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A B S T R A C T   

Inherent errors in tipping bucket flow meters may limit monitoring data reliability. In this work, we perform the 
static and dynamic calibration of four large tipping buckets, apply different regression curves and investigate the 
possible measurement error sources. The volumetric capacity (static calibration) of each piece of equipment was 
determined. They were tested (dynamic calibration) under ten flow intensities, ranging from low to high rainfall 
intensities (return period larger than 100 years). For each flow rate, the measurement was recorded during six 
time intervals (1, 2, 5, 10, 20 and 30 min) and four regression equations - linear, potential, T vs. 1/Q and 
quadratic - were tested. According to the static calibration, the equipment has a volumetric capacity of 11.63 mL 
(TB1), 64.16 mL (TB2), 139.86 mL (TB3) and 660.95 mL (TB4). When tested under different flow rates (dynamic 
calibration), underestimations were identified according to the size of the cavity: TB1 (3.31%), TB2 (5.75%), TB3 
(9.33%) and TB4 (13.57%). Among the alternative curves, linear regression showed the best correlation (above 
99%) with the monitored data. Using this method, the measurement errors were reduced to − 1.35% (TB1), 
0.04% (TB2), 3.18% (TB3) and 3.73% (TB4). We investigated how the different variables (tipping speed, cavity 
volumetric capacity and time interval of data collection) influenced the error. Errors follow a parabolic function 
of tipping velocity and a linear function of cavity volumetric capacity. The time interval of data collection 
interfered in the data sampled, however no statistical correlation was found. Among those variables, cavity size is 
the most important one. Given its low cost we aimed to minimize the inherent error in large tipping buckets flow 
meters and encourage its application, increasing in-situ collection of hydrological data.   

1. Introduction 

Rapid land use and land cover (LULC) changes (Chanapathi & Tha
tikonda, 2020; Mello et al., 2020), climate change (Rocha et al., 2020; 
Yang et al., 2020) and population growth (Kifle Arsiso et al., 2017) result 
in higher demand of water, food and energy (Mahlknecht et al., 2020). 
Through in-situ monitoring, long-term datasets are created to support 
the development of new technologies and solutions to maintain the 
hydrological cycle (Anache et al., 2019; Nóbrega et al., 2017). 

Considering the specific requirements for hydrological monitoring in 
a study area, there are many alternative instruments available, while 
each one has its own advantage and limitations (Sun et al., 2014). A 
tipping bucket (TB) flow meter is a robust, simple and high mobility 
monitoring piece of equipment, which is easy to install and maintain 
(Shimizu et al., 2018; Sun et al., 2014). A TB consists of two cavities 
divided by a vertical plate at stable positions (one remains up while the 
other is down) and it uses a very simple operational mechanism: the 

collected water flow falls into a cavity and once it reaches its volumetric 
capacity, the gravitational mass center is switched towards the full 
cavity, rising the empty cavity and replacing the previous one, while 
releasing the stored water. This process repeats during the entire flow 
event. In addition to monitoring accurately, using this kind of equipment 
when associated with a reed switch and datalogger allows automation 
and better details of the data collected, such as identifying the begin
ning, end, and peak of the flow (Corona et al., 2013; Sun et al., 2014; 
Zabret et al., 2018). 

Despite the fact that tipping bucket application dates back to 1928 
(Nebol’sin, 1928), it has been used for surface/subsurface flows in small 
study area measurements, such as runoff (Calder and Kidd, 1978; Chow, 
1976; Corona et al., 2013; Elder et al., 2014; Hollis & Ovenden, 1987; 
Khan & Ong, 1997; Klik et al., 2004; Kim et al., 2005; Johnston, 1942; 
Nehls et al., 2011; Peyrard et al., 2016; Perales-Momparler et al., 2017; 
Langhans et al., 2019; Wang et al., 2020; Whipkey, 1965), percolation 
(Lamb et al., 2019; Peyrard et al., 2016; Wang et al., 2020), throughfall 
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(Takahashi et al., 2010; Zabret et al., 2018) and stemflow (Iida et al., 
2012; Shimizu et al., 2018; Takahashi et al., 2010; Zabret et al., 2018). 

As well as tipping bucket rain gauges, tipping bucket flow meters 
used for runoff measurements are also susceptible to measurement er
rors between the reference and measured flows, thus requiring the 
application of calibration curves. Calibration can be done in two ways: 
static (volumetric) and dynamic. Static calibration consists of deter
mining the volume of water necessary for the center of mass to be shifted 
towards the filling cavity, leading to its tipping. The volume determined 
in this step corresponds to the equipment’s reference volume or its 
volumetric capacity. On the other hand, dynamic calibration consists of 
plotting sample points in a graph, which correlates reference and 
measured flows and then using regression curves to minimize errors. 
Unlike the static calibration that occurs under extremely low flow rates, 
usually by drops, to minimize the kinetic energy of the water, in dy
namic calibration, the measurements occur under different flow rates 
(Shedekar et al., 2016). Further details about both methodologies 
mentioned are given by Humphrey et al. (1997). 

After lab tests and data collection for dynamic calibration, another 
phase begins: application of regression curves that best fit the data. 
There is a large number of applicable equations, ranging from the 
simplest (linear) to the most complex (polynomial and exponential). 
Calder and Kidd (1978) identified a non-linearity of errors under 
increased flow, and thus proposed a new calibration curve by correlating 
the input flow and time interval between tilts. Based on the same central 
idea of describing the errors considering its non-linearity, other authors 
have also proposed calibration curves (Iida et al., 2012; Shimizu et al., 
2018; Shiraki & Yamato, 2004; Takahashi et al., 2010). 

Despite its recognized applicability, using TBs has systemic errors 
that need minimization, through calibration, for a more accurate esti
mation of water flow. Edwards et al. (1974) were pioneers in error 
investigation and development of calibration curves for large TBs. They 
discovered that water kinetic energy and the volume lost during cavity 
switching, after reaching volumetric capacity, are some of the main 
sources of errors in TBs. Since then, many others have dedicated their 
time to developing calibration techniques (Calder & Kidd, 1978; Iida 
et al., 2012; Shimizu et al., 2018), while others have focused on applying 
existing methods and investigating the sources of the errors (Barfield 

and Hirschi, 1986; Calder & Kidd, 1978; Edwards et al., 1974; Egorov 
et al., 2015; Hollis & Ovenden, 1987; Iida et al., 2012; Kanzari et al., 
2018; Shimizu et al., 2018; Langhans et al., 2019; Sun et al., 2014; 
Somavilla et al., 2019; Takahashi et al., 2010; Yahaya et al., 2009). 
Nowadays, Shimizu et al. (2018), which is one of the most outstanding 
papers, provides a general calibration equation for TBs with flat trian
gular buckets. Although it was successful in eliminating the 2–3% errors 
in stemflow measurements, it is only applicable for low flow rates (less 
than 60 mL per minute), inapplicable for most surface flow 
measurements. 

Errors in TBs can be significantly reduced by static and dynamic 
calibrations (Shedekar et al., 2016), but some observed errors are still 
not completely minimized (Shimizu et al., 2018). In this context, some 
questions remain unclear: How can errors be affected by main opera
tional and design variables (tipping velocity, cavity size and time in
terval)? Among the existing regression curves, which is the most suitable 
for minimizing errors? Is there a pattern in occurring errors in TBs? 
Based on these questions, this paper uses different techniques (static and 
dynamic calibration) and regression curves (linear, potential, T vs. 1/Q 
and quadratic) aiming to minimize and investigate the source of the 
occurring errors in four large sizes of tipping buckets flow meters. 

2. Methodology 

2.1. Tipping bucket description 

The tipping bucket flow meters (Fig. 1) were designed to measure 
runoff in the outlet of experimental plots (100 m2) under four different 
LULC: Wooded Cerrado, also known as Cerrado sensu stricto (TB1), 
sugarcane (TB2), pasture (TB3) and bare soil (TB4). Those are common 
Brazilian LULC and its modification is directly linked to the hydrological 
processes of the area. Most research already carried out on this topic 
have presented only total volumetric runoff resulting from a precipita
tion event, but the use of automatic monitoring sensors allows the 
collection of information through a time scale, identifying the start and 
end of the runoff, peak, and total flows. The investigation about the most 
suitable calibration technique and errors source is fundamental to give 
reliability to the insertion of automatic sensors into the characterization 

Fig. 1. Illustration (a) and photographs (b) of the tipping bucket flow meters. Where: (1) is the cavity; (2) is the anchoring rod on the ground; (3) is the fixed 
supporting plate; (4) is the mobile supporting plate; (5) is the vertical bar to support the reed switch and the upper plate; (6) is the height control bar; (7) is the 
support rod of the height control bar; (8) reed switch and cable connecting to the datalogger; and (9) is the upper plate. 
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of the occurring hydrological processes. The plots, which have been 
operating since 2011 (Anache et al., 2019, 2018; Youlton et al., 2016a; 
2016b), are located at the Arruda Botelho Institute, Itirapina, central 
region of the State of São Paulo – Brazil (latitude 22◦10′S, longitude 
47◦52′O, elevation of 790 m). 

The first step in sizing the equipment was to determine the runoff 
flow to be quantified. We opted to use the rational method once it makes 
use of only three variables (rainfall intensity, surface flow coefficient 
and contributing area), being easily applied. The rainfall intensity of 3 
mm/10 min (18 mm/h) was adopted as the standard intensity for sizing 
the tipping bucket cavities, which is a value that represents approxi
mately 85% of the accumulated (rainfall) occurrences recorded between 
November 2011 and October 2018 where the surface runoff coefficients 
were sampled. The second variable (surface runoff coefficient) corre
lates rainfall with runoff generation considering the LULC and soil class 
was obtained from some previous studies (Anache et al., 2019). Finally, 
we consider a contribution area of 100 m2 (20 m long and 5 m wide), as 
it is the area of the experimental plots in which the TBs will be coupled 
to measure the runoff. Once all these variables were determined, the 
mean flow rate was set to be measured in each plot under the different 
LULC. Based on datasheets from commercial tipping bucket rain gauges 
(Model TB4-L, Hydrological Services), an optimum operating speed is 
between three and four dumps per minute following the indication that 
the number of tippings must be greater than one (Barfield and Hirschi, 
1986). 

2.2. Calibration techniques 

To construct an adequate calibration curve, the conditions to be 
found in the field were evaluated, as the equipment will be applied in 
determining the runoff in natural and agricultural areas, and is therefore 
susceptible to the presence of sediments. A high concentration of sedi
ments can influence the water density, as well as accumulate in the 
cavities of the equipment (Egorov et al., 2015; Langhans et al., 2019). In 
both cases, they result in malfunction and measurement errors. 

Through the construction of a histogram of the concentration of 
sediments occurring in the study area from 2011 to 2017, it was iden
tified that the highest concentration recorded in the period was 10.2 g 
per liter, while most of the events monitored (95%) have a concentration 
of around 3.0 g/L. Barfield and Hirschi (1986) carried out the calibra
tion process of four scales used to measure surface flow under different 
concentrations of sediments and concluded that at a concentration 
below 20 g/L, the presence of sediments can be neglected. Therefore, the 
adverse effects mentioned above due to the presence of sediment were 
disregarded, and thus water from the public supply system was used 
instead of a mixture of water and soil. Fig. 2 shows an illustration of the 
methodological process applied during the static (a) and dynamic (b) 
calibration processes. A better description of each calibration is given 
below. 

Prior to the calibration step, both cavities must have the same, or as 
similar as possible, water storage capacity. Thus, preliminary tests were 
carried out to ensure this consideration by increasing or decreasing the 
height of the adjustment bar. To determine the volumetric resolution or 
nominal volume (NV), a graduated pipette and a pipette bulb were used. 
The water was dripped slowly (interval greater than 2 s) so that the 
kinetic effect did not interfere in the process until one of the cavities 
tipped and the volume was identified. The procedure was performed ten 
times in each cavity and then the average between the measurements 
was applied to determine the equipment’s NV. 

During the dynamic calibration process, we used a water column 
made of a PVC pipe with 250 mm of diameter and 1.5 m in height kept at 
a constant water level and hydraulic head. In the apparatus, water from 
the public supply system provides water to the interior of the PVC pipe, 
keeping the water level constant by overflowing the pipe. A valve at the 
base of the tube allowed water to escape and enter the equipment’s 
cavities. The reed switch previously installed on the TB, coupled to a 
datalogger (Campbell Scientific Inc CR10 and measuring at 1-minute in
terval) and a 12 V battery, allowed the counting and automatic 
recording of the number of tips. 

In order to test the equipment’s behavior under extreme conditions, 
TBs were tested under runoff rates corresponding to different rainfall 
return periods. Flow rates were estimated using an Intensity-Duration- 
Frequency curve - IDF (Eq. (1)) (Rosalem et al., 2018). The IDF curve 
was obtained from 40 years of daily precipitation data from the mete
orological monitoring station located at the Center for Water Resources 
and Environmental Studies (CRHEA) at the University of São Paulo, 
located 5 km far from the application area. 

I = 1249.
T0.15

(t + 11.39)0.81 (1)  

where I is the average rainfall intensity (mm h− 1) associated with a 
return period T (years) and duration t (minutes) adopted. 

To construct the dynamic calibration curve of each TB, ten sampling 
points (runoff flow rates) were calculated based on different return pe
riods and uniformly distributed, with the last sampled flow point 
resulting from precipitation with a return period greater than 100 years. 

The water that flows into the TB (reference flow) was determined by 
gravimetry, in which the mass of water reserved over a minute was 
measured on a precision scale or electronic scale, when the maximum 
measurement limit of the precision scale was reached. This procedure 
was carried out in three replicates, at the start and end of each sampling, 
where the average of these six values was used for the final determi
nation of the reference flow. 

In order to investigate the sampling time length interference on 
measurements, the data collected were grouped into six-time intervals: 
1, 2, 5, 10, 20 and 30 min. To reduce the possibility of interference from 
adverse effects, measurements were made in five replicates for each time 

Fig. 2. Illustration of the static (a) and dynamic (b) calibration process.  
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interval, and the average of the replicates was subsequently calculated. 
For the regression curve application, the volume and flow measured 

by the equipment (called simulated volume and flow here) need to be 
determined. The simulated volume is the product between the nominal 
volume and the number of dumps measured in the time interval under 
analysis, while the simulated flow is the quotient between the simulated 
volume and the time interval. 

The second part of the dynamic calibration process consists of 
applying mathematical and statistical techniques searching for equa
tions that best predict simulated and reference flows. To do this, we used 
four equations: linear; potential; time as function of the inverse of flow 
rates, and quadratic. Data representation techniques were applied to 
each of the four TBs under the different time intervals, totaling 96 
adjustment curves. A better description of each curve is given below. 

A simple linear regression (Eq. (2)) was the first option used to 
establish a relationship between the reference (x-axis) and the simulated 
(y-axis) flows. Other authors (Shimizu et al., 2018) have investigated 
errors in TBs and mention that the correlation may not be linear. Thus, 
we investigated the error behaviors under non-linear functions, in which 
the potential (Eq. (3)) is one of them. We did not include an intercept 
value in a linear nor a potential curve, since it would represent a 
simulated flow associated with a null reference flow. The third regres
sion curve consisted of the graphical representation of the time between 
dumps (T) as a function of the inverse of the reference flow (Q− 1

ref ), as 
suggested by Calder and Kidd (1978), called T vs. 1/Q curve here. The 
time between dumps was calculated by the quotient between the time 
interval and the number of dumps registered (Eq. (4)), which was 
plotted against the inverse of the reference flow, resulting in the 
mathematical representation of the regression used given by Eq. (5). 
Finally, a quadratic model regression was applied between the dump 
volume (Vtip) as a function of the reference flow (Qref ), as proposed by 
Costello and Williams (1991). This regression technique assumes that 
there is a change in the nominal volume according to the reference flow 
rate. Once the instantaneous tipping volume is calculated (Eq. (6)), the 
simulated flow can be estimated by this mathematical representation 
(Eq. (7)). 

Qbas = mQref (2)  

Qbas = aQb
ref (3)  

T = Δt/n (4)  

T = VbascQ− 1
ref + c (5)  

Vbasc = (Qref *Δt)/n (6)  

Vbasc = b0 + b1QBasc + b2Q2
Basc (7)  

where Qtip is the flow rate measured by the TB; Qref is the reference flow 
rate; m is the slope of the linear regression curve; a and b are constants of 
the potential regression curve, in which a is the point of intercession 
when the simulated flow is equal to 1 and b is the curve slope; T is the 
time between dumps; Δt is the time interval (1, 2, 5, 10, 20 or 30 min); n 
is the number of dumps registered; c is the constant in the T vs. 1/Q 
curve indicating the time required for the cavity to leave the stable at 
one side, move and reach the stable point at the other side; and b0, b1 
and b2 are constants of adjustment in the quadratic curve. 

2.3. Statistical analysis 

For the statistical validation of TB applicability for flow monitoring 
during the dynamic calibration tests, three statistical metrics were 
applied: coefficient of determination (R2); percent bias (PBIAS); and 
Kling-Gupta efficiency (KGE) in a non-parametric form. The R2 assesses 
the degree of collinearity between measured and reference flows, 

varying between 0 and 1. The closer to 1, the better the correlation 
between measured and reference data (Surfleet et al., 2012). The PBIAS 
indicates the average tendency of the measured data to be larger or 
smaller than the ones observed (Gupta et al., 1999). Positive PBIAS 
values indicate a measured underestimation of models and equipment 
representing reference data, while negative values mean an over
estimation and, when equal to zero, a perfect correlation of the data. 
Finally, using the KGE metric in the non-parametric form was an option 
in an attempt to use a more robust function that would allow analysis 
through different aspects (BIAS, standard deviation and Pearson’s cor
relation), as indicated by Pool et al. (2018). In this metric, the values 
vary between 0 and 1; the closer to 1, the better the statistical correlation 
between the measured and reference data. 

In addition to using statistical metrics that help the description, 
spatialization and comparison of the simulated data, the Analysis of 
Variance (2-way ANOVA) and Pearson’s correlation were applied to 
investigate the interference of the selected variables (tipping speed, 
cavity dimension and time interval) in the mean error between the 
observed and the simulated flow rates at TBs of different sizes. 

3. Results 

3.1. Static calibration 

The mean and standard deviations of measures at each cavity and 
global analysis (both cavities) were obtained during the static calibra
tion of each TB (Table 1). After performing the procedure and calcu
lating the mean of the measurements, it was found that the nominal 
volumes were 11.63 mL, 64.16 mL, 139.86 mL and 660.95 mL for TB1, 
TB2, TB3 and TB4, respectively. Thus, these will be the values used to 
identify the volumes and flows measured during the dynamic calibra
tion, calculated by its product with the registered number of tips. 

The standard deviation (SD), when expressed in absolute values 
(mL), has a positive correlation with the size of the equipment, ranging 
from 0.44 to 12.21 in the TB1 and TB4, respectively. However, when 
expressed in percentage values, TB1 has a higher SD (3.82%) than TB4 
(1.85%). Among the various factors that could lead to such a result, it is 
believed that it may be associated with the cavity small water storage 
capacity and great sensitivity of TB1. Although care has been taken to 
carry out the calibration through the slow dripping of water, the kinetic 
effect added to the drop volume promotes oscillations between the 
replicates (Iida et al., 2012). As the cavity size increases, this effect is 
smoothed out and, therefore the SD decreases. 

3.2. Dynamic calibration 

Table 2 give the mean, maximum and minimum errors, standard 
deviation, PBIAS and KGE in TBs under different time intervals. The 
number of tips registered at each of the flow sampling points in each TB 
is available as Supplementary Material (A). In both TBs, it is observed 
that time interval plays a fundamental role in the calibration process. As 
expected, in shorter intervals, there is a smaller number of data records, 
and thus the SD is greater than when using longer intervals, such as 30 
min. This point will be better discussed in the following sections. 

Considering the ten flow rates sampled during the dynamic calibra
tion process, both data from all TBs registered positive PBIAS (under
estimation of reference flow). The highest PBIAS (13.6%) was observed 
in TB4 under a nominal volume of 660.95 mL, followed by TB3 (9.3%), 
TB2 (5.7%) and TB1 (3.3%), which have nominal volumes of 139.86 mL, 
64.16 mL and 11.63 mL, respectively. The errors occurred under a range 
of low and high runoff intensities and TBs could still operate adequately 
and even before applying calibration curves, the proposed monitoring 
equipment can adequately measure the water flow (KGE > 0.86). 

Applying the linear regression, all TBs underestimated flow rates as 
the angular coefficients obtained are lower than 1 (Fig. 3). From the data 
given in Figs. 4 and 5, it can be seen that for both TBs, the time interval is 
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Table 1 
Nominal volumes and statistical metrics measured during volumetric calibration of TB1, TB2, TB3 and TB4.   

TB1 (mL) TB2 (mL) TB3 (mL) TB4 (mL)  

Cav 1 Cav 2 Cav 1 Cav 2 Cav 1 Cav 2 Cav 1 Cav 2 

Mean (mL) 11.46 11.79 63.20 65.11 142.19 137.54 671.10 650.80 
SD (mL and %) 0.53 (4.64) 0.27 (2.28) 0.46 (0.73) 0.33 (0.51) 2.31 (1.63) 3.13 (2.27) 5.88 (0.88) 7.16 (1.10) 
Global mean (mL) 11.63 64.16 139.86 660.95 
Global SD (mL and %) 0.44 (3.82) 1.06 (1.65) 3.59 (2.56) 12.21 (1.85) 

Where: Cav is the tipping bucket cavity identification; Mean is the average of the volumes measured in each cavity during the replicates; SD is the standard deviation of 
the volumes measured in each cavity during the replicates; and Global mean and Global SD are the mean and standard deviation, respectively, of the volumes measured 
in both cavities. 

Table 2 
Statistical metrics of TBs capacity to measure reference flow under different time intervals.  

TB Statistical metric 1 min. 2 min. 5 min. 10 min. 20 min. 30 min. 

1 PBIAS (%)  3.644  3.644  2.826  2.768  2.768  3.313 
KGE  0.961  0.962  0.971  0.971  0.967  0.966 
Standard deviation (%)  14.238  5.733  4.475  2.157  2.157  3.927 
Mean error (%)  0.913  2.104  2.208  2.746  2.746  4.433 
Maximum error (%)  20.645  7.980  10.064  7.419  7.419  14.358 
Minimum error (%)  − 35.224  − 12.687  − 8.179  0.779  0.779  1.290 

2 PBIAS (%)  5.415  6.034  6.010  5.762  5.750  5.746 
KGE  0.945  0.939  0.939  0.942  0.942  0.942 
Standard deviation (%)  10.402  10.616  4.844  3.782  2.856  2.288 
Mean error (%)  7.886  7.958  6.516  6.108  5.861  5.733 
Maximum error (%)  36.777  36.777  17.810  14.649  11.488  9.380 
Minimum error (%)  1.635  − 1.298  − 0.488  0.323  0.728  1.403 

3 PBIAS (%)  8.580  8.580  8.633  8.831  9.187  9.332 
KGE  0.913  0.913  0.912  0.910  0.907  0.905 
Standard deviation (%)  5.242  5.361  5.039  4.979  5.028  5.028 
Mean error (%)  6.330  6.272  6.455  6.691  7.066  7.226 
Maximum error (%)  12.245  12.269  12.573  12.674  12.725  12.708 
Minimum error (%)  − 4.058  − 4.058  − 2.044  − 2.044  − 2.044  − 1.932 

4 PBIAS (%)  13.163  13.592  13.335  13.563  13.549  13.573 
KGE  0.867  0.863  0.865  0.863  0.863  0.863 
Standard deviation (%)  8.182  6.213  6.619  5.829  6.039  5.967 
Mean error (%)  9.931  11.050  10.460  11.203  11.017  11.127 
Maximum error (%)  18.091  17.013  17.229  17.229  16.730  16.730 
Minimum error (%)  − 4.361  0.857  0.257  0.857  0.857  0.857  

Fig. 3. Calibration curves using linear regression.  

D. Schwamback et al.                                                                                                                                                                                                                          



Catena 209 (2022) 105834

6

Fig. 4. Error average (MRE), standard deviation (STDE), and maximum (MAXRE) and minimum (MINRE) bounds for corrected flows observed at different time 
intervals and TBs capacities using different correction models; shaded areas represent values variations among different TBs capacities. 

Fig. 5. Statistical metrics for corrected flows observed at different time intervals and TBs capacities using different correction models: Kling-Gupta Efficiency (KGE), 
Percent bias (PBIAS), and RMSE-observations standard deviation ratio (RSR); shaded areas represent values variations among different TBs capacities. 

D. Schwamback et al.                                                                                                                                                                                                                          



Catena 209 (2022) 105834

7

a relevant variable that influences the coefficient of determination (R2). 
However, there is no direct correlation between this variable and the 
angular coefficient (m) of the regression curve. In this section, we will 
discuss data obtained under 30 min of time interval, but you can find 
data regarding other time intervals in Supplemental Material (C). 

Using linear regression is a satisfactory option for all TBs analyzed, as 
shown by the statistical metrics used: R2 (>0.99) and KGE (>0.85), see 
Fig. 3 and Table 2. As given in the previous session, the PBIAS registered 
in TBs has a direct correlation with the nominal volume of its cavities. 
Likewise, the slope of the linear fit curve (0.967, 0.942, 0.895 and 0.852, 
see Fig. 3) follows the same trend for TB1, TB2, TB3 and TB4, respec
tively. After implementing the curves, the fitting curve was ideal in TB1 
(PBIAS = 0), while underestimation still occurred in TB2 (0.079%), TB3 
(1.189%) and TB4 (1.397%). Similarly, the KGE index, considering 
PBIAS in its calculation, has an inversely proportional (Pearson corre
lation of − 0.905) and not significant (p-value of 0.095) behavior for 
TB1, TB2, TB3 and TB4: 0.967, 0.942, 0.896 and 0.852. 

Calibration using the potential regression (Fig. 6) is a satisfactory 
option for all of the TBs, as shown by the statistical metrics used: R2 
(>0.99), KGE (>0.85) and mean residual error (<0.2). As recorded in 
the linear regression curve, the KGE has an inversely proportional cor
relation (Pearson’s correlation of − 0.906) with NV, although it was not 
statistically significant (p-value of 0.094). As for PBIAS, there is an 
overestimation of the residual error of − 0.358%, − 0.251%, − 0.021% 
and − 0.183% in TB1, TB2, TB3 and TB4, respectively. 

In Fig. 7, it can be observed that the T vs. 1/Q regression has limi
tations under two situations: low flow rates and short time intervals 
(Shedekar et al., 2016). Although the flow sampling points are uniformly 
distributed throughout the sampling range due to the mathematical 
formulation of the method, there is a concentration of sampling points at 
the bottom curve, while just few sampling points contribute to adjusting 
the curve in the upper portion. Besides the low reliability at low flow 
rates, this method has good metrics statistics: R2 (>0.99), KGE (>0.85) 
and mean residual error (<3%). By implementing this curve, there is an 
overestimation of residual error in TB1 (5.5%), TB2 (4.55%) and TB4 
(1.68%), while there is an underestimation (0.36%) in TB3. 

Based on R2, the quadratic regression works well (R2 higher than 0.6) 
for TB1 (0.721), TB3 (0.826) and TB4 (0.615). It is important to note 
that although the KGE presented satisfactory values, the sampling points 
are completely dispersed (R2 of 0.0255) along the regression curve 

(Fig. 8) in the TB2. The statistical discrepancies observed are associated 
with the KGE mathematical formulations involved, and thus emphasize 
the importance of using different metrics in the calibration process. 

4. Discussion 

4.1. Dynamic calibration 

Given the flow ranges analyzed during dynamic calibration in both 
TBs, a greater standard deviation of errors was recorded at low flows, 
reducing as the flow increased, as well as in rainfall gauges (Shedekar 
et al., 2016). Among all the designed equipment, TB1 had the highest 
SD, especially under a small-time interval (1 min). It is important to cite 
that the reed switch in TB1 is located below the central axis, between 
cavities 1 and 2, recording one electrical signal every two tipping points. 
This contributes to the error being greater in this equipment when 
compared to the others, which have a record at each tip. Under an 
increasing time interval (30 min) and flow rate, the influence of this 
limitation reduces and, consequently, the SD is smaller. Thus, moni
toring short precipitation events has a greater associated error than 
those with longer duration. Similarly, at higher intensities, there is a 
reduction in SD while there is a higher mean error. At any measured flow 
rates, there was an overestimation of the reference flows. The behavior 
of TBs under flow rates at other time intervals analyzed can be found in 
Supplemental Material (B). 

Sun et al. (2014) designed and calibrated TBs with a nominal reso
lution of 2.5 L and identified the same error pattern: high errors under 
low and high flow rates. It is believed that under low flow rates, the 
surface tension of the water influences the displacement along the sur
face of the cavity (Sun et al., 2014), while at high flow rates, the slow 
and subtle shift, ideal in the gravity center, is affected by the rapid entry 
of water under turbulent flow (Iida et al., 2012). Another error source 
comes from the water left in the cavities after one replicate test ending, 
which is not sufficient to tip (Nehls et al., 2011). This volume was not 
removed from the cavities between calibration tests since we wanted to 
estimate the errors that would occur during in-situ monitoring and 
identify the best calibration model to reduce those errors. 

The results here are similar to those obtained by Khan and Ong 
(1997), Yahaya et al. (2009) and Sun et al. (2014) after applying the 
linear curves to reduce errors during the calibration of TBs of different 

Fig. 6. Calibration curves using potential regression.  
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sizes. Khan and Ong (1997) carried out the calibration process of a TB 
with a volumetric capacity of 3 L and obtained R2 equal to 0.99 and a 
residual overestimation error of 2%. Similarly, Yahaya et al. (2009) 
obtained a good coefficient of determination of 0.99 in the calibration of 
a 0.14 L of volumetric capacity, which had an average error of 0.74%. 
Finally, Sun et al. (2014) calibrated a TB with an NV of 2.5 L, finding a 
good linear correlation (R2 equals to 0.99) between reference and 
measured flows and low mean error (2.1%). It is important to note that 
the NV of TB4 (660.95 mL) is greater than all of those previously 
mentioned, which would then be expected to have a high error, how
ever, its average error is lower (1.397%), proving its efficiency. 

Unlike what was observed in the linear curve, there is no clear 

correlation between PBIAS and NV. Barfield and Hirschi (1986) found 
overestimated errors between 1.62% and 1.90% in four TBs with NV 
ranging between 356 mL and 1284 mL while applying a potential cali
bration curve. 

By implementing the quadratic curve, there is an underestimation in 
the residual error in TB1 (0.747%), TB3 (3.114%) and TB4 (0.134%), 
while there is an overestimation (-0.129%) in TB2. Although we have 
not found the quadratic to be a satisfactory method for the TBs cali
bration, Somavilla et al. (2019) obtained a good statistical correlation 
(R2 of 0.99 and NSE of 0.997) and low underestimation (2.27%). Simi
larly, Shimizu et al. (2018) were successful in eliminating the 2–3% 
errors in steamflow measurements. However, in both cases, TBs have a 

Fig. 7. Calibration curves using T vs. 1/Q regression.  

Fig. 8. Calibration curves using quadratic regression.  
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low volumetric capacity. 
After applying different adjustment curve methods, it was defined 

which curve has the best fit. Keeping in mind the importance of stan
dardizing methodologies for monitoring runoff in the study area, the 
linear regression has the best statistical metric values and it also has 
greater simplicity and confidence in terms of extrapolation. The cali
bration equations to obtain the flow measured (V) are based on the 
number of tips (N) counted by the datalogger, as given for each TB: TB1 
(V = 12.02 N), TB2 (V = 68.11 N), TB3 (V = 155.98 N) and TB4 (V =
774.50 N). Note that the multiplier number is greater than the nominal 
resolution found during static calibration due to the underestimate error 
sources presented before, such as water tension, kinetic effects, water 
left in cavities and spills. 

4.2. Causality tests 

4.2.1. Tipping velocity 
Through the Pearson correlation, the possibility of a correlation 

between the tipping speed and the percentage error recorded in the 
different TB sizes was investigated. It can be observed that the TBs have 
discordant behaviors: TB3 presented a directly proportional (0.852) 
significant correlation (p-value of 0.02), while TB1 and TB2 had nega
tive (-0.579 and − 0.008) and TB4 positive (0.707) correlations, but both 
not significant (p-value > 0.05). Considering a joint analysis (join data 
from all TBs), we found a positive correlation (0.134) and also signifi
cant one (p-value equals to 0.038). 

When plotting the mean error according to the number of dumps 
registered in the TBs (Fig. 9), a similar pattern was identified in the error 
curve behavior, which can be summarized in three zones: Zone I occurs 
at low tipping speeds and results in high errors (underestimation); zone 
II occurs at average tipping speeds, characterized by a decay of under
estimation and thus, it is considered as the optimal range of operation; 
finally, in zone III at a high tipping speed, the percentage error re-rises. 
While calibrating a TB with a 0.14 L NV in Nigeria, Yahaya et al. (2009) 
also agree that the runoff intensity and the tipping rate intefere greatly 
in the errors and, finally, after plotting the efficiency versus the runoff 
errors, found a parable trend in the data collected, implying the exis
tence of these three zones explained here. 

In general, there is a tendency to underestimate the flow measured 
by TBs under high intensities of runoff (Iida et al., 2012; Somavilla et al., 
2019) and rainfall (Shedekar et al., 2016; Sypka, 2019). This phenom
enon can be attributed to the volume of water lost while cavities 
switches (Shedekar et al., 2016). As the water enters a constant flow, 
when reaching the nominal volume, the cavity starts the switching but 
the water continues to fall on the cavity that already reached its NV. 
Thus, there is a small time interval for the filled cavity to move and 
water to begin to fall into the second cavity. This delay was also found by 
Langhans et al. (2019) in TBs of different NVs (0.1–2 l). Considering that 
this displacement interval is constant, under increased flow of water, the 

greater the underestimation errors recorded (Edwards et al., 1974). 

4.2.2. Time interval of data collection 
The specification of a time interval for the hydrological data acqui

sition commonly depends on the available data storage capacity and 
time interval of other installed equipment. Using shorter time intervals, 
the greater the possibilities of recording extreme events, the better the 
monitoring of natural phenomena (Shedekar et al., 2016). 

Different data recording intervals were used in the sampling during 
the dynamic calibration (1, 2, 5, 10, 20, and 30 min). Thus, to investi
gate the interference that this variable has in the mean percentage error, 
the graphs of the main effects were drawn up (available in Supplemental 
Material D). Through the graphs, it can be observed that there is a 
positive correlation in the TB1, TB3 and TB4, while the TB2 has a 
negative correlation. In order to validate the correlation identified 
through the graphs of the main effects, the Pearson’s correlation was 
calculated between the time interval and the mean errors. It can be 
noted that there is no strong correlation (Pearson’s correlation less than 
0.2) between the variables analyzed, however, due to the p-value being 
above the limit (0.05), the null hypothesis considered cannot be 
rejected. 

TB1, TB2 and TB4 had a greater error variation at different sampling 
time intervals, while TB3 had a smoother variation, considering 
different sampling time intervals (1, 2, 5, 10, 20 and 30 min) (Fig. 10). 
As specially observed in TB1 and TB2, shorter intervals result in greater 
errors (Habib et al., 2001; Shedekar et al., 2016). At low flow rates, 
when the time interval required to reach the nominal volume is higher 
than the time interval, two or more time intervals are required to reg
ister a tipping. In the first-time interval, there is no record of tipping, as 
it was only recorded in the second. 

Ciach (2003) and Costello and Williams (1991) also found that the 
sampling time interval is a significant variable in hydrological studies 
and indicate the use of the tipping interval instead of defined sampling 
times. However, it was not possible to adopt such a consideration due to 
limitations in the datalogger used (Campbell Scientific Inc CR10), which 
had the capacity to record data with a minimum interval of one minute. 
Considering this, it is recommended that further studies be carried out 
on the errors in TBs by identifying the time between the emptying of one 
cavity and the beginning of filling the other one. 

4.2.3. Tipping bucket volumetric capacity 
The third variable investigated with the potential to influence the 

mean errors was the TBs ́ volumetric capacity. Through the Pearson 
correlation test, we found a statistically significant (p-value ≤ 0.05) 
positive correlation (0.369), indicating that mean errors are directly 
influenced by NV. The obtained data reinforces the importance of the 
adequate sizing of TBs, so that it is not under or over-sized. 

The results obtained follow the consideration of Shedekar et al. 
(2016) and Somavilla et al. (2019) that the storage capacity of TBs is an 
important source of errors. As previously mentioned, the underestima
tion is possibly due to the volume of water lost during the time interval 
of cavity switching. The volume of water lost is a fraction of the volume 
stored in the cavities, the greater the storage capacity, the lower the 
sensitivity of the equipment to this small fraction of volume that is not 
monitored, and thus the greater the associated errors (Somavilla et al., 
2019). 

Finally, another important source of error is the volume of residual 
water retained in the cavities which is not enough for tipping. For 
example, TB1 has an NV of 11.63 mL, while TB4 has a 660.95 mL. TB1 
has a higher volumetric resolution than TB4 and, consequently, a 
smaller residual volume that can be lost by evaporation. 

4.2.4. Joint analysis 
As previously presented, the percentage error is influenced by the 

variables ́ tipping speed, cavity capacity and time interval. In order to 
investigate which variable analyzed has the greatest contribution to the 

Fig. 9. Identification of behavioral zones of mean error in TBs under increasing 
tipping velocity. 
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mean error, we applied the Multi-factor Analysis of Variance. We found 
out that the cavity size has a greater influence (F-value of 16.12) in mean 
errors than tipping speed (F-value of 11.34). The null hypothesis of non- 
correlation between the variables ́ time interval and mean errors cannot 
be rejected, due to the p-value above the imposed limit of 0.05. 

4.3. Factors affecting calibration and errors 

The operation principle of TBs used for runoff and rain measure
ments is the same, thus the errors to which they are susceptible are 
similar. Errors can be grouped into two categories: systematic/me
chanical and random (Shedekar et al., 2016). Systematic errors are due 
to the operation, construction material and design of the equipment, 
thus they are more predictable and easier to minimize. Random errors, 
however, are not predicted and occur from unusual operations during 
in-situ measurements. 

In addition to some main examples of systemic and random errors 
given in Table 3, there are those already mentioned and discussed pre
viously (tipping speed and time interval) and errors inherent in any 
laboratory measurement, in this case: uncertainties in the measurements 
of the nominal volume and reference flow rate during static and dy
namic calibration, respectively. It is also important to include errors 
caused by the equipment design, size and shape of sensors and height of 
measurements (Sypka, 2019). Thus, we acknowledge that the TBs design 
might have some influence on both type and magnitude of the errors. 

The main motivation to have opted the design and construction mate
rials presented here is based on operational characteristics that would 
resist to the continuous high flow entry. Even though we have not 
investigated it, we highlight the importance of continuous advance in 
developing designs that would conciliate operation limitations while 
minimizing errors. Despite the inherent error sources, the use of tipping 
bucket for runoff measurement is a potential instrument for a better 
understanding in the hydrology field. It is even more applicable in 
developing countries, such as Brazil, which most of the time have 
limited funding for acquisition of high-tech monitoring equipment. 

4.4. TBs relevance to hydrological studies 

Anache et al. (2017) reinforce the fact that to achieve efficient use of 
water, conservation of natural resources, and minimization of anthropic 
impacts, a better understanding of the physical processes that make up 
the hydrological cycle under different conditions of LULC (natural and 
anthropic) is crucial. Despite the benefits of empirical methods, a clear 
understanding of soil erosion processes, infiltration, and runoff and the 
development of models that describe such processes requires accurate 
and controlled measurements, which are only achieved by using in-situ 
monitoring facilities and instruments (Anache et al., 2017; Guo et al., 
2019; Jha et al., 2019). 

Through field monitoring, long-term data are created and support 
the development of new technologies and solutions for maintaining the 
hydrological cycle, despite rapid changes in LULC (Anache et al., 2019; 
Nóbrega et al., 2017). In-situ studies are important to reduce nutrient 
losses (Zhang et al., 2020), improving the efficiency of agricultural 
production (Benedetti et al., 2019) and, at the same time, promoting the 
sustainable development (Tarolli and Straffelini, 2020) of this activity. 
However, experimental studies are rare due to local heterogeneities and 
uncertainties in hydrological and pedological measurements (Beven and 
Germann, 2013), specially on developing countries. Considering this, 
from the list of 23 unsolved problems that aim to orientate hydrological 
research worldwide, Blöschl et al. (2019) once again highlight the 
importance of developing and using innovative technologies to measure 
surface and subsurface properties in a range of spatial and temporal 
scales. 

Using a tipping bucket flow gauge is an option for automatic and 
direct monitoring of surface/subsurface flows in small study areas, such 

Fig. 10. Mean errors occurring in TBs under different data recording time intervals.  

Table 3 
Examples of systemic and random errors occurring in TBs.  

Systemic errors Random errors  

▪ Kinetic effect during water 
entry  

▪ Under or oversizing of cavities  
▪ The continuous entry of water 

into the TB cavity, which is 
already in motion  

▪ Use of hydrophilic material  
▪ Loss of lubrication  
▪ Equipment installed under 

uneven soil  
▪ Mechanical/electronic 

limitation in counting the 
number of dumps  

▪ Silting/erosion of the base of the 
equipment structure, resulting 
in an unevenness of the 
structure  

▪ Entry of animals  
▪ Flow inlet clogging  
▪ Holes and cracks in the cavities 

of the TBs  
▪ Evaporation of the water stored 

in the PVC containers after 
passing through the TBs, which 
is used to validate the results  
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as bounded experimental plots and hillslopes (Wang et al., 2020) and 
small hydrographic basins (Peyrard et al., 2016). In addition to moni
toring accurately, using this kind of equipment when associated with a 
reed switch and datalogger allows automation and better detailing of 
data collection, such as identifying the start, end, and peak of the flow 
(Corona et al., 2013; Zabret et al., 2018). 

5. Conclusions 

A tipping bucket flow meter is a potential instrument in in-situ 
monitoring. However, its inherent errors may limit and create doubts 
about its data reliability. Thus, in this paper, we performed static and 
dynamic calibration on four large TBs, applied different regression 
curves and investigated the error sources in order to minimize them. 
Through static calibration, we found out that the equipment had a 
volumetric capacity of 11.63 mL (TB1), 64.16 mL (TB2), 139.86 mL 
(TB3) and 660.95 mL (TB4). Afterwards, TBs were tested under different 
flow rates (dynamic calibration) and time intervals. Considering a 30- 
minute time interval, an underestimation of flows at different levels 
was identified according to the size of the cavity: TB1 (3.31%), TB2 
(5.75%), TB3 (9.33%) and TB4 (13.57%). 

We discovered a high underestimated error at low flow rates, indi
cating that the best operating range of the equipment is under medium 
flow rates. Even not dimensioned to operate at high intensities, the 
equipment was tested in the laboratory under different low and high 
flow intensities and had a satisfactory performance. 

After performing the dynamic tests, four calibration equations were 
tested: linear, potential, T vs. 1/Q and quadratic. Among the alterna
tives, linear regression showed the best correlation (above 99%) with 
the monitored data. Using this method, the mean error will be reduced 
to − 1.35% (TB1), 0.04% (TB2), 3.18% (TB3) and 3.73% (TB4). 

Once the occurrence of systematic errors was verified, it was inves
tigated how the different variables (tipping speed, tipping bucket 
volumetric capacity and time interval of data collection) influenced the 
errors. By plotting mean errors and tipping rates, a behavior pattern in 
the error curves was identified: Zone I at low tipping speeds and results 
in high percentage errors (underestimation); zone II at average tipping 
speeds, characterized by a decay of underestimation and thus, it is 
considered as the optimal range of operation; and zone III at high tipping 
speed, the percentage error re-rises. Investigating the second variable, 
we found that mean errors are directly influenced by the cavity volu
metric capacity. The last variable, time interval of data collection, barely 
interfered in the data sampled. Finally, considering all three error 
sources, the cavity size is the most important one. 

Throughout the research, we aimed to minimize the errors inherent 
to the large tipping buckets and encourages various applications (steam, 
runoff, percolation, etc.), increasing the in-situ hydrological data 
collection, which is still very scarce, mainly in developing countries. 
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