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Abstract

The growing demand for accurate and efficient Chest X-Ray (CXR) interpretation has
prompted the development of AI-driven systems to alleviate radiologist workload and
reduce diagnostic variability. This paper introduces the Intelligent Humanized Radi-
ology Analysis System (IHRAS), a modular framework that automates the end-to-end
process of CXR analysis and report generation. IHRAS integrates four core components:
(i) deep convolutional neural networks for multi-label classification of 14 thoracic condi-
tions; (ii) Grad-CAM for spatial visualization of pathologies; (iii) SAR-Net for anatomical
segmentation; and (iv) a large language model (DeepSeek-R1) guided by the CRISPE
prompt engineering framework to generate structured diagnostic reports using SNOMED
CT terminology. Evaluated on the NIH ChestX-ray dataset, IHRAS demonstrates consistent
diagnostic performance across diverse demographic and clinical subgroups, and produces
high-fidelity, clinically relevant radiological reports with strong faithfulness, relevancy, and
alignment scores. The system offers a transparent and scalable solution to support radiolog-
ical workflows while highlighting the importance of interpretability and standardization in
clinical Artificial Intelligence applications.

Keywords: classification; deep learning; LLM; pathology; radiology; segmentation

1. Introduction
X-rays are the most common imaging technique used in medical diagnostics due to

their widespread availability, speed, and cost-effectiveness [1]. Specifically, chest X-rays
(CXRs) are useful diagnostic imaging modalities in clinical practice, which aid medical
professionals in detecting and monitoring of a wide range of thoracic diseases. Interpreting
these images, however, requires radiological expertise and time, and remains susceptible to
inter-reader variability [2].

In addition to this, the high volume of CXR studies contributes to raising a radiologist
workload [3], increasing the risk of reporting delays and potential oversights, particularly
for subtle findings. In resource-limited locations, the shortage of specialized radiologists
further complicates timely and accurate diagnoses. These challenges indicate the need for
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improved solutions to enhance the efficiency, accuracy, and accessibility of CXR medical
report generation [4].

To address these challenges, deep learning systems learn to recognize patterns in
medical images, helping detect pathologies like lung and heart diseases [5]. Instead of
relying solely on human experts, the technology can quickly analyze a large volume of
X-rays, flagging potential issues for physicians to review.

It is, however, important that the Artificial Intelligence (AI) can also highlight the
concerning areas on the image, making it easier for medical professionals to understand
its findings, enhancing the clearer communication between the AI system and medical
professionals and strengthening the trust in the model [6].

Despite the progress in AI-driven CXR interpretation, existing solutions often lack a
full integration of visual explanation, anatomical relevance, and structured report genera-
tion, limiting their clinical adoption.

In this study, we introduce the Intelligent Humanized Radiology Analysis System
(IHRAS), a modular architecture designed to overcome limitations in chest X-ray interpreta-
tion. IHRAS integrates disease classification, visual explanation, anatomical segmentation,
and automated medical report generation. Upon receiving a chest X-ray image, the system
classifies it into 14 common thoracic diseases using a deep Convolutional Neural Network
(CNN). To enhance interpretability, it uses Gradient-weighted Class Activation Mapping
(Grad-CAM) to highlight the spatial regions most relevant to the identified conditions. To
enhance interpretability, We further segment these regions using a dedicated anatomical
segmentation model, assigning them to clinically relevant anatomical structures. Ulti-
mately, these findings are used to condition a Large Language Model (LLM) that generates
a human-readable medical report using the Systematized Nomenclature of Medicine—
Clinical Terms (SNOMED CT). IHRAS is tested on the NIH CXR dataset, due to its clinical
relevance, diversity and standardization.

While IHRAS demonstrates the possibility of automating radiological workflows,
auditability is necessary to maintain accountability. The system’s decisions must be inter-
pretable and traceable to allow clinicians to validate and understand AI outputs, mitigating
the risk of over-reliance on automated systems.

Another consideration is the generalizability of the proposed system across diverse
populations and imaging conditions. CXR datasets often reflect demographic and geo-
graphic biases that may lead to suboptimal performance in underrepresented groups [7].
Therefore, an evaluation across multi-institutional datasets with diverse patient profiles is
necessary to ensure consistent performance.

1.1. Contributions and Limitations of the Work

The primary contributions of this work lie in the development of a modular architec-
ture for automated chest X-ray report generation that unifies classification, localization,
segmentation, and language modeling. The system utilizes Grad-CAM to produce visual
explanations of disease predictions, which are further enhanced by anatomical context
through segmentation, thereby improving both interpretability and clinical relevance. This
integrated framework represents a significant step forward in radiological image analysis
and report generation.

Unlike prior architectures, IHRAS integrates classification, spatial reasoning, anatomi-
cal segmentation, and structured language modeling into a unified pipeline, thus providing
a more complete approach.

Due to its modular nature, IHRAS may be adapted to generate medical reports beyond
CXR, including X-rays of other body parts, such as abdomen and head, as well as other
imaging modalities, such as blood cell microscopy and ocular imaging.
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As limitation, the pretrained model achieved a modest F1-score for the multilabel
classification problem, which, while comparable to other generalist models in the literature,
reflects the challenge of diagnosing diverse pathologies simultaneously.

Furthermore, although IHRAS employs Grad-CAM visualizations to provide inter-
pretable predictions, the lack of pixel-level annotations in the dataset prevents quantitative
validation of the highlighted regions. Consequently, the accuracy of the attention maps
cannot be formally assessed.

1.2. Organization of the Work

The remainder of this paper is structured as follows. Section 2 reviews the related
literature. Section 3 presents the proposed modular architecture of IHRAS, whilst Section 4
discusses the results obtained with the approach. Section 5 concludes the paper.

2. Related Works
Due to the significant relevance and growing demand for advancements in chest

and general X-ray research, several datasets have been published to support studies in
this field [8], including in specific regions, such as in Brazil [9]. These datasets facilitate
the development and validation of machine learning models, diagnostic tools, and other
medical imaging applications.

2.1. Medical Classification Models

Using such datasets, CNNs and transformer-based architectures have demonstrated
high accuracy in detecting medical conditions such as lung cancer, tuberculosis and
COVID-19 [10]. Our work assesses different CNN models with the NIH CXR dataset,
selecting the model and its parameters that optimize the classification metrics to generate
medical reports.

As an example, ref. [11] have achieved an F1-score of 0.937 and of 0.954 in different
datasets for the detection of pneumonia using VGG16 with Neural Networks. These results
are significant due to the clinical importance of rapid and accurate detection of this infection,
which represents a significant cause of hospitalization worldwide.

While these advancements in deep learning for medical imaging are promising, the re-
liance on centralized datasets raises concerns about data privacy and security, as patient
confidentiality in the healthcare domain is fundamental. Federated Learning (FL) addresses
these challenges by enabling collaborative model training across multiple institutions with-
out sharing raw data, thus preserving privacy [12]. In the context of chest X-ray analysis,
FL can leverage diverse datasets from different hospitals to improve model generalizability,
promoting the diagnosis of diseases while complying with data protection regulations [13].

Deep Learning models are applicable in several healthcare domains beyond the scope
of X-ray images. For instance, ref. [14] presented a deep transfer learning framework for
the automated classification of leukemia subtypes using microscopic peripheral blood
smear images. They used a dataset comprising 1250 images across five categories of the
disease, with feature extraction performed via fine-tuned VGG16 and classification using
Support Vector Machine (SVM) and Random Forest. Despite achieving an accuracy of 84%,
the study did not employ anatomical segmentation or language-based report generation.
In contrast, our proposed IHRAS system inegrates pathology classification with anatomical
segmentation and natural language report generation, enhancing clinical utility.

2.2. Explainable Artificial Intelligence and Image Segmentation

In addition to an accurate pathology classification, ref. [15] indicates that an explainable
Artificial Intelligence (XAI) enhances the transparency, reliability, and safety of diagnostic
systems, contributing to improved healthcare delivery. The work [16] categorizes XAI



Bioengineering 2025, 12, 795 4 of 17

techniques into four critical dimensions, namely data, model, post-hoc, and evaluation.
In healthcare, where misdiagnoses may have great impact, XAI must justify predictions.

Several XAI methods are available [17]. However, unlike purely statistical XAI meth-
ods, such as Shapley Additive Explanations, Grad-CAM generates heatmaps for spatial
reasoning, a desired characteristics for trust and adoption in time-sensitive diagnostics.

In the medical field, Grad-CAM has been adopted to visualize the regions of an
image that most influenced the model’s decision, providing explainability into the basis
of its predictions [18,19]. Because of this, IHRAS adopts Grad-CAM, which provides
interpretable visual explanations of model decisions, allowing clinicians to understand the
AI’s reasoning for the detected abnormalities.

While Grad-CAM identifies areas influencing a model’s decision, segmentation mod-
els transform these heatmaps into medical terms [20]. This terminology alignment enables
radiologists to rapidly verify AI findings against anatomical expectations. Also, struc-
tured reporting systems can auto-populate preliminary impressions with location-specific
pathology descriptions.

To advance this, Ref. [21] have proposed an enhanced multiverse optimizer-based
multilevel thresholding image segmentation method to improve COVID-19 chest radio-
graph analysis. By incorporating horizontal and vertical search mechanisms, it enhances
global search capabilities and avoids local optima. The results highlight its potential as a
reliable tool for medical institutions handling COVID-19 cases.

2.3. LLM for Medical Report Generation

Recent works have explored adapting LLMs to healthcare, where general-purpose
models often struggle due to terminology gaps and limited task-specific training data.
As an example, MedChatZH [22] proposed a decoder-based model trained on a curated
corpus of Traditional Chinese Medicine literature, demonstrating improved performance
over generic dialogue baselines, aligning with broader efforts to tailor LLMs for expert
domains through targeted data augmentation and architecture adaptation. Their work
highlights the effectiveness of LLMs in medical applications. Therefore, in this paper, we
use LLM to generate structured medical reports using the SNOMED CT standardized
terminology system.

To the best of our knowledge, this is the first study to combine classification, explain-
ability, segmentation and medical report generation with LLM in the same architecture,
as depicted in Table 1.

Table 1. Comparison with related works.

Reference Year Classification Explainability Segmentation LLM

[23] 2021 ✓ ✓ ✗ ✗
[24] 2022 ✗ ✗ ✓ ✗
[25] 2023 ✓ ✓ ✗ ✗
[26] 2023 ✓ ✗ ✗ ✓
[27] 2024 ✓ ✗ ✓ ✗
[28] 2024 ✓ ✗ ✗ ✗

Our work 2025 ✓ ✓ ✓ ✓

3. Methodology
Our proposed architecture, developed in Python version 3.11.12, is depicted in Figure 1,

encompassing from the input of a CXR image to the generation of the medical report.
The IHRAS framework consists of four sequential modules. The first module, M1 (see

Figure 1), detects abnormalities in the CXR and is detailed in Section 3.2. Modules M2
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and M3, described in Section 3.3, localize the regions influencing the classification model’s
decision and map them to their corresponding anatomical terms, respectively. Finally, M4
integrates the outputs from M1 and M3, using an LLM to generate the medical report,
as discussed in Section 3.4.

Figure 1. IHRAS architecture, and its four modules.

3.1. The Dataset

The NIH CXR dataset, proposed by [29], is a publicly available dataset containing
112,120 chest X-ray images from 30,805 unique patients, annotated with up to 14 thoracic
pathology labels derived from associated radiology reports. It is chosen due to its large scale,
multi-label annotations, and open accessibility, which enables reproducible evaluation.

To reduce computational costs and processing time while maintaining a representa-
tive sample of the dataset for the models comparison, we employed a stratified random
sampling strategy. The population was partitioned into homogeneous strata based on four
clinically relevant variables: (i) patient age (grouped into 25-year intervals); (ii) radiological
findings; (iii) patient gender; and (iv) radiographic view position.

The sample size per stratum is determined based on Equation (1), in which Z repre-
sents the Z-score, corresponding to the desired confidence level; p denotes the estimated
proportion; and e stands for the margin of error. The variable n represents the sample size,
whereas N is the population size.

n =
N · Z2 · p · (1 − p)

e2(N − 1) + Z2 · p · (1 − p)
(1)

We selected 370 samples per stratum to achieve a 95% confidence level with a 5% mar-
gin of error for the largest strata (N = 9677). For smaller strata with fewer than 370 samples,
all available samples were included. This stratified sampling approach preserves the origi-
nal dataset’s clinical and demographic diversity. This results in a total of 50,133 selected
X-ray images.

3.2. Pathology Identification (M1)

Each inputted X-ray image may be classified as according to different pathologies,
namely atelectasis, cardiomegaly, consolidation, edema, effusion, emphysema, fibrosis,
hernia, infiltration, mass, nodule, pleural thickening, pneumonia, and pneumothorax. It
is a multi label classification problem, that is, each image can be associated with multiple
labels simultaneously.

Three pretrained deep learning models are evaluated, and the best performing model
is selected for integration into the IHRAS framework, to ensure optimal diagnostic accuracy.
These models are obtained from TorchXRayVision [30], with their default configurations,
and refer to a Densely Connected Convolutional Networks (DenseNet) [31] trained on
several CXR datasets; a DenseNet trained specifically on the NIH dataset; and a Residual



Bioengineering 2025, 12, 795 6 of 17

Neural Network (ResNet) [32] trained on several chest X-ray datasets. These models are
selected due to their high accuracy in pathology classification [33].

These models are evaluated based on some metrics. The first one is precision, which
measures the proportion of correctly predicted positive instances among all predicted
positives, as according to Equation (2), where TP, FP, TN, and FN denote True Positives,
False Positives, True Negatives, and False Negatives respectively. This metrics should be
considered when the cost of false positives is high.

Precision =
TP

TP + FP
(2)

Recall, also known as sensitivity and defined by Equation (3), quantifies the ability
to identify true positives over all positive instances. It is a relevant metric when missing
positive cases is undesirable.

Recall =
TP

TP + FN
(3)

The F1-score, determined by Equation (4), represents the harmonic mean of precision
and recall.

F1 = 2 × Precision × Recall
Precision + Recall

=
2TP

2TP + FP + FN
(4)

Ultimately, specificity, calculated as in Equation (5), measures the ability to identify
true negatives over all negative instances.

Specificity =
TN

TN + FP
(5)

3.3. Affected Region and Its Anatomical Name (M2 and M3)

Since medical reports need to have clarity, Grad-CAM is used to enhance explainability,
as it has been demonstrated to improve the interpretability of deep learning models in
medical imaging [34]. This technique generates heatmaps that indicate the regions of the
image that most strongly influenced the model’s diagnostic conclusions. This spatial align-
ment with radiological markers allows clinicians to audit whether the model’s decisions
are anatomically plausible, complying with requirements for transparency in medical AI.

To further enhance the interpretability of the model’s decisions, a segmentation
model is employed to identify the anatomical name of the regions highlighted by Grad-
CAM. This ensures adherence to standardized medical reporting, as the medical report
references meaningful structures rather than relying on generic image coordinates or
non-clinical descriptors.

To achieve this segmentation, we use the Structure-Aware Relation Network (SAR-
Net) model proposed by [35]. The SAR-Net model is evaluated on ChestX-Det, which is a
subset of the NIH dataset, used in this work, achieving a Mean Intersection-Over-Union of
86.85%, outperforming comparable models [36–38]. The anatomical structures it is trained
to identify are the aorta, facies diaphragmatica, heart, left clavicle, left hilus pulmonis,
left lung, left scapula, mediastinum, right clavicle, right hilus pulmonis, right lung, right
scapula, spine, and weasand.

3.4. Report Generation (M4)

The extracted diagnostic data, comprising identified pathologies with associated
probabilities and affected anatomical regions, alongside supplementary inputs such as
patient demographics (age, gender) and radiographic projection, is processed by an LLM
to generate a medical report. This approach provides a patient-aware report generation.
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To select the LLM model for this task, we considered the BRIDGE benchmark, that
is composed of 87 tasks based on clinical data from real-world sources, covering nine
languages [39]. The work compared a total of 52 different LLMs using multiple inference
approaches, and DeepSeek-R1, an open-source model, achieved the highest score in radiol-
ogy and ranks among the top 3 in the overall score, along with Gemini-1.5-Pro and GPT-4o.
These general-purposed models achieved even better results than the medically fine-tuned
ones. Because of these results, we use DeepSeek-R1 to generate the radiological report [40].

The report generation employs the CRISPE framework (Capacity, Role, Insight, State-
ment, Personality, Experiment) for structured prompt engineering, which enhances the
LLM’s output quality [41]. This methodology ensures precise instruction by (C) defining the
model’s clinical expertise boundaries; (R) establishing a radiologist role; (I) incorporating
patient-specific contextual data and diagnosis; (S) specifying reporting requirements with
SNOMED CT compliance; (P) maintaining professional tone consistency; and (E) limiting
to a single response per prompt. The structure prompt following this framework is shown
in Table 2.

SNOMED CT enhances this architecture with the standardization of clinical termi-
nology, improving data quality through consistent indexing, and with the advance of the
continuity of care through interoperable patient records. It also facilitates clinical research
with a structured data aggregation, and improves patient safety [42]. Due to these benefits,
the LLM is instructed to use SNOMED CT.

Table 2. Radiology Report Instruction Components.

Component Description

Capacity You have deep knowledge of clinical report writing using SNOMED CT,
based exclusively on the informed findings

Role Act as a board-certified clinical radiologist preparing an official diagnostic
report, with accurate and clear communication of findings

Insight The model receives the information about the patient age and gender,
view position, findings and probabilities, most affected region

Statement Write a radiological report using SNOMED CT with: Patient Metadata
Section, Findings Interpretation, Anatomical Localization

Personality Professional, concise clinical tone using complete sentences with standard
medical report structure

Experiment Provide a single report

To evaluate the quality of the generated medical reports, we employed DeepEval [43],
an open-source framework for assessing LLM outputs using an LLM-as-a-judge approach.
The metrics considered in the assessment are faithfulness, to evaluate whether the generated
report is aligned with the findings from the previous IHRAS steps; answer relevancy,
to measure how relevant the report is in relation to the prompt; hallucination to detect
unsupported claims; toxicity and bias, to identify harmful or discriminatory language; and
prompt alignment to assess adherence to the CRISPE-structured instructions.

4. Results and Discussion
This section presents the results obtained with the IHRAS pipeline, from the CXR

image input up to the report generation.

4.1. Classification Models Evaluation

For the disease classification module, we evaluate three models, namely a DenseNet
trained on multiple CXR datasets, a DenseNet fine-tuned specifically on the NIH dataset,
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and a ResNet trained across diverse CXR datasets. The best-performing model, based on
evaluation metrics, is selected for integration into IHRAS.

4.1.1. Models Comparison

All evaluated models generate a probability score p ∈ [0, 1] for each detectable pathol-
ogy in the input X-ray image. To convert these continuous predictions into binary classifi-
cations (present/absent), an optimal decision threshold must be established.

Figure 2 presents the variation of the F1-score (Figure 2a), of the precision (Figure 2b),
of the recall (Figure 2c) and of the specificity (Figure 2d) in function to the variation of
this threshold for the three classification models. It is noted that the DenseNet trained
specifically for the NIH dataset achieves the best F1-score, precision and recall for a given
threshold, and, thus, this model is selected for the classification module of IHRAS in
this work.

(a) F1-score (b) Precision

(c) Recall (d) Specificity

Figure 2. Comparison of evaluation metrics for different thresholds for the classification models.

In this study, we employ the F1-score as our primary optimization metric, to balance
false positives and false negatives. As seen in Figure 2a, the optimal decision threshold of
0.55 maximizes the F1-score at 0.34. This threshold reflects a balance of clinical priorities,
equitably weighting sensitivity (to avoid missed diagnoses) and precision (to reduce false
alarms). The obtained F1-score is comparable to those of other multilabel classification mod-
els evaluated on the same and other datasets, as shown in Table 3, especially considering
the long-tailed characteristics of the used dataset [44].

Table 3. Comparison of F1-scores across studies.

Reference Year Dataset F1-Score Precision Recall

[45] 2021 NIH CXR 0.34 0.28 0.47
[46] 2023 NIH CXR 0.36 0.32 0.43
[47] 2023 MIMIC-CXR 0.27 0.35 -
[48] 2024 Indonesian hospitals 0.30 0.18 1.00
IHRAS’ DenseNet 2025 NIH CXR 0.34 0.25 0.53

Although the F1 score achieved by the classification model selected for IHRAS is lower
than the best reported in [46], by Code-Free Deep Learning (CFDL) platforms, the chosen
DenseNet offers significant advantages in terms of control and transparency, as users cannot
audit the CFDL architecture and the explainability is hindered. Furthermore, the adopted
DenseNet architecture outperformed all comparative studies in Table 3 in at least one
performance metric.
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In scenarios where false negatives incur higher costs, the threshold should be lowered
to prioritize recall, ensuring fewer missed cases. Conversely, when false positives are more
detrimental, the threshold should be raised to maximize precision.

Figure 3 presents the normalized confusion matrix of the classification model, in which
rows represent the true labels, while columns show predicted classifications. It indicates
that the model tends to predict a CXR as atelectasis, infiltration and/or effusion, whilst
labels such as pneumonia and hernia are more rarely predicted. This behavior possibly
explains the modest F1-score obtained.

Figure 3. Normalized confusion matrix comparing model-predicted pathologies against true clinical
diagnoses.

4.1.2. Binary Classification

Although IHRAS is designed to identify and differentiate between several thoracic
pathologies, we also evaluate its performance in a binary classification task distinguishing
between abnormal and normal chest X-rays. In this binary setting, all images exhibiting
at least one pathological finding, regardless of the specific diagnosis, are grouped under
the abnormal class, whereas those explicitly labeled as no findings constitute the normal
class. This evaluation enables the assessment of the model’s capability to serve as a
general screening tool, flagging potentially abnormal cases for further review. It also
provides insight into the system’s general sensitivity to pathological signals irrespective of
specific diagnoses.

In this binary classification, the same probability threshold of 0.55 is used, achieving a
precision of 0.93, a recall of 0.74, a specificity of 0.55 and a F1-score of 0.83. The confusion
matrix of this scenario is shown in Figure 4.

These results indicate the adaptability of IHRAS, demonstrating its capability to
identify specific thoracic diseases and to function as a screening tool. This dual func-
tionality broadens its potential applications in clinical workflows, from rapid triage to
decision support.
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Figure 4. Normalized confusion matrix comparing for the binary classification.

4.1.3. Sample Demographics

It has been observed by [7] that AI models underdiagnose pathologies in marginalized
groups, concluding that there is a significant disparity when comparing “black female”
patients with “white male”. To assess this disparity within the 0.55 threshold DenseNet
model adopted by IHRAS, the demographic and clinical characteristics of the sampled
dataset are presented in Figure 5.

(a) Ages distribution per gender (b) Gender distribution

(c) Count of view position (d) Count of pathologies

Figure 5. Properties of the X-ray images selected for the evaluation.
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Figure 5a reveals apparent anomalies in the age data, including patients recorded as
over 400 years old. These outliers do not compromise the diagnosis, as age is not considered
in the analysis, being only included as metadata in the report for informational purposes.
The median age for both genders, however, is 50 years, suggesting these extreme outliers
are likely artifacts of data entry errors rather than representative of the true distribution.
The sampled dataset also contains slightly more males than females (Figure 5b) and Postero-
Anterior (PA) views than Antero-Posterior (AP) (Figure 5c). Figure 5d show that the
imbalance for the pathologies count is significantly greater, thus suggesting the long-tailed
characteristics of the dataset. However, since this section focuses on assessing a pretrained
model’s diagnostic performance across diverse subgroups, rather than training a new
model, such imbalances reflect clinical variability rather than methodological limitations.

Upon comparing Figures 3 and 5d, it is evident that the classification model exhibits
a bias toward predicting the most frequently occurring pathologies in the dataset, such
as infiltration, effusion, and atelectasis, while underrepresenting rarer conditions like
pneumonia and hernia. This pattern suggests that the model’s predictions are influenced
by class imbalance, which is a common challenge in classification problems in healthcare
and in other domains [44,47,49].

The comparison of the evaluation metrics for these different demographics and clinical
characteristics is presented in Table 4, which indicates no significant disparities between
different demographic and clinical groups.

Table 4. Performance metrics by demographic and clinical characteristics.

Category Value Precision Recall F1-Score Specificity

Age

0–24 0.23 0.52 0.32 0.84
25–49 0.23 0.52 0.32 0.85
50–74 0.24 0.53 0.33 0.85
75+ 0.24 0.51 0.33 0.86

Gender M 0.24 0.53 0.33 0.85
F 0.23 0.52 0.32 0.85

View Position PA 0.24 0.52 0.33 0.85
AP 0.23 0.53 0.32 0.85

Findings

No findings 0.24 0.51 0.32 0.85
Effusion 0.24 0.53 0.33 0.85
Atelectasis 0.24 0.53 0.33 0.85
Pneumothorax 0.23 0.52 0.32 0.85
Edema 0.23 0.54 0.32 0.85
Infiltration 0.24 0.53 0.33 0.85
Fibrosis 0.23 0.54 0.32 0.84
Consolidation 0.23 0.52 0.32 0.85
Emphysema 0.24 0.51 0.33 0.85
Mass 0.23 0.53 0.33 0.85
Pneumonia 0.24 0.55 0.33 0.84
Hernia 0.27 0.56 0.36 0.85
Cardiomegaly 0.23 0.54 0.33 0.85
Pleural Thickening 0.24 0.51 0.32 0.85
Nodule 0.24 0.51 0.32 0.85

We quantify pairwise differences in model performance using Cohen’s h effect size
measure, computed for all pairs of values within the same category. As shown in Table 5,
the maximum observed h values across all categories is of 0.1003 (Findings/Recall), which
is below Cohen’s threshold of 0.2 for small effects [50]. This demonstrates statistically
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negligible variation in model performance across the demographic subgroups, image
acquisition parameters and clinical findings.

Table 5. Maximum Cohen’s h effect sizes across all pairs in categories.

Category Precision Recall F1-Score Specificity

Age 0.0236 0.0400 0.0214 0.0560
Gender 0.0236 0.0200 0.0214 0.0000
View Position 0.0236 0.0200 0.0214 0.0000
Findings 0.0924 0.1003 0.0845 0.0276

4.2. Report Generation Evaluation

The metrics associated to the generated medical reports are presented in Table 6. This
evaluation assesses the LLM’s ability to generate accurate reports based on the classification
results and on the identified affected anatomical region provided to it, rather than compar-
ing against the actual annotated pathology. The performance of the disease classification
model has been validated in Section 4.1.

Instead, this analysis tests the LLM’s capacity to faithfully translate input clinical
data into coherent reports, to maintain contextual relevance, and to adhere to clinical
reporting standards.

Table 6. Medical report evaluation metrics.

Metric Mean Score Min Score Max Score

Faithfulness 0.99 0.89 1.00
Answer Relevancy 0.91 0.75 1.00
Hallucination 0.00 0.00 0.00
Toxicity 0.00 0.00 0.00
Bias 0.00 0.00 0.00
Prompt Alignment 0.86 0.82 0.90

The results shown in Table 6 demonstrate capabilities for safe clinical deployment.
They indicate that the IHRAS LLM module is capable of operating within the healthcare
workflow, where accuracy, safety, and consistency are fundamental.

The faithfulness scores validate that reports accurately reflect diagnostic inputs, ensur-
ing reliability in communicating critical findings, which is a fundamental requirement for
medical decision-making. The strong performance in answer relevancy indicates that the
reports have successfully fulfilled the prompt, while perfect hallucination, toxicity, and bias
scores confirm the absence of fabricated claims and harmful content, addressing patient
safety and ethical concerns. The prompt alignment results, though slightly lower than other
metrics, still reflect robust adherence to structured clinical reporting standards.

These metrics, however, were obtained through an LLM-as-judge evaluation pro-
cess, which, while efficient for automated assessment, introduces limitations regarding
clinical validity.

4.3. IHRAS Case Studies

To demonstrate the IHRAS workflow, Figure 6 depicts two example CXR images from
the NIH dataset inputted into the system, with the generated reports R1 and R2 presented
in Table 7.
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Figure 6. Example of reports generation

Table 7. Medical reports generated from the examples in Figure 6.

Report Section R1 R2

Metadata Patient is a 57-year-old male, X-ray obtained
in PA projection.

Patient is an 81-year-old female, X-ray obtained in
PA projection.

Findings

No acute cardiopulmonary abnormalities are
identified. The lungs are clear without
evidence of consolidation, pneumothorax,
or pleural effusion. The cardiomediastinal
silhouette is within normal limits. No osseous
lesions or soft tissue abnormalities are
detected.

Hernia—Present (high confidence).
Mass—Possibly present (moderate confidence).
Anatomical Localization: The most affected region
is the Facies Diaphragmatica.

Impression Normal PA chest radiograph without acute
abnormalities.

Strong evidence of a hernia involving the
abdominal cavity.
Suspicion for a mass in the diaphragmatic region,
though further evaluation (e.g., cross-sectional
imaging or follow-up) is recommended for
confirmation.
Correlation with clinical history and additional
imaging (CT or MRI) may be warranted to further
characterize the suspected mass.

The CXR 00021956_002.png is correctly classified as a healthy image, whereas it
wrongly attributes a mass diagnosis for 00000003_000.png, although the hernia is correctly
identified. Such misdiagnosis is taken into account in Section 4.1.

Additionally, in medical imaging, timely diagnosis is fundamental for effective patient
care, particularly in urgent scenarios. Rapid report generation ensures that clinicians
receive relevant information without delay. In that regard, IHRAS completes the CXR initial
classification in 570 ± 85 ms, generates the GradCAM heatmap generation in 1878 ± 221 ms,
performs segmentation in 12,746 ± 713 ms, and generates the medical report generation in
4216 ± 402 ms. These processing times suggest the system’s ability to deliver rapid results.

Since Grad-CAM (M2) visualizations and LLM-generated reports (M4) are conditioned
on the model’s predictions (M1), their utility is linked to the quality of those outputs.
However, the system’s interpretability components offer importante information regarding
model behavior, indicating regions of interest and generating plausible hypotheses that
can assist clinicians in decision-making. Rather than presenting these outputs as definitive
diagnoses, IHRAS may be used as an assistive tool that complements clinical judgment.
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5. Conclusions
This work introduced IHRAS, a modular and integrated system designed to enhance

the automation and interpretability of chest X-ray analysis by combining disease classi-
fication, visual explainability, anatomical segmentation, and structured medical report
generation via Large Language Models. IHRAS identifies thoracic pathologies with associ-
ated anatomical relevance and produces clinically coherent reports adhering to SNOMED
CT standards.

The system demonstrated consistent performance across demographic and clinical sub-
groups in the NIH ChestX-ray dataset, indicating its potential for equitable clinical deploy-
ment. The integration of Grad-CAM for visual explanations and SAR-Net for anatomical
localization contributes significantly to transparency and trust in AI-driven radiology.

However, the system’s performance is currently constrained by limitations, including
the modest F1-score in the multi-label classification task, which likely arises from the
imbalanced data problem, and the lack of evaluation of the Grad-CAM. Hence, as future
work, these modules of the IHRAS architecture should be further studied, with the aim of
improving its performance, including clinician-based evaluations of the complete system.
Future works should also investigate the use of the proposed architecture in other medical
imaging applications, such as Computed Tomography scans, Magnetic Resonance Imaging,
and ultrasound, or to other anatomical regions beyond the thorax.
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