acyclic complex. Note that a 
projective resolution of B for the case of groups was obtained in [27].

In all what follows K will stand for a commutative (associative) unital ring.
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2. Preliminaries

In this section, for the reader’s convenience, we recall some facts on partial Hopf 
representations, partial Hopf actions, and Hochschild (co)homology.

2.1. Partial representations and partial actions of Hopf algebras

The first definition of the concept of a partial representation of a Hopf algebra was 
given in [4] in an asymmetric way, justified by the definition of a partial group action with 
one-sided ideals considered in [18] and some constructions. Nevertheless, it became clear 
that a symmetric definition introduced in [7] gives additional advantages. According to 
[6], Paolo Saracco observed that some of the axioms on the definition in [7] are redundant, 
so the final definition is as follows:

Definition 2.1. [6, Definition 2.10] Let H be a Hopf K-algebra, and let A be a unital 
K-algebra. A partial representation of H in A is a linear map π : H → A such that

(PR1) π(1H) = 1A,
(PR2) π(h)π(k(1))π(S(k(2))) = π(hk(1))π(S(k(2))),
(PR3) π(h(1))π(S(h(2)))π(k) = π(h(1))π(S(h(2))k),

for all h, k ∈ H.

Lemma 2.2. [6, Lemma 2.11] Let π : H → A be a partial representation. Then the 
following axioms are satisfied as well

(PR4) π(h)π(S(k(1)))π(k(2)) = π(hS(k(1)))π(k(2)),
(PR5) π(S(h(1)))π(h(2))π(k) = π(S(h(1)))π(h(2)k).

Conversely, if a linear map π : H → A satisfies (PR1), (PR4) and (PR5), then it is a 
partial representation.

As in the case of partial group representations, morphisms of partial representations 
of a fixed Hopf algebra H are defined in most natural way: if the pair π : H → A and 
π′ : H → A′ are partial representations, then by a morphism π → π′ we understand an 
algebra homomorphism f : A → A′ such that π′ = f ◦ π. Following [7] we denote by 
ParRepH the category of the partial representations of H and their morphisms.

Remark 2.3. As pointed out in [7, Remark 3.2], if the Hopf algebra H is cocommutative, 
then a linear map π : H → A satisfying (PR1), (PR2), and (PR5) also satisfies axioms 
(PR3) and (PR4), making π a partial representation.

Another crucial for us concept is that of a partial Hopf action first defined in [18].
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Definition 2.4. (see [4]). A left partial action of a Hopf algebra H on a unital algebra A
is a linear map

· : H⊗A → A

h⊗ a 	→ h · a,

such that

(PA1) 1H · a = a for all a ∈ A;
(PA2) h · (ab) = (h(1) · a)(h(2) · b), for all h ∈ H, a, b ∈ A;
(PA3) h · (k · a) = (h(1) · 1A)(h(2)k · a) for all h, k ∈ H, a ∈ A.

The algebra A, on which H acts partially is called a partial left H-module algebra. Recall 
also that a partial action of H on A is said to be symmetric if in addition it satisfies

(PA4) h · (k · a) = (h(1)k · a)(h(2) · 1A) for all h, k ∈ H, a ∈ A.

Given a partial action of a Hopf algebra H on a unital algebra A, an associative 
product on A ⊗H is defined by

(a⊗ h)(b⊗ k) = a(h(1) · b) ⊗ h(2)k.

Then the partial smash product (see [18]) is the unital algebra

A#H := (A⊗H)(1A ⊗ 1H) := {x(1A ⊗ 1H) : x ∈ A⊗H}.

This algebra is generated by the elements of the form

a#h = a(h(1) · 1A) ⊗ h(2).

Lemma 2.5. (see [4]). Let H be a Hopf algebra acting partially on a unital algebra A. 
Then in the partial smash product A#H we have:

(i) (a#h)(b#k) = a(h(1) · b)#h(2)k;
(ii) a#h = a(h(1) · 1A)#h(2);
(iii) the map φ0 : A → A#H given by φ0(a) = a#1H is an algebra homomorphism.

Lemma 2.6. The partial smash product A#H is a direct summand of A ⊗H as A-modules.

Proof. Consider the following maps of algebras

ι : A#H → A⊗H
z 	→ z,

# : A⊗H → A#H
x 	→ x(1 ⊗ 1 ).
A H
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Then, the above maps are morphisms of left A-modules such that # ◦ι = idA#H. Whence 
we obtain that A#H is a direct summand of A ⊗H. �

It is convenient for us to single out the following fact:

Lemma 2.7. Suppose that the partial action of a Hopf algebra H on a unital algebra A is 
symmetric. Then

(b#1H)(1A#S(h)) = (1A#S(h(1)))(h(2) · b#1H),

for all h ∈ H and b ∈ A.

Proof. Since our partial action is symmetric, in view of Lemma 2.5 we have:

(1A#S(h(1)))(h(2) · b#1H) = S(h(2))(h(3) · b)#S(h(1))

= (S(h(3))h(4)) · b)(S(h(2)) · 1A)#S(h(1))

= (ε(h(3))1H) · b)(S(h(2)) · 1A)#S(h(1))

= b(S(h(2)) · 1A)#S(h(1))

= b#S(h) = (b#1H)(1A#S(h)). �
We proceed by recalling the definition of the associative algebra Hpar which governs 

the partial representations of a Hopf algebra H.

Definition 2.8. [7, Definition 4.1] Let H be a Hopf algebra and let T (H) be the tensor 
algebra of the K-module H. The partial “Hopf” algebra Hpar is the quotient of T (H)
by the ideal I generated by the elements of the form

(1) 1H − 1T (H);
(2) h ⊗ k(1) ⊗ S(k(2)) − hk(1) ⊗ S(k(2)), for all h, k ∈ H;
(3) h(1) ⊗ S(h(2)) ⊗ k − h(1) ⊗ S(h(2))k, for all h, k ∈ H;
(4) h ⊗ S(k(1)) ⊗ k(2) − hS(k(1)) ⊗ k(2), for all h, k ∈ H;
(5) S(h(1)) ⊗ h(2) ⊗ k − S(h(1)) ⊗ h(2)k, for all h, k ∈ H.

Observe that by [7, Theorem 4.10] the algebra Hpar possesses the structure of a Hopf 
algebroid. Denote by [h] the class of h ∈ H in Hpar and consider the map

[_] : H → Hpar

h 	→ [h].

Recall from [7] the following easily verified relations:

(1) [αh + βk] = α[h] + β[k], for all α, β ∈ K and h, k ∈ H;
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(2) [1H] = 1Hpar
;

(3) [h][k(1)][S(k(2))] = [hk(1)][S(k(2))], for all h, k ∈ H;
(4) [h(1)][S(h(2))][k] = [h(1)][S(h(2))k], for all h, k ∈ H;
(5) [h][S(k(1))][k(2)] = [hS(k(1))][k(2)], for all h, k ∈ H;
(6) [S(h(1))][h(2)][k] = [S(h(1))][h(2)k], for all h, k ∈ H.

Thus, the linear map [_] is a partial representation H → Hpar. The following universal 
property of the partial “Hopf” algebra expresses the control of Hpar on the partial 
representations of H.

Theorem 2.9. (see [7, Theorem 4.2]) For every partial representation π : H → A there is 
a unique morphism of algebras π̂ : Hpar → A such that π = π̂ ◦ [_]. Conversely, given an 
algebra morphism π : Hpar → A, there exists a unique partial representation πφ : H → A

such that φ = π̂φ.

The universal property of Hpar relates the modules over Hpar with the partial H-
modules, the latter being defined as follows:

Definition 2.10. [7, Definition 5.1] Let H be a Hopf algebra. A partial module over H
is a pair (M, π), where M is a K-module and π : H → EndK(M) is a left partial 
representation of H.

As in [7], by a morphism (M, π) → (M ′, π′) of partial H-modules we mean a K-linear 
map f : M → M ′ such that f ◦π(h) = π′(h) ◦ f for all h ∈ H, and by HMpar we denote 
the category of the left partial H-modules and their morphisms.

The following fact is [7, Corollary 5.3].

Proposition 2.11. There is an isomorphism of categories HMpar ∼= Hpar-Mod. Given a 
partial H-module (M, π), the action of Hpar on M is determined by

[h] � m := πh(m). (2.1)

2.2. Some background on Hochschild (co)homology

For the reader’s convenience, we proceed by recalling some well-known background 
on Hochschild (co)homology.

Definition 2.12. If A is a K-algebra, where K is a unital commutative ring, then its 
enveloping algebra is

Ae = A⊗K Aop,

where Aop stands for the opposite algebra of A.



M. Dokuchaev, E. Jerez / Journal of Algebra 652 (2024) 113–157 121
Proposition 2.13. Let X be an A-bimodule, then X is a left Ae-module with action

(a⊗ b) · x := a · x · b

and is a right Ae-module with action

x · (a⊗ b) := b · x · a.

Definition 2.14. Let A be a unital K-algebra and M an A-bimodule. The Hochschild 
homology of A with coefficients in M is defined by

H•(A,M) := TorA
e

• (A,M),

i.e., H•(A, −) is the left derived functor of A ⊗Ae −. Dually, we define the Hochschild 
cohomology of A with coefficients in M by

H•(A,M) := Ext•Ae(A,M).

The following easy property of tensor products of bimodules will be used constantly 
in the development of this work.

Lemma 2.15. Let X and Y be A-bimodules. Then for every a ∈ A, x ∈ X and y ∈ Y we 
have

a · x⊗Ae y = x⊗Ae y · a

and

x · a⊗Ae y = x⊗Ae a · y.

Proof. By direct computations we obtain

a · x⊗Ae y = x · (1A ⊗ a) ⊗Ae y

= x⊗Ae (1A ⊗ a) · y
= x⊗Ae y · a,

x · a⊗Ae y = x · (a⊗ 1A) ⊗Ae y

= x⊗Ae (a⊗ 1A) · y
= x⊗Ae a · y. �

3. Homology of the partial smash product

In all what follows H will be a cocommutative Hopf K-algebra, A a unital K-algebra 
and

· : H⊗A → A

h⊗ a 	→ h · a
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a symmetric partial action of H on A.

Proposition 3.1. Let R be a K-algebra, π : H → R a partial representation and X an 
R-bimodule. Then the map π′ : H → EndK(X), given by

π′
h(x) :=

∑
π(h1) · x · π(S(h2)),

is a partial representation.

Proof. (PR1) π′
1(x) = π(1) · x · π(S(1)) = π(1) · x · π(1) = x.

(PR2)

π′
hπ

′
k(1)

π′
S(k(2))(x) = π′

hπ
′
k(1)

(
π(S(k(2))) · x · π(S2(k(3)))

)

= π′
h

(
π(k(1))π(S(k(3))) · x · π(S2(k(4)))π(S(k(2)))

)
= π(h(1))π(k(1))π(S(k(3))) · x · π(S2(k(4)))π(S(k(2)))π(S(h(2)))

(By the cocommutativity) = π(h(1)k(1))π(S(k(3))) · x · π(S2(k(4)))π(S(h(2)k(2)))

= π′
hk(1)

π′
S(k(2))(x).

(PR5)
π′
S(h(1))π

′
h(2)

π′
k(x) = π(S(h(1)))π(h(3))π(k(1)) · x · π(S(k(2)))π(S(h(4)))π(S2(h(2)))

(By the cocommutativity) = π(S(h(1)))π(h(3)k(1)) · x · π(S(h(4)k(2)))π(S2(h(2)))

= π′
S(h(1))π

′
h(2)k

(x). �
Let M be an A#H-bimodule. Then, M is an A-bimodule with the actions induced 

by the map φ0 from Lemma 2.5, i.e., the A-bimodule structure is defined by

a ·m := (a#1H) ·m and m · a := m · (a#1H). (3.1)

Since our partial action is symmetric, by [7, Example 3.7], the map π0 : H → A#H, 
given by h 	→ 1A#h, is a partial representation of H into the partial smash product 
A#H. Consequently, by Proposition 3.1 the map π′ : H → EndK(M), such that

π′
h(m) := (1A#h(1)) ·m · (1A#S(h(2))),

is a partial representation of H. Thus, by Proposition 2.11, M is an Hpar-module with 
action given by

[h] � m := π′
h(m) = (1A#h(1)) ·m · (1A#S(h(2))). (3.2)

Notice that given a partial representation φ : H → R into a unital algebra R, we have 
that R becomes a left Hpar-module by setting
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[h] � r := φ(h)r, (3.3)

in view of the isomorphism R ∼= EndR(R).
It is easy to verify the next fact by a direct computation.

Proposition 3.2. Let f : X → Y be a map of A#H-bimodules. Then, f is a morphism of 
Hpar-modules.

Recall that since our partial action · : H⊗A → A is symmetric, then by [7, Example 
3.5] the map h 	→ λh ∈ EndK(A), where λh(a) := h · a, is a partial representation of H
on A. Consequently, A is a Hpar-module with action

[h] � a := h · a. (3.4)

For each h ∈ c define

eh := [h(1)][S(h(2))],

explicitly we have that

eh = μ ◦ ([_] ⊗ [_]) ◦ (1 ⊗ S) ◦ Δ(h),

where μ denotes the product in Hpar. Thus, the map h 	→ eh is K-linear, in particular 
eλh = λeh for all λ ∈ K.

Notice that for a general Hopf algebra one also needs to consider the elements ẽh :=
[S(h(1))][h(2)], h ∈ H, (see [7]), however, since our Hopf algebra is cocommutative, we 
have that

ẽh = [S(h(1))][h(2)]

= [S(h(1))][S(S(h(2)))]

= [S(h)(1)][S(S(h)(2))]

= eS(h).

The following is [7, Lemma 4.7] stated for our particular case of a cocommutative 
Hopf algebra.

Lemma 3.3. For every h, k ∈ H the following properties hold:

(i) ek[h] = [h(2)]eS(h(1))k, in particular eh(1) [h(2)] = [h];
(ii) [h]ek = eh(1)k[h(2)], in particular [h(1)]eS(h(2)) = [h];
(iii) eh(1)eh(2) = eh;
(iv) ehek = ekeh.
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Definition 3.4. We define B as the subalgebra of Hpar generated by {eh | h ∈ H}.

The following lemma is a consequence of [7, Theorem 4.8] and Proposition 2.11.

Lemma 3.5. The algebra B is a left Hpar-module with the action

[h] � b := [h(1)]b[S(h(2))]. (3.5)

Since H is cocommutative then we can consider the antipode S as an isomorphism 
between H and Hop. Furthermore, it determines a partial representation

S ′ : H → (Hpar)op,

h 	→ [S(h)],

and thus there exists a morphism of algebras

S : Hpar → (Hpar)op, (3.6)

such that S([h1][h2] . . . [hn]) = [S(hn)] . . . [S(h2)][S(h1)]. Since, S : H → H is a K-linear 
isomorphism, then S is an algebra isomorphism. Indeed, note that Hpar = (Hpar)op
as K-modules. Then, we obtain a linear map T : (Hpar)op → Hpar such that 
T ([h1][h2] . . . [hn]) = [S(hn)] . . . [S(h2)][S(h1)]. Note that S and T are mutually inverses 
since S2 = 1H because H is cocommutative. Hence, we obtain the following lemma.

Lemma 3.6. The categories Hpar-Mod and Mod-Hpar are isomorphic. In particular, 
given a left Hpar-module V , then V is a right Hpar-module with action

x 
 [h] := [S(h)] � x.

Analogously, if V is a right Hpar-module, then V is a left Hpar-module with action

[h] � x := x 
 [S(h)].

Proof. Obviously, B-Mod ∼= Mod-Bop for any algebra B, and since Hpar

S∼= (Hpar)op, 
then Mod-(Hpar)op ∼= Mod-Hpar. �

In particular, by Lemmas 3.5 and 3.6 we conclude that B is a right Hpar-module with 
action

b 
 [h] := [S(h(1))]b[h(2)]. (3.7)

Indeed,



M. Dokuchaev, E. Jerez / Journal of Algebra 652 (2024) 113–157 125
b 
 [h] := [S(h)] � b = [S(h)(1)]b[S(S(h)(2))] = [S(h(2))]b[S2(h(1))] = [S(h(1))]b[h(2)],

thanks to the cocommutativity of H.

Lemma 3.7. For any w, u ∈ B we have that w � u = wu.

Proof. Let h ∈ H. Then, keeping in mind the cocommutativity of H and Lemma 3.3, we 
have

eh � u =
∑

[h(1)][S(h(2))] � u

=
∑

[h(1)] � ([S(h(2))]u[h(3)])

=
∑

[h(1)][S(h(3))]u[h(4)][S(h(2))]

=
∑

[h(1)][S(h(2))]u[h(3)][S(h(4))]

=
∑

eh(1)ueh(2)

=
∑

eh(1)eh(2)u

= ehu.

The statement with an arbitrary w ∈ B follows immediately. �
Proposition 3.8. Let M be an A#H-bimodule. Then the map π : H → EndK(A ⊗Ae M)
such that

πh(a⊗Ae m) := [h(1)] � a⊗Ae [h(2)] � m, (3.8)

is a partial representation of H. In particular A ⊗Ae M is a Hpar-module with the action

[h] � (a⊗Ae m) := [h(1)] � a⊗Ae [h(2)] � m. (3.9)

Proof. First, we have to verify that the map

πh : A⊗Ae M → A⊗Ae M

a⊗Ae m 	→ [h(1)] � a⊗Ae [h(2)] � m

is well-defined. Indeed, for all b, c ∈ A we obtain using Lemma 2.15 and the cocommu-
tativity of H that

[h(1)]�(a · (c⊗ b)) ⊗Ae [h(2)] � m

= [h(1)] � (bac) ⊗Ae [h(2)] � m

= h(1) · (bac) ⊗Ae [h(2)] � m
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= (h(1) · b)(h(2) · a)(h(3) · c) ⊗Ae [h(4)] � m

= (h(4) · b)(h(1) · a)(h(2) · c) ⊗Ae [h(3)] � m

= (h(1) · a) ⊗Ae (h(2) · c)([h(3)] � m)(h(4) · b)
= (h(1) · a) ⊗Ae ((h(2) · c)#1H)(1A#h(3)) ·m · (1A#S(h(4)))((h(5) · b)#1H)

(by Lemma 2.7) = (h(1) · a) ⊗Ae ((h(2) · c)#h(3)) ·m · (b#1H)(1A#S(h(4)))

= (h(1) · a) ⊗Ae (1A#h(2))(c#1H) ·m · (b#1H)(1A#S(h(3)))

= (h(1) · a) ⊗Ae (1A#h(2))(c ·m · b)(1A#S(h(3)))

= ([h(1)] � a) ⊗Ae [h(2)] � ((c⊗ b) ·m).

Now observe that

πh(a⊗Ae m) = ⊗Ae ◦ (− � a⊗− � m) ◦ [_] ⊗ [_] ◦ Δ(h),

where (− � a ⊗ − � m)(x ⊗ y) := x � a ⊗ y � m, for all a ∈ A, m ∈ M and x, y ∈ Hpar.
Therefore, π is a K-linear map. Furthermore, since we defined π using the Hpar-module 
(partial representation of H) structures of A and M we have that π is a partial repre-
sentation of H. �
Remark 3.9. Let f : X → Y be a map of A#H-bimodules. Then, by Proposition 3.2, f
is a map of Hpar-modules, and, therefore, 1A ⊗Ae f : A ⊗Ae X → A ⊗Ae Y is a map of 
Hpar-modules.

In what follows M will be an A#H-bimodule, and we shall only consider the left 
Hpar-module structure on A ⊗Ae M defined by (3.8).

By Proposition 3.8 we can define the (covariant) right exact functor

F1(−) := A⊗Ae − : (A#H)e-Mod → Hpar-Mod,

and by (3.7) the right exact functor

F2(−) := B ⊗Hpar
− := Hpar-Mod → K-Mod .

Recall that the Hochschild homology of A#H with coefficients in M is the left derived 
functor of

F (−) := A#H⊗(A#H)e − : (A#H)e-Mod → K-Mod .

The following is Proposition 1.4 of [21].

Proposition 3.10. Let R and S be rings and f : R → S a homomorphism of rings such 
that S is a projective R-module. Then, any projective S-module is a projective R-module.
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Using a straightforward dual basis argument one easily obtains the next:

Lemma 3.11. Let R and S be unital K-algebras. Suppose that X is a projective left R-
module and Y is a projective right S-module. Then X⊗K Y is a projective left R⊗K Sop-
module.

Lemma 3.12. Suppose that H is projective over K. Then (A#H)e is a projective left 
Ae-module.

Proof. Since H is projective over K, it is a direct summand of a free module, and 
tensoring by A we readily see that A ⊗H is a projective left A-module. Then, A#H =
(A ⊗H)(1A⊗1H) is projective over A as a left module, being a direct summand of A ⊗H, 
by Lemma 2.6. In view of Lemma 3.11 it remains to show that A#H is projective as a 
right A-module.

Let {hi, fi}i∈I be a dual basis for H over K, where I is some index set. Then h =∑
i∈I fi(h)hi, for each h ∈ H. Define the mappings gi : A ⊗H → A, i ∈ I, by

gi(a⊗ h) = fi(h(1))(S(h(2)) · a).

Then for all a, a′ ∈ A, h ∈ H and i ∈ I we have, using cocommutativity of H, that

gi((a⊗ h)(a′ ⊗ 1H)) = gi(a(h(1) · a′) ⊗ h(2))

= fi(h(1))S(h(2)) · (a(h(3) · a′))

= fi(h(1))(S(h(2)) · a)(S(h(3)) · (h(4) · a′))

= fi(h(1)) (S(h(2)) · a)(S(h(3)) · 1A)︸ ︷︷ ︸((S(h(4))h(5)︸ ︷︷ ︸) · a′)
= fi(h(1))(S(h(2)) · a)a′

= gi(a⊗ h)a′.

Thus, each gi is a map of right A-modules. In particular,

gi(a#h) = gi((a⊗ h)(1A ⊗ 1H)) = gi(a⊗ h)1A = gi(a⊗ h),

for all a ∈ A, h ∈ H. Next we show that {1A#hi, gi}i∈I is a dual basis for the right 
A-module A#H, which will complete our proof. Indeed, for each a ∈ A, h ∈ H, using 
that our partial action is symmetric and the cocommutativity of H, we see that

∑
i∈I

(1A#hi)gi(a#h) =
∑
i∈I

(1A#hi)fi(h(1))(S(h(2)) · a)

=
∑

(1A#hi)(fi(h(1))(S(h(2)) · a) ⊗ 1H)

i∈I
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=
∑
i∈I

(1A ⊗ hi)(1A ⊗ 1H)(fi(h(1))(S(h(2)) · a) ⊗ 1H)

=
∑
i∈I

(1A ⊗ hi)(fi(h(1))(S(h(2)) · a) ⊗ 1H)

= (1A ⊗
∑
i∈I

fi(h(1))hi)((S(h(2)) · a) ⊗ 1H)

= (1A ⊗ h(1))((S(h(2)) · a) ⊗ 1H)

= h(1) · (S(h(2)) · a) ⊗ h(3)

= (h(1)S(h(2)) · a)(h(3) · 1A) ⊗ h(4)

= a(h(1) · 1A) ⊗ h(2)

= a#h,

as desired. �
From Proposition 3.10 and Lemma 3.12 we obtain the following:

Remark 3.13. If H is projective over K, then any projective (A#H)-bimodule is a pro-
jective A-bimodule. Therefore, any projective resolution of M in (A#H)e-Mod is a 
projective resolution of M in Ae-Mod. Thus, considering M as an A-bimodule, the left 
derived functor of F1 computes the Hochschild homology of M , i.e.,

H•(A,M) ∼= L•F1(M).

Lemma 3.14. Let X be an A#H-bimodule and Y a Hpar-module, then

(i) For all h ∈ H we have that h · 1A is central in A.
(ii) eh � a = (h · 1A)a, for all h ∈ H and a ∈ A, considering A with the Hpar-module 

structure given by (3.4). Then, eh � 1A = h · 1A and w � a = (w � 1A)a for all a ∈ A

and w ∈ B;
(iii) eh � x = (h(1) · 1A) · x · (h(2) · 1A) h ∈ H and x ∈ X, considering X with the 

Hpar-module structure given by (3.2);
(iv) eh ⊗Hpar

y = 1B ⊗Hpar
[S(h)] · y = 1B ⊗Hpar

eh · y, as elements of B ⊗Hpar
Y , for 

all h ∈ H and y ∈ Y ,
(v) eh � (a ⊗Ae x) = a ⊗Ae eh � x = eh � a ⊗Ae x, as elements of A ⊗Ae X; so that 

w � (a ⊗Ae x) = w � a ⊗Ae x = a ⊗Ae w � x, for all w ∈ B.

Proof. (i) By direct computations using the cocommutativity and the symmetry of the 
partial action we obtain

(h · 1A)a = ε(h(1))(h(2) · 1A)a
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= (h(2) · 1A)((ε(h(1))1H) · a)
= (h(1) · 1A)((h(2)S(h(3))) · a)
= h(1) · (S(h(2)) · a)
= (h(1)S(h(3)) · a)(h(2) · 1A)

= (h(1)S(h(2)) · a)(h(3) · 1A)

= ((ε(h(1))1H) · a)(h(2) · 1A)

= a(ε(h(1))h(2) · 1A)

= a(h · 1A).

(ii) For any h ∈ H and a ∈ A we obtain

eh � a = [h(1)][S(h(2))] � a

= h(1) · (S(h(2)) · a)
= (h(1) · 1A)(h(2)S(h(3)) · a)
= (h(1) · 1A)(ε(h(2))1H · a)
= (h · 1A)a.

(iii) Let h ∈ H and x ∈ X. Then,

eh � x = (1A#h(1))(1A#S(h(3))) · x · (1A#h(4))(1A#S(h(2)))

= (h(1) · 1A#h(2)S(h(4))) · x · (h(5) · 1A#h(6)S(h(3)))

= (h(1) · 1A#h(2)S(h(3))) · x · (h(4) · 1A#h(5)S(h(6)))

= (h(1) · 1A#ε(h(2))1H) · x · (h(3) · 1A#ε(h(4))1H)

= (h(1) · 1A#1H) · x · (h(2) · 1A#1H)

= (h(1) · 1A) · x · (h(2) · 1A).

(iv) For h ∈ H and y ∈ Y we have that

eh ⊗Hpar
y = [h(1)][S(h(2))] ⊗Hpar

y = 1B 
 [S(h)] ⊗Hpar
y = 1B ⊗Hpar

[S(h)] · y

and

eh ⊗Hpar
y = eh(1)eh(2) ⊗Hpar

y

= [h(1)][S(h(2))]1B[h(3)][S(h(4))] ⊗Hpar
y

= [h(1)](1B 
 [h(2)])[S(h(3))] ⊗Hpar
y

= [h(1)](1B 
 [h(3)])[S(h(2))] ⊗Hpar
y
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= (1B 
 [h(2)]) 
 [S(h1)] ⊗Hpar
y

= (1B 
 [h(1)][S(h2)]) ⊗Hpar
y

= (1B 
 eh) ⊗Hpar
y

= 1B ⊗Hpar
eh · y.

(v) For a ∈ A and x ∈ X we obtain

eh � (a⊗Ae x) = [h(1)] � ([S(h(2))] � a⊗Ae [S(h(3))] � x)

= [h(1)][S(h(3))] � a⊗Ae [h(2)][S(h(4))] � x

= [h(1)][S(h(2))] � a⊗Ae [h(3)][S(h(4))] � x

= eh(1) � a⊗Ae eh(2) � x

(by (ii) and (iii)) = (h(1) · 1A)a⊗Ae (h(2) · 1A) · x · (h(3) · 1A)

Now we have that

(h(1) · 1A)a⊗Ae (h(2) · 1A) · x · (h(3) · 1A) = a⊗Ae (h(1) · 1A) · x · (h(2) · 1A)(h(3) · 1A)

= a⊗Ae (h(1) · 1A) · x · (h(2) · 1A)

= a⊗Ae eh � x,

and on the other hand

(h(1) · 1A)a⊗Ae (h(2) · 1A) · x · (h(3) · 1A) = (h(3) · 1A)(h(1) · 1A)a(h(2) · 1A) ⊗Ae x

(by (i)) = (h(1) · 1A)(h(2) · 1A)(h(3) · 1A)a⊗Ae x

= (h · 1A)a⊗Ae x

(by (ii)) = eh � a⊗Ae x. �
Proposition 3.15. The algebra A#H is a Hpar-module with action, given by

[h] � (a#k) := (1A#h)(a#k). (3.10)

In particular

eh � (a#k) = (h · 1A#1H)(a#k) = ((h · 1A)a#k) = (eh � a)#k. (3.11)

Proof. We know that π0 : H → A#H such that π0(h) := 1A#h is a partial representation 
of H, whence we conclude that A#H is a Hpar-module with action (3.10). Finally, by 
direct computation we obtain
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eh � (a#k) = (1A#h(1))(1A#S(h(2)))(a#k)

= (h(1) · 1A#h(2)S(h(3)))(a#k)

= (h(1) · 1A#ε(h(2))1H)(a#k)

= (h · 1A#1H)(a#k)

= (h · 1A)a#k

= (eh � a)#k,

where the final equality is due to item (ii) of Lemma 3.14. �
Proposition 3.16. Let X be a right Hpar-module. Then, X⊗B(A#H) is an A#H-bimodule 
with actions:

a#h · (x⊗B c#t) := x · [S(h(1))] ⊗B (a#h(2))(c#t)

and

(x⊗B c#t) · a#h := x⊗B (c#t)(a#h).

Thus, we obtain a functor − ⊗B A#H : Mod-Hpar → (A#H)e-Mod.

Proof. The right action is well-defined since it is just the action induced by the right 
multiplication on A#H. For the left action we want to verify that a#h · (x ·ek⊗B c#t) =
a#h · (x ⊗B ek � (c#t)), i.e.,

(x · ek) · [S(h(1))] ⊗B (a#h(2))(c#t) = x · [S(h(1))] ⊗B (a#h(2))(ek � (c#t)).

Starting the computations with the right part of the above equation we have

x · [S(h(1))] ⊗B (a#h(2))(ek � (c#t))

(by (3.11)) = x · [S(h(1))] ⊗B (a#h(2))(k · 1A#1H)(c#t)

= x · [S(h(1))] ⊗B (a(h(2) · (k · 1A))#h(3))(c#t)

= x · [S(h(1))] ⊗B
(
a(h(2) · 1A)(h(3)k · 1A)#h(4)

)
(c#t)

(by (3.11)) = x · [S(h(1))] ⊗B eh(2) �
(
(a(h(3)k · 1A)#h(4))(c#t)

)
= x · [S(h(1))]eh(2) ⊗B

(
(a(h(3)k · 1A)#h(4))(c#t)

)
(by Lemma 3.3 (ii)) = x · [S(h(1))] ⊗B

(
(a(h(2)k · 1A)#h(3))(c#t)

)
(by (3.11)) = x · [S(h(1))] ⊗B eh(2)k �

(
(a#h(3))(c#t)

)
= x · [S(h(1))]eh(2)k ⊗B

(
(a#h(3))(c#t)

)
(by Lemma 3.3 (i)) = x · ek[S(h(1))] ⊗B

(
(a#h(2))(c#t)

)
= (x · ek) · [S(h(1))] ⊗B (a#h(2))(c#t).
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Then, a#h · (x ⊗B c#t) = x · [S(h(1))] ⊗B (a#h(2))(c#t) is well-defined. Now observe that

(b#k) ·
(
a#h · (x⊗B c#t)

)
= (b#k) ·

(
x · [S(h(1))] ⊗B (a#h(2))(c#t)

)
= x · [S(h(1))][S(k(1))] ⊗B (b#k(2))(a#h(2))(c#t)

(By Lemma 3.3 (ii)) = x · [S(h(1))][S(k(1))]ek(2) ⊗B (b#k(3))(a#h(2))(c#t)

= x · [S(h(1))S(k(1))]ek(2) ⊗B (b#k(3))(a#h(2))(c#t)

= x · [S(h(1))S(k(1))] ⊗B ek(2) �
(
(b#k(3))(a#h(2))(c#t)

)
= x · [S(k(1)h(1))] ⊗B ek(2) �

(
(b#k(3))(a#h(2))(c#t)

)
= x · [S(k(1)h(1))] ⊗B ((k(2) · 1A)b#k(3))(a#h(2))(c#t)

(by Lemma 2.5 (ii)) = x · [S(k(1)h(1))] ⊗B (b#k(2))(a#h(2))(c#t)

= x · [S(k(2)h(1))] ⊗B (b#k(1))(a#h(2))(c#t)

= x · [S(k(2)h(1))] ⊗B (b(k(1) · a)#k(3)h(2))(c#t)

= (b(k(1) · a)#k(2)h) · (x⊗B c#t)

= (b#k)(a#h) · (x⊗B c#t).

Therefore, the left action is well-defined, and since
(
a#h ·(x⊗B c#t)

)
·b#k = x · [S(h(1))]⊗B (a#h(2))(c#t)(b#k) = a#h ·

(
(x⊗B c#t) ·b#k

)
,

we have that X ⊗B A#H is a A#H-bimodule. Finally, if f : X → Y is a map of right 
Hpar-modules then f ⊗B 1 : X ⊗B A#H → Y ⊗B A#H is a map of A#H-bimodules. 
Indeed, it is clear that f ⊗B 1 is a map of right A#H-modules. On the other hand, 
observe that for any x ∈ X and z ∈ A#H we have

(a#h) ·
(
(f ⊗B 1)(x⊗B z)

)
= (a#h) · (f(x) ⊗B z)

= f(x) · [S(h(1))] ⊗B (a#h(2))z

= f(x · [S(h(1))]) ⊗B (a#h(2))z

= (f ⊗B 1)
(
x · [S(h(1))] ⊗B (a#h(2))z

)
= (f ⊗B 1)

(
(a#h) · (x⊗B z)

)
. �

Proposition 3.17. The functors

−⊗Hpar
(A⊗Ae −) : Mod-Hpar × (A#H)e-Mod → K -Mod

and

(−⊗B A#H) ⊗(A#H)e − : Mod-Hpar × (A#H)e-Mod → K -Mod

are naturally isomorphic.
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Proof. Let X be a right Hpar-module and M and A#H-bimodule. For a fixed x ∈ X

define

γ̃x,M : A×M → (X ⊗B A#H) ⊗(A#H)e M

(a,m) 	→ (x⊗B 1A#1H) ⊗(A#H)e a ·m,

Observe that γ̃x,M is Ae-balanced. Indeed, for d ⊗ c ∈ Ae we have

γ̃x,M (a · (d⊗ c),m) = γ̃x,M (cad,m)

= (x⊗B 1A#1H) ⊗(A#H)e cad ·m
(by Lemma 2.15) = (x⊗B 1A#1H) · (c#1H) ⊗(A#H)e a · (d ·m)

= (x⊗B c#1H) ⊗(A#H)e a · (d ·m)

= (c#1H) · (x⊗B 1A#1H) ⊗(A#H)e a · (d ·m)

(by Lemma 2.15) = (x⊗B 1A#1H) ⊗(A#H)e a · (d ·m) · (c#1H)

= (x⊗B 1A#1H) ⊗(A#H)e a · (d ·m · c)
= γ̃x,M (a, (d⊗ c) ·m),

so, γ̃x,M is Ae-balanced. Therefore, the following map is well-defined

γx,M : A⊗Ae M → (X ⊗B A#H) ⊗(A#H)e M

a⊗Ae m 	→ (x⊗B 1A#1H) ⊗(A#H)e a ·m.

Now define the function

γ̃(X,M) : X × (A⊗Ae M) → (X ⊗B A#H) ⊗(A#H)e M

(x, a⊗Ae m) 	→ γx,M (a⊗Ae m) = (x⊗B 1A#1H) ⊗(A#H)e a ·m.

We want to show that γ̃(X,M) is Hpar-balanced. Recall the A#H-bimodule structure of 
X ⊗B A#H given by Proposition 3.16. Let h ∈ H, thus

γ̃(X,M)(x · [h],a⊗Ae m)

= (x · [h] ⊗B 1A#1H) ⊗(A#H)e a ·m
= (x · [h(1)]eS(h(2)) ⊗B 1A#1H) ⊗(A#H)e a ·m
= (x · [h(1)] ⊗B eS(h(2)) � (1A#1H)) ⊗(A#H)e a ·m

(by (3.11)) =
(
x · [h(1)] ⊗B (S(h(2)) · 1A)#1H

)
⊗(A#H)e a ·m

=
(
x · [h(1)] ⊗B (1A#S(h(2)))(1A#h(3))

)
⊗(A#H)e a ·m

= 1A#S(h(1)) ·
(
x⊗B 1A#1H

)
· (1A#h(2)) ⊗(A#H)e a ·m
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(by Lemma 2.15) =
(
x⊗B 1A#1H

)
⊗(A#H)e (1A#h(2)) · (a ·m) · (1A#S(h(1)))

=
(
x⊗B 1A#1H

)
⊗(A#H)e (1A#h(2))(a#1H) ·m · (1A#S(h(1)))

=
(
x⊗B 1A#1H

)
⊗(A#H)e (h(2) · a#h(3)) ·m · (1A#S(h(1)))

=
(
x⊗B 1A#1H

)
⊗(A#H)e (h(2) · a#1H)(1A#h(3)) ·m · (1A#S(h(1)))

=
(
x⊗B 1A#1H

)
⊗(A#H)e (h(1) · a#1H)(1A#h(2)) ·m · 1A#S(h(3))

=
(
x⊗B 1A#1H

)
⊗(A#H)e ([h(1)] � a#1H) · ([h(2)] � m)

= γ̃(X,M)(x, ([h(1)] � a) ⊗Ae ([h(2)] ·m))

= γ̃(X,M)(x, [h] � (a⊗Ae m)).

Then, the following map is well-defined

γ(X,M) : X ⊗Hpar
(A⊗Ae M) → (X ⊗B A#H) ⊗(A#H)e M

x⊗Hpar
(a⊗Ae m) 	→ (x⊗B 1A#1H) ⊗(A#H)e a ·m.

In order to obtain its inverse map we fix an m ∈ M and define the map

ψ̃X,m : X ×A#H → X ⊗Hpar
(A⊗Ae M)

(x, a#h) 	→ x⊗Hpar
(1A ⊗Ae (a#h) ·m).

Then, ψ̃X,m is B-balanced. Indeed,

ψ̃X,m(x · ek, a#h) = x · ek ⊗Hpar
(1A ⊗Ae (a#h) ·m)

= x⊗Hpar
ek � (1A ⊗Ae (a#h) ·m)

(by Lemma 3.14 (v) and (ii)) = x⊗Hpar

(
k · 1A ⊗Ae (a#h) ·m

)
= x⊗Hpar

(
1A ⊗Ae (k · 1A#1H) · ((a#h) ·m)

)
= x⊗Hpar

(
1A ⊗Ae ((k · 1A)a#h) ·m

)
= ψ̃X,m(x, (k · 1A)a#h)

(by (3.11)) = ψ̃X,m(x, ek � (a#h)).

Then, the following map is well-defined

ψX,m : X ⊗B A#H → X ⊗Hpar
(A⊗Ae M)

x⊗B (a#h) 	→ x⊗Hpar
(1A ⊗Ae (a#h) ·m).

So, we can define the map

ψ̃(X,M) : (X ⊗B A#H) ×M → X ⊗Hpar
(A⊗Ae M)

(x⊗B a#h,m) 	→ ψX,m(x⊗B a#h) = x⊗Hpar
(1A ⊗Ae (a#h) ·m),
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which is (A#H)e-balanced. Indeed, for the left action, we have

ψ̃(X,M)((b#k) · (x⊗B (a#h)),m)

= ψ̃(X,M)(x · [S(k(1))] ⊗B (b#k(2))(a#h),m)

= x · [S(k(1))] ⊗Hpar

(
1A ⊗Ae (b#k(2))(a#h) ·m

)
= x · [S(k(1))] ⊗Hpar

(
b⊗Ae (1A#k(2))(a#h) ·m

)
= x · [S(k(1))] ⊗Hpar

(
1A ⊗Ae (1A#k(2))(a#h) ·m · (b#1H)

)
= x⊗Hpar

[S(k(1))] �
(
1A ⊗Ae (1A#k(2))(a#h) ·m · (b#1H)

)
= x⊗Hpar

(
[S(k(1))] � 1A ⊗Ae [S(k(2))] � ((1A#k(3))(a#h) ·m · (b#1H))

)
= x⊗Hpar

(
S(k(1)) · 1A ⊗Ae (1A#S(k(2)))(1A#k(3))(a#h) ·m · (b#1H)(1A#k(4))

)

= x⊗Hpar

(
S(k(1)) · 1A ⊗Ae

(
(S(k(2)) · 1A#(S(k(3))k(4)))(a#h) ·m · (b#1H)(1A#k(5))

))

= x⊗Hpar

(
S(k(1)) · 1A ⊗Ae

(
(S(k(2)) · 1A#ε(k(3))1H)(a#h) ·m · (b#1H)(1A#k(4))

))

= x⊗Hpar

(
S(k(1)) · 1A ⊗Ae

(
(S(k(2)) · 1A#1H)(a#h) ·m · (b#1H)(1A#k(3))

))

= x⊗Hpar

(
(S(k(1)) · 1A)(S(k(2)) · 1A) ⊗Ae

(
(a#h) ·m · (b#1H)(1A#k(3))

))

= x⊗Hpar

(
(S(k(1)) · 1A) ⊗Ae

(
(a#h) ·m · (b#1H)(1A#k(2))

))

= x⊗Hpar

(
1A ⊗Ae

(
(a#h) ·m · (b#1H)(1A#k(2))((S(k(1)) · 1A)#1H)

))

= x⊗Hpar

(
1A ⊗Ae

(
(a#h) ·m · (b#1H)(1A#k(1))((S(k(2)) · 1A)#1H)

))

= x⊗Hpar

(
1A ⊗Ae

(
(a#h) ·m · (b#1H)(k(1) · (S(k(2)) · 1A)#k(3))

))

= x⊗Hpar

(
1A ⊗Ae

(
(a#h) ·m · (b#1H)(k(1) · 1A#k(2))

))

= x⊗Hpar

(
1A ⊗Ae

(
(a#h) ·m · (b#k)

))
= ψ̃(X,M)((x⊗B (a#h)),m · (b#k)),

and, for the right action

ψ̃(X,M)((x⊗B (a#h)) · (b#k),m) = ψ̃(X,M)(x⊗B (a#h)(b#k),m)

= x⊗Hpar
(1A ⊗Ae (a#h)(b#k) ·m)

= x⊗Hpar
(1A ⊗Ae (a#h) · ((b#k) ·m))

= ψ̃(X,M)((x⊗B a#h), (b#k) ·m).

Thus, the map
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ψ(X,M) : (X ⊗B A#H) ⊗(A#H)e M → X ⊗Hpar
(A⊗Ae M)

(x⊗B a#h) ⊗(A#H)e m 	→ x⊗Hpar
(1A ⊗Ae (a#h) ·m)

is well-defined. Observe that γ(X,M) and ψ(X,M) are mutual inverses since

ψ(X,M)
(
γ(X,M)(x⊗Hpar

(a⊗Ae m))
)

= ψ(X,M)
(
(x⊗B 1A#1H) ⊗(A#H)e a ·m

)
= x⊗Hpar

(1A ⊗Ae a ·m)

= x⊗Hpar
(a⊗Ae m)

and

γ(X,M)
(
ψ(X,M)((x⊗B a#h) ⊗(A#H)e m)

)
= γ(X,M)

(
x⊗Hpar

(1A ⊗Ae a#h ·m)
)

= (x⊗B 1A#1H) ⊗(A#H)e a#h ·m
= (x⊗B a#h) ⊗(A#H)e m.

Let X ′ be another right Hpar-module and M ′ be a A#H-bimodule, f : X → X ′

a map of right Hpar-modules and g : M → M ′ a map of A#H-bimodules. Then, the 
following diagram commutes

X ⊗Hpar
(A⊗Ae M) X ′ ⊗Hpar

(A⊗Ae M ′)

(X ⊗B A#H) ⊗(A#H)e M (X ′ ⊗B A#H) ⊗(A#H)e M
′

(f,g)

(f,g)
γ(X,M) γ(X′,M′)

where, (f, g) = f ⊗Hpar
(1A ⊗Ae g) and (f, g) = (f ⊗B 1A#1H) ⊗(A#H)e g. Indeed,

γ(X′,M ′)

(
(f, g)(x⊗Hpar

(a⊗Ae m))
)

= γ(X,M)
(
f(x) ⊗Hpar

(a⊗Ae g(m))
)

= (f(x) ⊗B 1A#1H) ⊗(A#H)e a · g(m)

= (f(x) ⊗B 1A#1H) ⊗(A#H)e g(a ·m)

= (f, g)
(
(x⊗B 1A#1H) ⊗(A#H)e a ·m

)
= (f, g)

(
γ(X,M)(x⊗Hpar

(a⊗Ae m))
)
.

Thus, γ is a natural isomorphism. �
Lemma 3.18. The isomorphism of K-modules

φ : A#H → B ⊗B A#H
a#h 	→ 1B ⊗B a#h

is an isomorphism of A#H-bimodules.



M. Dokuchaev, E. Jerez / Journal of Algebra 652 (2024) 113–157 137
Proof. For any b#k, a#h, c#t ∈ A#H we have that

φ((b#k)(a#h)(c#t)) = 1B ⊗B (b#k)(a#h)(c#t)

=
(
1B ⊗B (b#k)(a#h)

)
· (c#t)

= 1B ⊗B ((k(1) · 1A)b#k(2))(a#h)) · (c#t)

(by (3.11)) = 1B ⊗B ek(1) � ((b#k(2))(a#h))
)
· (c#t)

= 1B 
 ek(1) ⊗B (b#k(2))(a#h)
)
· (c#t)

= ek(1)1Bek(2) ⊗B (b#k(3))(a#h)
)
· (c#t)

= ek(1) ⊗B (b#k(2))(a#h)
)
· (c#t)

=
(
[k(1)]1B[S(k(2))] ⊗B (b#k(3))(a#h)

)
· (c#t)

=
(
1B 
 [S(k(1))] ⊗B (b#k(2))(a#h)

)
· (c#t)

= (b#k) ·
(
1B ⊗B (a#h)

)
· (c#t)

= (b#k) · φ(a#h) · (c#t). �
Corollary 3.19. The functors F2F1 and F are naturally isomorphic.

Proof. Using Proposition 3.17 for the particular case X = B we obtain that the functors

B ⊗Hpar
(A⊗Ae −) : (A#H)e-Mod → K -Mod

and

(B ⊗B A#H) ⊗(A#H)e − : (A#H)e-Mod → K -Mod

are naturally isomorphic. Clearly, F2F1 = B ⊗Hpar
(A ⊗Ae −). On the other hand, by 

Lemma 3.18 we know that B ⊗B A#H ∼= A#H as A#H-bimodules. Therefore, F ∼=
(B ⊗B A#H) ⊗(A#H)e −, whence we get the desired conclusion. �

In all what follows in this section, we assume that the cocommutative Hopf algebra 
H is projective over K.

Lemma 3.20. Hpar is projective as a left B-module.

Proof. It was proved in [7, Theorem 4.8] that the partial action (3.5) of H on B is such 
that π̂ : Hpar → B#H is an isomorphism of algebras induced by the partial representa-
tion

π : H → B#H
h 	→ 1B#h.
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Recall that the structure of the left B-module Hpar is just the induced by the natural 
inclusion B ↪→ Hpar. On the other hand, the structure of B#H as a left B-module is 
determined by the morphism of algebras φ0 : B → B#H such that w 	→ w#1H. Let 
h ∈ H and x ∈ Hpar. Then,

π̂(ehx) = π̂(eh)π̂(x)

= (1#h(1))(1#S(h(2)))π̂(x)

=
(
h(1) · 1B#h(2)S(h(3))

)
π̂(x)

=
(
h · 1B#1H

)
π̂(x)

=
(
eh#1H

)
π̂(x)

= eh · π̂(x).

Therefore, π̂ is an isomorphism of left B-modules. Therefore, it is enough to prove that 
B#H is projective as a left B-module. Using the Lemma 3.11 for X = R = B, Y = H
and S = K we obtain that B ⊗ H is projective as a left B-module. By Lemma 2.6 we 
know that B#H is a direct summand of B ⊗ H, whence B#H is projective as a left 
B-module. �

By Lemma 3.20 and Proposition 3.10 we obtain the following proposition

Proposition 3.21. Any projective left Hpar-module is projective as a left B-module.

Lemma 3.22. Any projective right Hpar-module is a projective right B-module. Thus, any 
projective resolution of B in Mod-Hpar is a projective resolution in Mod-B.

Proof. Let X be a projective right Hpar-module. Then, by Lemma 3.6 we have that X
is a projective left Hpar-module with action

z � x := x 
 S(z), ∀z ∈ Hpar.

Observe that by the cocommutativity of H we have that

S(eh) = S([h(1)][S(h(2))]) = [S2(h(2))][S([h(1)])] = [h(1)][S([h(2)])] = eh,

and since B is commutative we conclude that S|B = idB. Now by Proposition 3.21 we 
have that X is projective as a left B-module with action

w � x := x 
 S(w) = x 
 w.

Using again that B is commutative we have that any right B-module is a left B-module 
with the natural action. Thus, X is projective as right B-module. �
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Lemma 3.23. Let M be a left Hpar-module, and let P• → B be a projective resolution of 
left (right) Hpar-modules of B. Then, Hn(P• ⊗B M) = 0 for all n ≥ 1.

Proof. Notice that by Proposition 3.21 or Lemma 3.22, for the left and right case re-
spectively, we have that P• → B is also a projective resolution of B in Mod-B. Therefore,

Hn(P• ⊗B M) = TorBn(B,M) =
{

0 if n ≥ 1
M if n = 0. �

Proposition 3.24. F1 sends projective (A#H)-bimodules to left F2-acyclic modules.

Proof. We have to see that

(LnF2)(A⊗Ae P ) = 0, ∀n ≥ 1,

for any projective (A#H)e-module P . Now observe that

(LnF2)(A⊗Ae P ) = Ln(B ⊗Hpar
−)(A⊗Ae P )

∼= Ln(−⊗Hpar
(A⊗Ae P ))(B)

(by Proposition 3.17) ∼= Ln((−⊗B A#H) ⊗(A#H)e P )(B).

Let Q• → B a projective resolution of B in Mod-Hpar. Then,

(LnF2)(A⊗Ae P ) ∼= Ln((−⊗BA#H)⊗(A#H)e P )(B) = Hn

(
(Q• ⊗B A#H) ⊗(A#H)e P

)
.

Observe that if the complex (Q• ⊗B A#H) is exact for all n ≥ 1 then the complex 
(Q• ⊗B A#H) ⊗(A#H)e P is exact for all n ≥ 1 since P is projective as (A#H)e-module, 
and so

Hn

(
(Q• ⊗B A#H) ⊗(A#H)e P

)
= 0,∀n ≥ 1,

which is exactly what we want. Therefore, it is enough to show that (Q•⊗BA#H) is exact 
for all n ≥ 1. Recall that (Q•⊗BA#H) is exact in n if, and only if, Hn(Q•⊗BA#H) = 0. 
But the latter equality holds by Lemma 3.23. �
Theorem 3.25. Let H be a cocommutative Hopf K-algebra, such that H is projective as 
a K-module. If · : H ⊗ A → A is a symmetric partial action of H on a unital algebra 
A, then for any (A#H)e-module M there exists a first quadrant homological spectral 
sequence Er such that

E2
p,q = TorHpar

p (B, Hq(A,M)) ⇒ Hp+q(A#H,M).
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Proof. Keeping in mind Remark 3.13 we know that

LqF1(−) = Hq(A,−), LpF2(−) = TorHpar
p (B,−) and Lp+qF (−) = Hp+q(A#H,−).

We also have that F1 and F2 are right exact functors, by Proposition 3.24 the functor F1
sends projective (A#H)-bimodules to F2-acyclic modules and by Corollary 3.19 we have 
that F2F1 ∼= F . Thus, by [38, Theorem 10.48] we obtain the desired spectral sequence. �
Example 3.26. If A is a separable algebra, then

Hq(A,M) =
{

0 if q ≥ 1
M/[A,M ] if q = 0.

Therefore, the spectral sequence in Theorem 3.25 collapses on the p-axis, and thus we 
obtain the following isomorphism:

Hn(A#H,M) ∼= TorHpar
n (B,M/[A,M ]).

Example 3.27. Let G be a group. If H = KG then the spectral sequence of Theorem 4.6
takes the form

E2
p,q = Hpar

p (G,Hq(A,M)) ⇒ Hp+q(A � G,M),

where Hpar
• (G, −) := TorKparG

• (B, −).

Example 3.28. From [7] we know that there exists a partial action of H on B such that 
Hpar

∼= B#H. Therefore,

E2
p,q = TorHpar

p (B, Hq(B,M)) ⇒ Hp+q(Hpar,M).

In particular if H = KG then the spectral sequence takes the form

E2
p,q = Hpar

p (G,Hq(B,M)) ⇒ Hp+q(KparG,M).

Observe that Be is generated as a K-algebra by the set of idempotent {eg⊗eh : g, h ∈ G}. 
Therefore, Be is a Von Neumann regular algebra, and consequently, B is flat as a Be-
module. Thus, the above spectral sequence collapses on the p-axis, and we obtain the 
following isomorphism

Hpar
n (G,M/[B,M ]) ∼= Hn(KparG,M).

The above isomorphism generalizes the Mac Lane isomorphism (see for example [35, 
7.4.2]) in the sense that if M is a G-group. Then,
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Hn(KG,M) = H•(KparG,M) ∼= Hpar
• (G,M) = H•(G,M),

as it is shown in [26].

4. Cohomology of the partial smash product

Now we proceed to show the existence of a dual cohomological spectral sequence 
for the Hochschild cohomology. Recall that H is a cocommutative Hopf K-algebra, A a 
unital K-algebra and

· : H⊗A → A

h⊗ a 	→ h · a

a symmetric partial action of H on A.

Proposition 4.1. Let M be an A#H-bimodule. Then, HomAe(A, M) is an Hpar-module, 
with the action determined by

([h] � f)(a) = [h(1)] � f([S(h(2))] � a). (4.1)

Proof. For h ∈ H define πh : HomAe(A, M) → HomAe(A, M), by πh(f)(a) := [h(1)] �
f([S(h(2))] � a), for all f ∈ HomAe(A, M) and a ∈ A. Then,

π : H → EndK(HomAe(A,M))

h 	→ πh

is a partial representation. Indeed, for any h, t ∈ H we have
(
πtπh(1)πS(h(2))(f)

)
(a) = [t(1)] �

((
πh(1)πS(h(2))(f)

)
([S(t(2))] � a)

)

= [t(1)][h(1)] �
((

πS(h(3))(f)
)

([S(h(2))][S(t(2))] � a)
)

= [t(1)][h(1)][S(h(3))] �
(
f([h(4)][S(h(2))][S(t(2))] � a)

)
= [t(1)][h(1)][S(h(2))] �

(
f([h(3)][S(h(4))][S(t(2))] � a)

)
= [t(1)h(1)][S(h(2))] �

(
f([h(3)][S(t(2)h(4))] � a)

)
= [t(1)h(1)] �

(
πS(h(2))(f)([S(t(2)h(3))] � a)

)

= [t(1)h(1)] �
(
πS(h(3))(f)([S(t(2)h(2))] � a)

)
= πth(1)πS(h(2))(f)(a).

Analogously, we have that
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πS(h(1))πh(2)πt(f)(a) = πh(1)πS(h(2))t(f)(a).

It is clear that π1H(f) = f . Then, π is a partial representation and thus HomAe(A, M)
is a Hpar-module. �

Now we can define the following functors, by Proposition 4.1

G1 := HomAe(A,−) : (A#H)e-Mod → Hpar-Mod. (4.2)

Recall that B is a left Hpar-module with the action given by (3.5), thus we can define

G2 := HomHpar
(B,−) : Hpar-Mod → K-Mod. (4.3)

The functor used to compute the Hochschild cohomology of A#H with coefficients in M
is

G := Hom(A#H)e(A#H,−) : (A#H)e-Mod → K-Mod. (4.4)

Recall that by Lemma 3.6 any left Hpar-module X is a right Hpar-module. If X is a 
left Hpar-module, then by Proposition 3.16 we have that X⊗BA#H is a A#H-bimodule 
with actions:

a#h · (x⊗B c#t) := x · [S(h(1))] ⊗B (a#h(2))(c#t) = [h(1)] · x⊗B (a#h(2))(c#t) (4.5)

and

(x⊗B c#t) · a#h := x⊗B (c#t)(a#h). (4.6)

For the cohomological setting we have the dual version of Remark 3.13.

Remark 4.2. Recall that the morphism of rings Ae → (A#H)e induced by the natural 
inclusion of A into (A#H) determines the structure of Ae-module of (A#H)e, and by 
Lemma 3.12, if H is projective over K, then (A#H)e is projective as Ae-module. Thus, 
by [34, Corollary 3.6A] we conclude that any injective (A#H)e-module is an injective 
Ae-module. Consequently,

H•(A,M) ∼= R•G1(M),

for any (A#H)e-module M .

Proposition 4.3. Let M be a fixed A#H-bimodule. Then, the functors

HomHpar
(−,HomAe(A,M)) : Hpar-Mod → K-Mod
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and

Hom(A#H)e(−⊗B A#H,M) : Hpar-Mod → K-Mod

are naturally isomorphic. On the other hand, if X is a fixed left Hpar-module, then the 
functors

HomHpar
(X,HomAe(A,−)) : (A#H)e-Mod → K-Mod

and

Hom(A#H)e(X ⊗B A#H,−) : (A#H)e-Mod → K-Mod

are naturally isomorphic.

Proof. Let X be a left Hpar-module and M be an (A#H)-bimodule. Define

γ(X,M) : HomHpar
(X,HomAe(A,M)) → Hom(A#H)e(X ⊗B A#H,M)

f 	→ γ(X,M)(f),

such that

γ(X,M)(f)(x⊗B (a#h)) = fx(1A) · (a#h),

where f ∈ HomHpar
(X, HomAe(A, M)) and fx := f(x). First, we have to verify that 

γ(X,M)(f) is well-defined. Indeed, notice that

γ(X,M)(f)(x · eh ⊗B (a#h)) (4.7)

= fx·eh(1A) · (a#h)

= feh·x(1A) · (a#h)

= (eh � fx)(1A) · (a#h)

= ([h(1)][S(h(2))] � fx)(1A) · (a#h)

=
(
[h(1)] �

(
[s(h(2))] � fx

))
(1a) · (a#h),

by Equation (4.1) we have that

(
[h(1)]�

(
[s(h(2))] � fx

))
(1a) · (a#h) (4.8)

= [h(1)] �
((

[S(h(3))] � fx
)
([S(h(2))] � 1A)

)
· (a#h)

= [h(1)][S(h(2))] � fx
(
[h(3)][S(h(4))] � 1A

)
· (a#h)

(�) =
(
eh(1) � fx(h(2) · 1A)

)
· (a#h),
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where (�) holds by item (ii) of Lemma 3.14 (ii). Moreover, observe that:
(
eh(1)�fx(h(2) · 1A)

)
· (a#h) (4.9)

=
(
(1A#h(1))(1A#S(h(2))) · fx(h(3) · 1A) · (1A#h(4))(1A#S(h(5)))

)
· (a#h)

=
(
(h(1) · 1A#h(2)S(h(3))) · fx(h(4) · 1A) · (h(5) · 1A#h(6)S(h(7)))

)
· (a#h)

=
(
(h(1) · 1A#1H) · fx(h(2) · 1A) · (h(3) · 1A#1H)

)
· (a#h)

= fx
(
(h(1) · 1A)(h(2) · 1A)(h(3) · 1A)

)
· (a#h)

= fx(h · 1A) · (a#h)

= fx(1A) · (h · 1A#1H)(a#h)

= fx(1A) · ((h · 1A)a#h)

(��) = fx(1A) · (eh � a#h)

= γ(X,M)(f)(x⊗B eh � (a#h)),

where the equality (��) holds by (ii) of Lemma 3.14. Thus, by Equations (4.7), (4.8) and 
(4.9) we get

γ(X,M)(f)(x · eh ⊗B (a#h)) = γ(X,M)(f)(x⊗B eh � (a#h)).

Now we have to verify that γ(X,M)(f) is a morphism of (A#H)-bimodules. It is clear 
that γ(X,M)(f) is a morphism of right A#H-modules, so we only have to see that it is a 
morphism of left A#H-modules. Observe that

γ(X,M)(f)(b#t · (x⊗B (a#h))) = γ(X,M)(f)([t(1)] · x⊗B (b#t(2))(a#h))

= f[t(1)]·x(1A) · (b#t(2))(a#h)

= ([t(1)] � fx)(1A) · (b#t(2))(a#h)

=
(
[t(1)] � fx([S(t(2))] � 1A)

)
· (b#t(3))(a#h)

= (1A#t(1)) · fx(S(t(3)) · 1A) · (1A#S(t(2)))(b#t(4))(a#h)

= (1A#t(1)) · fx(S(t(5)) · 1A) · (S(t(2)) · b#S(t(3))t(4))(a#h)

= (1A#t(1)) · fx(S(t(4)) · 1A) · (S(t(2)) · b#ε(t(3))1H)(a#h)

= (1A#t(1)) · fx(S(t(3)) · 1A) · (S(t(2)) · b#1H)(a#h)

= (1A#t(1)) · fx
(
(S(t(3)) · 1A)(S(t(2)) · b)

)
· (a#h)

= (1A#t(1)) · fx
(
(S(t(2)) · b)

)
· (a#h)

= (1A#t(1))((S(t(2)) · b)#1H) · fx(1A) · (a#h)

(by Lemma 2.7) = (b#t) · fx(1A) · (a#h)

= (b#t) · γ(X,M)(f)(x⊗B (a#h)).
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To show that γ(X,M) is an isomorphism of K-modules for any X ∈ Hpar-Mod and 
M ∈ (A#H)e-Mod we will define its inverse map

Λ(X,M) : Hom(A#H)e(X ⊗B A#H,M) → HomHpar
(X,HomAe(A,M))

such that

(
Λ(X,M)(f)

)
x
(a) := f(x⊗B a#1H),

for all f ∈ Hom(A#H)e(X ⊗B A#H, M). Observe that 
(
Λ(X,M)(f)

)
x

is a morphism of 
Ae-modules. Indeed,

(
Λ(X,M)(f)

)
x
(bac) = f(x⊗B bac#1H)

= f(x⊗B (b#1H)(a#1H)(c#1H))

= f((b#1H) · (x⊗B (a#1H)) · (c#1H))

= (b#1H) · f((x⊗B (a#1H))) · (c#1H)

= b ·
(
Λ(X,M)(f)

)
x
(a) · c.

Now observe that Λ(X,M)(f) is a morphism of Hpar-modules.

(
Λ(X,M)(f)

)
[h]·x(a) = f([h] · x⊗B a#1H)

= f(eh(1) [h(2)] · x⊗B a#1H)

= f(eh(1) · ([h(2)] · x) ⊗B a#1H)

= f(([h(2)] · x) · eh(1) ⊗B a#1H)

= f([h(2)] · x⊗B eh(1) � (a#1H))

= f([h(3)] · x⊗B (1A#h(1))(1A#S(h(2)))(a#1H))

= f
(
(1A#h(1)) · (x⊗B (1A#S(h(2)))(a#1H))

)
= f

(
(1A#h(1)) · (x⊗B (S(h(2)) · a#S(h(3))))

)
= f

(
(1A#h(1)) · (x⊗B (S(h(2)) · a#1H)) · (1A#S(h(3)))

)
= (1A#h(1)) · f

(
(x⊗B (S(h(3)) · a#1H))

)
· (1A#S(h(2)))

= [h(1)] �
(
f(x⊗B ([S(h(2))] � a)#1H)

)
(by (4.1)) = [h(1)] �

(
Λ(X,M)(f)

)
x
([S(h(2))] � a)

= ([h] �
(
Λ(X,M)(f)

)
x
)(a).

Thus, Λ(X,M) is well-defined. Finally, by direct computations we obtain that γ(X,M) and 
Λ(X,M) are mutually inverses:
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(Λ(X,M)(γ(X,M)(f)))x(a) = γ(X,M)(f)(x⊗B a#1H)

= fx(1A) · (a#1H)

= fx(a)

and

(γ(X,M)(Λ(X,M)(f)))(x⊗B (a#h)) =
(
Λ(X,M)(f)

)
x
(1A) · a#h

= f(x⊗B 1A#1H) · a#h

= f(x⊗B a#h).

For a fixed M define γM (X) = γ(X,M). Then,

γM : HomHpar
(−,HomAe(A,M)) → Hom(A#H)e(−⊗B A#H,M)

is a natural transformation. Indeed, let ξ : X → X ′ be a map of left Hpar-modules. 
Then, we want to verify that the following diagram commutes

HomHpar
(X,HomAe(A,M)) HomHpar

(X ′,HomAe(A,M))

Hom(A#H)e(X ⊗B A#H,M) Hom(A#H)e(X ′ ⊗B A#H,M)

ξ∗

ξ∗

γ(X,M) γ(X′,M)

where

ξ∗ := HomHpar
(ξ,HomAe(A,M)),

and

ξ∗ := Hom(A#H)e(ξ ⊗B A#H,M).

Indeed,

(γ(X,M)(ξ∗(f)))(x⊗B a#h) = (ξ∗(f))x(1A) · a#h

= fξ(x)(1A) · a#h

and

ξ∗(γ(X′,M)(f))(x⊗B a#h) = γ(X′,M)(f)(ξ(x) ⊗B a#h)

= fξ(x)(1A) · a#h.

Thus, the above diagram commutes. Finally, for a fixed Hpar-module X we define
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γX : HomHpar
(X,HomAe(A,−)) → Hom(A#H)e(X ⊗B A#H,−),

such that γX(M) := γ(M,X). Analogously we have that γX is a natural transformation. 
Indeed, we have to see that for any ζ : M → M ′ morphism of A#H-bimodules the 
following diagram commutes

HomHpar
(X,HomAe(A,M)) HomHpar

(X,HomAe(A,M ′))

Hom(A#H)e(X ⊗B A#H,M) Hom(A#H)e(X ⊗B A#H,M ′)

γ(X,M) γ(X,M′)

ζ∗

ζ∗

where

ζ∗ := HomHpar
(X,HomAe(A, ζ)),

and

ζ∗ := Hom(A#H)e(X ⊗B A#H, ζ).

Observe that

(γ(X,M ′)(ζ∗(f)))(x⊗B a#h) = (ζ∗(f))x(1A) · (a#h)

= ζ(fx(1A)) · (a#h)

and

ζ∗(γ(X,M)(f))(x⊗B a#h) = ζ(γ(X,M)(f)(x⊗B a#h))

= ζ (fx(1A) · (a#h))

= ζ (fx(1A)) · (a#h).

Thus, the above diagram commutes. �
Corollary 4.4. The functors G2G1 and G are naturally isomorphic.

Proof. By Proposition 4.3, taking X = B we have that the functors

HomHpar
(B,HomAe(A,−)) : (A#H)e-Mod → K-Mod

and

Hom(A#H)e(B ⊗B A#H,−) : (A#H)e-Mod → K-Mod



148 M. Dokuchaev, E. Jerez / Journal of Algebra 652 (2024) 113–157
are naturally isomorphic. It is clear that G2G1 = HomHpar
(B, HomAe(A, −)). On the 

other hand by Lemma 3.18 we have that B⊗B A#H ∼= A#H as A#H-bimodules. Thus, 
G ∼= Hom(A#H)e(B ⊗B A#H, −). �

In all what follows, we assume that H is projective over K.

Proposition 4.5. G1 sends injective (A#H)-bimodules to right G2-acyclic modules.

Proof. We have to see that

(RnG2)(HomAe(A,Q)) = 0 ∀n ≥ 1,

for any injective (A#H)e-module Q. Now observe that

(RnG2)(HomAe(A,Q)) = Rn(HomHpar
(B,−))(HomAe(A,Q))

∼= Rn(HomHpar
(−,HomAe(A,Q)))(B)

(by Proposition 4.3) ∼= Rn(Hom(A#H)e(−⊗B A#H, Q))(B).

Let P• → B a projective resolution of B in Hpar-Mod. Then,

(RnG2)(HomAe(A,Q)) ∼= Hn
(
Hom(A#H)e(P• ⊗B A#H, Q)

)
.

Observe that if the complex P• ⊗B A#H is exact for all n ≥ 1 then the chain complex 
Hom(A#H)e(P•⊗BA#H, Q) is exact for all n ≥ 1 since Q is injective as (A#H)e-module, 
and so

Hn
(
Hom(A#H)e(P• ⊗B A#H, Q)

)
= 0,∀n ≥ 1,

which is exactly what we want. Therefore, it is enough to show that P•⊗BA#H is exact 
for all n ≥ 1, but this follows from Lemma 3.23 since P• ⊗B A#H is exact in n if, and 
only if, Hn(P• ⊗B A#H) = 0. �
Theorem 4.6. Let H be a cocommutative Hopf K-algebra, which is projective as a K-
module, and · : H ⊗ A → A be a symmetric partial action of H on A. Then, for any 
(A#H)e-module M there exists a cohomological spectral sequence Er such that

Ep,q
2 = ExtpHpar

(B, Hq(A,M)) ⇒ Hp+q(A#H,M).

Proof. Recalling Remark 4.2 we know that

RqG1(−) = Hq(A,−), RpG2(−) = ExtpHpar
(B,−) and Rp+qG(−) = Hp+q(A#H,−).

We also have that G1 and G2 are left exact functors, by Proposition 4.5 the functor 
G1 sends injective (A#H)-bimodules to right G2-acyclic modules and by Corollary 4.4
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we have that G2G1 ∼= G. Thus, by [38, Theorem 10.47] we obtain the desired spectral 
sequence. �
5. Hopf (co)homology based on partial representations

In analogy with the case of groups (see [1] and [3]) we give the following definition:

Definition 5.1. Let H be a cocommutative Hopf algebra. For a left Hpar-module M , we 
define the partial Hopf homology of H with coefficients in M by

Hpar
• (H,M) := TorHpar

• (B,M). (5.1)

Analogously, we define the partial Hopf cohomology of H with coefficients in M by

H•
par(H,M) := Ext•Hpar

(B,M). (5.2)

Observe that as in the case of groups, the above-defined cohomology differs from the 
cohomology based on partial actions introduced in [15].

In view of Definition 5.1 we can reformulate Theorem 3.25 and Theorem 4.6 as follows:

Theorem 5.2. Let · : H⊗A → A be a symmetric partial action of a cocommutative Hopf 
algebra on A, such that H is projective over K. Then for any (A#H)e-module M there 
exists a first quadrant homological spectral sequence Er such that

E2
p,q = Hpar

p (H, Hq(A,M)) ⇒ Hp+q(A#H,M),

and a third quadrant cohomological spectral sequence Er such that

Ep,q
2 = Hp

par(H, Hq(A,M)) ⇒ Hp+q(A#H,M).

We proceed by showing that the above-defined (co)homology is a generalization of 
the usual (co)homology for H-modules.

Remark 5.3. It is easy to see that the identity map idH : H → H is a partial representa-
tion. Thus, by Theorem 2.9 we have a surjective homomorphism of algebras Hpar → H
such that [h] 	→ h. Consequently, any left (right) H-module will be a left (right) Hpar-
module.

Items (i) and (ii) of [38, Lemma 10.69] directly lead to the following lemma.

Lemma 5.4. Let P be a projective left (right) Hpar-module. Then, H⊗Hpar
P (P⊗Hpar

H) 
is projective as left (right) H-module.
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Recall that the co-unit ε : H → K is a homomorphism of algebras, thus we have a 
homomorphism of algebras Hpar → K such that [h] 	→ ε(h).

Lemma 5.5. The functors − ⊗Hpar
H and − ⊗BK are naturally isomorphic. Analogously, 

the functors H⊗Hpar
− and K ⊗B − are naturally isomorphic.

Proof. Let X be a right Hpar-module.

η̃X : X ×H → X ⊗B K

(x, h) 	→ x · [h] ⊗B 1.

Notice that f̃ is Hpar-balanced. Indeed,

η̃X(x · [t], h) = x · [t][h] ⊗B 1

= x · [t][h(1)]eS(h(2)) ⊗B 1

= x · [th(1)]eS(h(2)) ⊗B 1

= x · [th(1)] ⊗B eS(h(2)) � 1

= x · [th(1)] ⊗B ε(S(h(2)))

= x · [th(1)] ⊗B ε(h(2))

= x · [th(1)ε(h(2))] ⊗B 1

= x · [th] ⊗B 1

= η̃X(x, th) = η̃X(x, [t] � h).

Therefore, the map

ηX : X ⊗Hpar
H → X ⊗B K

x⊗Hpar
h 	→ x · [h] ⊗B 1

is well-defined. Let f : X → X ′ be a morphism of Hpar-modules. Then, the following 
diagram commutes

X ⊗Hpar
H X ′ ⊗Hpar

H

X ⊗B K X ′ ⊗B K

f⊗Hpar
1H

f⊗B1

ηX ηX′

Indeed,
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ηX′ ◦ (f ⊗Hpar
1H)(x⊗Hpar

h) = ηX′(f(x) ⊗Hpar
h)

= f(x) · [h] ⊗B 1

= f(x · [h]) ⊗B 1

= (f ⊗B 1)(x · [h] ⊗B 1)

= (f ⊗B 1) ◦ ηX(x⊗Hpar
h).

Thus, η : (− ⊗Hpar
H) → (− ⊗B K) is a natural transformation. Finally, consider the 

map

Φ̃X : X ×K → X ⊗Hpar
H

(x, r) 	→ x⊗Hpar
r1H.

Observe that Φ̃X is B-balanced. Indeed,

Φ̃X(x · eh, r) = x · eh ⊗B r1H
= x⊗B eh � (r1H)

= x⊗B ε(h)r1H
= x⊗B (eh � r)1H
= Φ̃X(x, eh � r).

Thus, the map

ΦX : X ⊗B K → X ⊗Hpar
H

x⊗B r 	→ x⊗Hpar
r1H

is well-defined. The maps ηX and ΦX are mutual inverses:

ηX ◦ ΦX(x⊗B r) = ηX(x⊗Hpar
r1H) = x · (r1H) ⊗B 1 = x⊗B r,

and

ΦX ◦ ηX(x⊗Hpar
h) = ΦX(x · [h] ⊗B 1) = x · [h] ⊗Hpar

1H = x⊗Hpar
h. �

Proposition 5.6. Let P• → B be a projective resolution of right Hpar-modules of B. Then, 
P• ⊗Hpar

H is a projective resolution of right H-modules of K.

Proof. By Lemma 5.4 we know that P• ⊗Hpar
H is a complex of projective right H-

modules. Then, P• ⊗Hpar
H is a resolution of K if, and only if,

Hn(P• ⊗Hpar
H) =

{
0 if n ≥ 1
K if n = 0.
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Observe that by Lemma 5.5 and Lemma 3.22 we have that

Hn(P• ⊗Hpar
H) = Hn(P• ⊗B K)

= TorBn(B,K) ∼=
{

0 if n ≥ 1
K if n = 0. �

Remark 5.7. It follows from the proof of Proposition 5.6 that

Hpar
n (H,H) = TorHpar

n (B,H) = TorBn(B,K) ∼=
{

0 if n ≥ 1
K if n = 0.

Proposition 5.8. Let X be a left (right) H-module. Then,

TorHpar
• (B, X) = TorH• (K,X) and Ext•Hpar

(B, X) = Ext•H(K,X).

Proof. Let P• be a projective resolution of B in Mod-Hpar. Then, if X is a left H-module 
we have

TorHpar
n (B, X) = Hn(P• ⊗Hpar

X)

= Hn(P• ⊗Hpar
(H⊗H X))

= Hn((P• ⊗Hpar
H) ⊗H X)

(by Proposition 5.6) = TorH• (K,X).

In the dual settings, if X is a right H-module, we have

ExtnHpar
(B, X) = Hn(HomHpar

(P•, X))

= Hn

(
HomHpar

(P•,HomH(H, X))
)

= Hn

(
HomHpar

(P•,HomHpar
(H, X))

)
= Hn

(
HomHpar

(P• ⊗Hpar
H, X)

)
(by Proposition 5.6) = ExtnH(K,X). �

Assume that we have a global action · : H ⊗ A → A. Then, any A#H-bimodule M
is an H-module, consequently, Hn(A, M) and Hn(A, M) are H-modules. Therefore, by 
Proposition 5.8 the spectral sequences of Theorems 3.25 and 4.6 take the global forms:

Corollary 5.9. Let H be a cocommutative Hopf algebra, which is projective as K-module, 
and let · : H⊗A → A be a global action. Then there exist spectral sequences

E2
p,q = TorHp (K,Hq(A,M)) ⇒ Hp+q(A#H,M),

and

Ep,q
2 = ExtpH(K,Hq(A,M)) ⇒ Hp+q(A#H,M).
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6. A projective resolution of B

Finally, we construct a projective resolution of B. Define the map

ψ : Hpar → B
x 	→ x � 1B.

Notice that ψ is a morphism of Hpar-modules. Indeed, let x, z ∈ Hpar. Then,

ψ(xz) = xz � 1B = x � (z � 1B) = x � ψ(z).

We define the modules of our resolution by

C ′
n(H) := H⊗Bn+1

par , (6.1)

as the tensor product of n +1 copies of Hpar over B. Henceforth, for the sake of simplicity, 
since there is no ambiguity we will denote C ′

n(H) just by C ′
n.

Proposition 6.1. C ′
n is projective as left (right) Hpar-module.

Proof. By induction, obviously C ′
0 = Hpar is free as left (right) Hpar-module. Assume 

that C ′
n is projective as left (right) Hpar-module, by [33, Proposition 3.9] we know that 

C ′
n+1 is projective if, and only if, HomHpar

(C ′
n+1, −) is exact. First, we consider the right 

module case. Then, by [38, Theorem 2.75] we have that

HomHpar
(C ′

n+1,−) = HomHpar
(Hpar ⊗B C ′

n,−)
∼= HomB(Hpar,HomHpar

(C ′
n,−)).

Thus, HomHpar
(C ′

n+1, −) is exact since C ′
n is projective as a right Hpar-module by hy-

pothesis and Hpar is projective as a right B-module. Analogously for the left module 
case by [38, Theorem 2.76] we have that

HomHpar
(C ′

n+1,−) = HomHpar
(C ′

n ⊗B Hpar,−)
∼= HomB(Hpar,HomHpar

(C ′
n,−)),

from which we conclude that C ′
n+1 also is projective as a left Hpar-module. �

Observe that product in Hpar is a well-defined morphism of Hpar-bimodules.

μ : Hpar ⊗B Hpar → Hpar

x⊗B y 	→ xy.
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Using this map we are able to define the following face maps of left Hpar-modules for 
n ≥ 1. If 0 ≤ i ≤ n − 1 we set di : C ′

n → C ′
n−1 such that

di := idHpar
⊗B . . .⊗B μ⊗B︸ ︷︷ ︸

i-position

. . .⊗B idHpar
,

In particular, for a basic element of C ′
n, this formula is determined by

di(x0 ⊗B . . .⊗B xn) = x0 ⊗B . . .⊗B xixi+1 ⊗B . . .⊗B xn. (6.2)

For i = n we define

dn := idHpar
⊗B . . .⊗B μ(idHpar

⊗B ψ).

Thus, for the basic elements of C ′
n, we obtain

dn(x0 ⊗B . . .⊗B xn) = x0 ⊗B . . .⊗B xn−1ψ(xn) (6.3)

Analogously, we define the maps si : C ′
n → C ′

n+1, 0 ≤ i ≤ n and n ≥ 0, by

si(x0 ⊗B . . .⊗B xn) := x0 ⊗B . . .⊗B xi ⊗B 1Hpar
⊗B xn+1 ⊗B . . .⊗B xn. (6.4)

Proposition 6.2. (C ′
•, di, si) is a simplicial module.

Proof. Direct computations. �
Consequently, (C ′

•, ∂•) is a complex where

∂n :=
n∑

i=0
(−1)idi.

Proposition 6.3. C ′
•

ψ→ B is a projective resolution of B in Hpar-Mod.

Proof. For n ≥ 0 consider the map s : C ′
n → C ′

n+1 such that

s(x0 ⊗B . . .⊗B xn) := 1Hpar
⊗B x0 ⊗B . . .⊗B xn. (6.5)

Observe that such a map satisfies

(a) d0s = idC′
n
,

(b) dis = sdi−1, for all i ≥ 1.
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Thus,

∂n+1s =
n+1∑
i=0

(−1)idis = idC′
n

+
n+1∑
i=1

(−1)isdi−1

= idC′
n
−

n∑
i=0

(−1)isdi = idC′
n
− s∂n.

Therefore,

s∂n + ∂n+1s = idC′
n
, ∀n ≥ 1.

Whence Hn(C ′
•, ∂•) = 0 for all n ≥ 1. Now consider the map ∂1. Explicitly this map 

takes the form

∂1(x0 ⊗B x1) = x0x1 − x0ψ(x1).

Thus,

ψ∂0(x0 ⊗B x1) = ψ(x0x1) − ψ(x0ψ(x1))

= x0x1 � 1B − x0ψ(x1) � 1B
= x0 � (x1 � 1B) − x0 � (ψ(x1) � 1B)

(by Lemma 3.7) = x0 � ψ(x1) − x0 � ψ(x1) = 0.

Then, C ′
•

ψ→ B is a complex. Now, let z be in the kernel of ψ, then

∂1s(z) = ∂1(1Hpar
⊗B z) = z − ψ(z) = z.

Whence, z ∈ im ∂1. Thus, kerψ = im ∂1. Thus, C ′
•

ψ→ B is an exact sequence. Finally, by 
Proposition 6.1 each C ′

n is projective. �
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