

ESTUDO DE REAÇÕES DE ABERTURA DE ANÉIS CICLOPROPANO DUPLAMENTE ATIVADOS COM ÍLIDEOS DE SULFOXÔNIO

Sofia Maria Tagliaferro

Colaborador: Matheus Pereira de Jesus

Orientador: Antonio Carlos Bender Burtoloso

Universidade de São Paulo - Campus São Carlos

sofiamtagliaferro@usp.br

Objetivos

O objetivo geral desse projeto é investigar as reações de abertura de ciclopropanos, duplamente ativados, com ilídeos sulfoxônio. O objetivo específico é o estudo da reação de abertura dos ciclopropanos propargílicos com ilídeos de sulfoxônio carbonílicos, visando a formação de alenos com a presença dos ilídeos de sulfoxônio em sua estrutura, aumentando o escopo de modificações nos ilídeos de sulfoxônio e servindo como materiais de partida para diversas reações adicionais.

Métodos e Procedimentos

<u>Síntese geral para a formação dos ciclopropanos:</u>

A formação do Ciclopropano **1a** (Figura 1a) ocorreu pela adição do enino **4** e do catalisador Rh₂(esp)₂, seguida da introdução do ilídeo de iodônio **5a** ^[2]. Para a obtenção do Ciclopropano **3b** (Figura 1b), o enino **4** foi adicionado com o ilídeo de iodônio **5b** previamente sintetizado a partir do ácido de Meldrum ^[2].

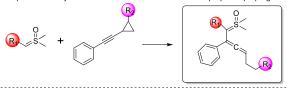
Síntese geral para a formação dos ilídeos:

A síntese dos ilídeos de enxofre foi realizada em condições análogas, no qual foram adicionados t-BuOK, iodeto de

trimetilsulfoxônio e THF. Para a formação do **2a** e **2b**, adicionou-se o reagente eletrofílico — metil cloroformato (**2a**) ou cloreto de benzoíla (**2b**) — em solução de THF, resultando nos produtos desejados ^[3].

Síntese geral para a formação dos alenos:

Inicialmente, com o intuito de se obter o aleno, 0,2 mmol do ilídeo **2a** (1 equivalente em 0,2 mL de THF) foi submetido à uma reação com 0,243 mmol do ciclopropano **1a** (1,2 equivalente em 0,2 mL de THF) à temperatura ambiente. Não foi obtido o aleno desejado e os reagentes materiais de partida foram recuperados. Em seguida, a reação foi otimizada, utilizando outros materiais de partida e ácidos de Lewis como catalizadores.


Figura 1: Ciclopropanos propargílicos (a e b) e ilídeos de sulfoxônio (c) utilizados nesse projeto.

Resultados

O ciclopropano **1b** foi selecionado para a reação por possui uma capacidade superior de estabilizar cargas negativas por ressonância se comparado aos ésteres presentes no ciclopropano **1a**.

Em uma das entradas feitas para a reação de formação do aleno (Esquema 2), foi observada a formação do produto **3a**. A análise dos espectros de RMN de ¹H e de ¹³C indicaram que foi obtida uma tetraidropiran-2-ona dissubstituída (**7%**) em vez do aleno desejado.

Esquema 1: Reação dos ilídeos de sulfoxônio com os ciclopropanos propargílicos.

Esquema 2: Proposta para o produto final a partir dos espectros obtidos.

O mecanismo proposto para a formação do produto envolve a abertura do anel ciclopropano, seguida de ciclização intramolecular e eliminação de DMSO. A ausência dos sinais de metila do ácido de Meldrum no RMN de ¹H indica provável eliminação de acetona, enquanto o espectro de ¹³C confirma a preservação da ligação tripla. Além disso, a falta de uma das carbonilas que ocorreu um sugere processo descarboxilação.

Com base nessas evidências e também suportados por um precedente da literatura que possui um intermediário semelhante^[4], acreditamos que a etapa de eliminação de acetona e descarboxilação se deu devido ao aquecimento na presença de traços de água no meio reacional.

Conclusões

Reproduzindo as condições da literatura, os materiais de partida foram sintetizados de forma eficaz e, em sua maioria, com bons rendimentos. Porém, seguindo a metodologia adotada, não foram obtidos os resultados esperados nas reações de ilídeos de sulfoxônio com ciclopropanos propargílicos, a formação do aleno não ocorreu em nenhum dos casos. Por outro lado, obtivemos uma tetraidropiran-2-ona dissubstituída, um produto interessante, tendo em vista que essa classe de compostos é conhecida por possuir potencial para atividades biológicas.

Os autores declaram não haver conflito de interesses. Todos os autores aprovaram a versão final do resumo.

Agradecimentos

Os autores gostariam de agradecer às agências de fomento FAPESP e CNPq e à Universidade de São Paulo (USP) pela oportunidade de participar do Programa Unificado de Bolsas (PUB).

Referências

[1]CAIUBY, C.A.D.; FURNIEL, L.G.; BURTOLOSO, A.C.B. **Chemical Science**, v. 13, n. 5, p. 1192-1209, 2022.

^[2] CÉRAT, P. *et al.* **Organic letters**, v. 12, n. 3, p. 564-567, 2010.

^[3] DE SOUZA, J. H.; VARGAS, J. AM; BURTOLOSO, A.C.B. **Synthesis**, v. 56, n. 05, p. 758-762, 2024.

^[4]LI, S. *et al.* **Organic Chemistry Frontiers**, v. 8, n. 12, p. 3069-3075, 2021.