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ARTICLE INFO ABSTRACT

Keywords: A Lagrange multiplier field can be used to restrict radiative corrections to the Einstein-Hilbert
Quantum gravity action to one-loop order. This result is employed to show that it is possible to couple a
Lagrange multipliers scalar field to the metric (graviton) field in such a way that the model is both renormalizable
Renormalization

and unitary. The usual Einstein equations of motion for the gravitational field are recovered,
perturbatively, in the classical limit. By evaluating the generating functional of proper Green’s
functions in closed form, one obtains a novel analytic contribution to the effective action.

1. Introduction

It has long been known that when the equations of motion are satisfied, the divergences that arise at one-loop order in
the Einstein-Hilbert effective action can be absorbed by a field renormalization [1-3]. However, once the metric couples to a
scalar [1,2], vector [4], or spinor field [5], or one goes to two-loop order [6,7], this is no longer true. In order to eliminate
such unwanted divergences, it has been suggested that by extending the number of physical fields through supersymmetric
coupling (supergravity) [8], extending the concept of particles to strings [9], adjusting the canonical structure of the theory (loop
gravity) [10], invoking non-perturbative behavior (asymptotic safety) [11,12], or by including additional terms into the basic
Einstein-Hilbert action [13,14], one might obtain a realistic theory of quantum gravity. Although much progress has been made
along these lines, these approaches have not yet proven to be entirely satisfactory.

It has been known for some time that by using a Lagrange Multiplier (LM) field to ensure that the classical equations of motion
are satisfied, radiative corrections to the classical action in the full effective action are restricted to one-loop order [15]. This suggests
a way of quantizing the Einstein-Hilbert Action [16-18], with additional contributions from a scalar field [19]. In this manner, the
usual classical action is recovered at tree level and unwanted divergences are all removed through renormalization, without the
introduction of extra fields or dimensions, or compromising unitarity.

In this paper, we provide details of how a model in which the metric couples to a scalar can have both satisfactory classical and
quantum properties through use of an LM field. This is a continuation of the work in Ref. [19].

In the next section, we use a standard integral to illustrate how an LM field can be used to eliminate radiative effects beyond one-
loop order in perturbation theory. In Section 3, a general discussion of how this approach can be used in field theory is presented.
We note here the presence of a supplementary solution to the classical equations of motion which may possibly simulate “dark
matter” effects. In Section 4, we show how the metric interacting with a scalar field can be treated so as to have a renormalizable
and unitary theory. A brief discussion of the results is given in Section 5. In the Appendix, we exemplify, in a scalar model, the
unitarity of the theory by showing that the cross sections are related to the imaginary part of forward scattering amplitudes.
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2. A simple illustration

Let us begin with the simple integral:

dg dA . ’
Z=[ == L AL . 21
/ 575 &P [i (L&) + AL (g))] @1
By integrating first over 4, then using the resulting §-function to integrate over g, we obtain:

1 w exp (il(gh)

- L , 2.2)
2 &4 L (gM)]
where g is a solution to
L'gh =0. (2.3)

We can reinterpret g as a “quantum field”, L(g) as a “classical action”, 4 as a LM field, g# as a solution to the classical equation
of motion, exp (iL"(g*)) as the sum of tree-level diagrams, and [L” (gA)]_l/ % as “one-loop diagrams with external legs on the mass
shell”, and Z itself as the generating functional.

We now modify Z so that [20,21]:

d
z- / SELE (1) exp (i [L(9) + AL @)

7w 2r 24
d .
- / (1) " (L @) expliL (@)

Having added the factor of (L”(g))!/? to the integrand of Eq. (2.1), one can show explicitly that the form of Z now remains
invariant under a change of variables in which g’ = g’(g).!
Sources j and J are now introduced so that:

Z(j,J) = exp{iW(j,J)}
_ dgdA . 12 : ' :
= [ =—(L"(g)/“expli(L(g) + AL' (&) + jg + D)} (2.5)

2w 21
“Background fields” g and 1 are defined so that [23,24]:
_ oW, d) - oW, J)
= = 2.
e T 2.6)

and a Legendre transform leads to
r@En=wg.J)-jg—Ji
where
dhdH po i : 'oo .
exp{il'(g, 1)} = EE(L G+ h)/“explitL(g+h)+A+H)L(g+h)+ jh+JH)}. 2.7)
with
__or@h  ,_ or@d
g Py
We now can set the background field for the LM field equal to zero (ie. 1 = 0) as physical contributions to one-particle irreducible
(1PI) Green’s functions (GF) are computed by expanding I'(g,0) in powers of g.

(2.8)

3. General field theory considerations

First, let us recall some of the features of “background field quantization” [1,23,24]. If we begin with the generating functional
Z(j) for a field y(x) with a Lagrangian L(y) and source j(x), then upon restoring Planck’s constant 7, we have

Z()=ei"O = / D)(CXP{% / dX(£(1)+j(x)x(x))}. (3.1)
A background field jy(x) is given by

N1/ 40))

7 (x) ) 3.2

and through a Legendre transform

(3.3)

ol (y
F(;?)=W(j)—/dxj(x);z(x), <j(x)=— m),

8y (x)

1 See, however, Ref. [22].



D.G.C. McKeon et al. Annals of Physics 480 (2025) 170101
we obtain
exp { %ro?)} = / Dgexp { - / dx (L(7 +q) + j(x)q(x»} (3.4

upon letting y(x) = 7(x) + g(x). It has been shown [24] that W () is the generating functional for all connected Feynman diagrams
and that I'(y) is the generating functional for all connected one-particle irreducible diagrams. If we make the expansions

r(pn=r%pn+nrrVg + > rog) + -, (3.5)
and
LGz +0) = L)+ £+ 3D + 5L (D + 3.6)
then, by Eq. (3.4), we find that
L rOe) = i 7
exp(hf ()()) —exp<h /dxﬁ(x)), 3.7)
and
s ey \
(1) — -
exp (ir'V(p)) = det <a;z(x)a;z(y)> . (3.8)

with the term £'(7)q cancelling. The contributions to I'"’(7) (n > 2) arise from one-particle irreducible Feynman diagrams with
n-loops involving vertices derived from vertex terms in the expansion of Eq. (3.6) containing at least three powers of ¢(x), and
propagators arising from (£ (7))q?. It is important to note that the equation of motion for the background field 7

£'(7)=0, (3.9

is not used to derive this expansion for I'(}).
The general development outlined in the preceding section can be directly applied to a model with a classical Lagrangian £ (g;(x))
and action
0L (gi(x))
6g;(x)
Paralleling the way in which Eq. (2.7) is obtained, we find that the generating functional I'(g;(x), 4;(x)) for one-particle irreducible
diagrams is given by

Sa(gi 4) = /dx [[’cl(gi(x)) + 4;(x) (3.10)

5L (8,(x) + hy(x)) ) 12

exp {il(g;(x), 2;(x))} = / Dh,.(x)DH,.(x)det( 5,5, )

X expi / dx [ £a@ G0+ 16+ (400 + H,) —M“l(g_;(hi)(; ki @10
FSORG) + LOH ) |
as in Eq. (3.4). We now set the source functions and background for the LM field in Eq. (3.11) equal to zero,
J=J,=0, (3.12)

since we are only interested in GF involving external fields g;.
In Ref. [21], the situation in which the classical action / dx L(g;(x)) is invariant under the gauge transformations

8 — &+ R;;(8); (3.13)

is considered. This is accompanied by transformations of the LM field 4;(x) as well as of the two fermionic and one bosonic ghost

2
fields used to exponentiate the functional determinant det'/? %) It is shown in Ref. [21] that the imposition of the gauge
%P
conditions
Fg;=0=F;4; (3.14)

leads to a simple Faddeev-Popov (FP) determinant [23,25],
det (F;;R;i(8) (3.15)
as well as a gauge-fixing contribution to the action
1 2 1
/dxﬁgf=/dx [‘Z (Fyg) -+ (ﬂjﬂj)mkgk)]. (3.16)
If one were to choose the gauge fixing to leave background gauge invariance unbroken, then

g — & + R;;(8);. (3.17)
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remains a symmetry, and the gauge condition is now of the form
Fy@h; =0=F(H,, (3.18)
so that the FP determinant is given by
det (F;;(®)R; (2 +h)) .
The generating functional in Eq. (3.11) is now
& (La(@ +h) - 5 (Fy@)h)? )
Sh;(x)5h;(y)

exp{il(g;, D)} = /DhiDHi det'/? det (Fij(gi)Rjk(gi + hi))

(3.19)
0Ly (g + hy)

S 2 @)~ L@ @H) + iy .

X expi/dx[ﬁd(gi +h)+ H;

It is now possible to proceed in two ways. The first option is to integrate over H; in Eq. (3.19) and then use the resulting
s-function to integrate over h;. This approach is close to what was done with Z in Eq. (2.4) of the preceding section. A second
option is to simply derive the Feynman rules for the propagators and vertices that follow from Eq. (3.19) and then consider the
possible Feynman diagrams that result.

Before examining these two options, we will extend the type of model considered in Eq. (3.10). We will be identifying the field
g;(x) with the metric g,,, and the classical Lagrangian L with the Einstein-Hilbert (EH) Lagrangian. By using the LM field 4,,,(x), we
will be able to eliminate the unwanted higher loop divergences that are known to arise when using the EH Lagrangian alone [15].
However, we will also include the action for a scalar field interacting with the metric by adding to £ a term

Lo = L8 Py). (3.20)

We will not employ a LM field to eliminate higher-loop diagrams involving the “matter field” @; and that follow from L, as
the divergences arising in these diagrams can be absorbed through standard renormalization, and if we were to restrict ourselves
to one-loop order by use of LM fields, unwanted Landau poles will arise in the running coupling [15].

When g; undergoes the gauge transformation of Eq. (3.13), then

@O, - @) + Ry (@) (3.21)

If @, has a background piece @; about which there is a quantum fluctuation y; (@, = ®; + y,), then I} in Eq. (3.19) now
depends on g;,®; (i.e., I' = I'(g;,®,)) and the argument of the exponential also has the contributions

L8+ i @y +yp)+ kpwy, (3.22)
with
oI (g, @
L 10 (3.23)
6d,
After combining Egs. (3.19) and (3.22), it is possible to then compute the integral over H;(x), leaving us with

52

exp{il[g;(x), ®; (0]} = /Dh'i Dy; det (F;;(2)R;(g + hy)) det 172 [m (

_ 1 _
L@ +h) - Z(Ej(gi)hj)z):l
. = = 1 _ 2.
X exp ’{/ dx[[’(:l(gi +h)+ L@+ hi, @ +yy) — > (Fij(gi)h/) +jih + le[] } (3.24)
[ _ 1 _ 2
X6 [5_}11 (Ecl(gi +h;) - %(Fij(gi)hj) )] .
The functional integral over h; in Eq. (3.24) can be computed using the functional §-function, leading to

52

- Ay Lo ap
Sy (@ + ) = S @om) )]

explil'(g, ®;(x))} = Z‘,/Dwdet‘”2 [
A
x det (F;(8)R;i(& + 1)) expi / dx [ﬁd(g',- F )+ L@+ By + ) = o (F (@R (3.25)

+j;h,1-4 + ki ]

where k! is a solution to the classical equation of motion

P 1
— |Laq(g +h) — —
o, [Cal®it D=5

We can identify each of the contributions on the right side of Eq. (3.25) with particular sets of Feynman diagrams. The
one-loop contributions to the effective action coming from diagrams that exclusively involve the field g; come from the term

Fy@n 7] =o. (3.26)
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(a) Metric propagator (b) Scalar propagator

Fig. 1. Typical tree-level contributions. @, @, ® represents contributions of the fields g,, and h?

o ®@,, respectively.

2 . . " . . — —
det™1/2 [m (ﬁd(g,- +hh - i(F,- j(g)hj*)z)] . The one-loop contribution of the FP ghost fields is given by det (F;;(2)R;x(&; + h1)).

The tree-level contribution coming from L (g) alone all contribute expi f dx [L:d(g,. + h[A) 2:1( (g)hA)z] Upon integrating over
vy, [ Dypexpi [ dx Ly(g+h}, &) +y;) gives the sum of all diagrams for the field &, propagating in a background field g; and &, .
Let us consider a diagrammatic approach to these terms appearing in Eq. (3.25). If we first make the expansion

5 A 5 A G Ly
Lo@G +h . @r+y) =Ly +h,Pp)+ [ dx 36 (v
1x

£ -
2! g, +hA. B
" ‘// <3<D,(x)¢)q51(y) Lol@r + i’ I)) v (Ow; )+

— L + h,,@[)) wi(x)
3.27)

then the term
expi / dx [Lat@ + B = 5 (F @R + La(@, + )] (3.28)

represents tree-level diagrams [26,27]. In particular, Fig. 1(a) is the propagator following from L (g; + k') — (F; jh/*.‘)z /2a when
considering terms quadratic in 4/ when g; = 0; interactions in this expression lead to tree-level diagrams with @ and @ representing
contributions proportional to g,, and h;‘v. Figs. 1(c) and 1(d) are typical of such diagrams. The propagator in Fig. 1(b) follows from
the term in L£4(g; + A1, ®;) that is bilinear in &; when @, = g, + k! = 0. Terms in Eq. (3.27) that are at least cubic in y; lead to
diagrams such as the tree-level diagrams of Fig. 1(f), where () represents a term proportional to @,. Fig. 1(e) comes from a term
in L£4(g; + h!, ®;) that is quadratic in §; and linear in h# and &;. It is also possible to construct higher loop diagrams in the metric
field only contributing as an external field and interior propagators being that of the field @;. Such diagrams appear in Fig. 2.

Finally, in Eq. (3.25), det ~!/2 [ﬁ;h]m (Ed(g,. +ht) - i (F,. ; (g‘,-)h;.‘ ) )] leads to one-loop diagrams with the metric propagating
on internal lines and g; and h;‘ appearing as external fields. Similarly, det (F; 7 (@DR(& + hiA)) gives one-loop ghost field contributions
with ; and h# being external fields. These two types of diagrams are illustrated in Figs. 3 and Fig. 4 respectively. The only diagram
with contributions beyond one-loop only have internal propagators resulting from the scalar field. Of particular interest is the way

in which the propagation of the scalar @; is affected by h;4 which is a solution of the equation of motion of the gravitational field
not coupled to @; itself (ie. Eq. (3.26)).
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Fig. 2. Typical higher loop diagrams from the scalar field.

Fig. 3. Typical one-loop diagrams with a propagating metric.

Fig. 4. Typical one-loop diagrams from the FP ghost sector.

Again, we set the background field associated with the LM equal to zero, as we are only interested in GF with external fields
g;- Terms such as m;;,;h;hhy, then vanish and so the stability of the action due to terms of order h;h;h; not lead to an unstable
vacuum.

It is now possible to see how these results follow from the Feynman diagrams coming from the path integral arising from the
expression for I' that follows from Egs. (3.19) and (3.22). We will see though that the contribution of hl‘.4 to the background g;
does not arise from Feynman diagrams alone. (Perturbation theory using only Feynman diagrams is a limited way of examining the
effective action. It does not, for example, reveal the effect of instantons on the effective action for Yang-Mills theory.) If we expand
L4 and L as follows

_ _ _ 1 _
La(G+h) =Lg@)+ Ly, (@D + Eccl,ij(gi)hihj +oee (3.29a)
_ - oo 0Ly (g, D) 0Ly (g, D)
Lo+ h, @ +wp) = Lo, Bp) + “’ag’ Zh + "’0@’ L (3.29b)
i 1

then the terms in the effective Lagrangian that are bilinear in the quantum fields y;, &;, and H; are of the form

cry by 0wy
(wi hy H)|by a; ayl|h| (3.30)
0 a; OJ\H,
There are no terms bilinear in H — H or y — H. By inverting the matrix in Eq. (3.30), we can determine the propagators for
these fields,

0y ¢! 0 —c 'pa~!
a = 0 0 a™! . (3.31)
0 —a~'be! a! —al+albec'ba!

c b
b a
0 a
From Egq. (3.31), we see that the propagators associated with (h;h;) and (h;y;) (or (w h;)) vanish, while the ones associated with
(v () () and (H;(x)h;(y)) (or (h;,(x)H;(y))) are CI_J] and ai‘j], respectively. But now we note that from Egs. (3.19) and (3.22), that
in any vertex involving the field H;(x), that field enters at most linearly.

From these observations, it follows that the only Feynman diagrams that can arise from Egs. (3.19) and (3.22) are tree-level
diagrams that follow from L alone, one-loop diagrams that follow from £ alone, and diagrams to any order in the loop expansion
that involve propagation of the field y; in the presence of the background fields g; and &, [15,19].
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This result coincides with what we had obtained in Eq. (3.25), provided that in Eq. (3.25) the sum over A were to include only
the contribution h;‘ = 0. In this case, Eq. (3.26) reduces to the usual classical equations of motion for the gravitational field. Other
solutions to Eq. (3.26) do not arise from the Feynman rules in perturbation theory. As noted above, these extra solutions to the
classical field equations may possibly be associated with non-perturbative aspects of gravity. Such non-perturbative solutions of
Eq. (3.26) may mimic “dark matter” effects [28], as they provide a background to the “matter field” @

4. Divergences with quantized gravitational and scalar fields

In this section, we show how the approach outlined in Section 3 can be applied to a scalar field in the presence of a metric g,
with the EH Lagrangian.

We consider the ’t Hooft and Veltman model (see Refs. [1,2]), and we will use the notation used there. The Lagrangian for the
metric g, is

Lpy = —\/E R, “4.1)
and for the scalar @ is
Ly=—+/28" (0,®) (0,@). 4.2)

The background fields g,, and 4, are associated with g, and the LM field 4,,, respectively, with

uvo

guv = gﬂv + huv’ Aﬂv = }_‘yv + Hyv' (43)
2L (g + h)

According to Eq. (4.24) of Ref. [1], the term in Eq. (4.1) needed for ———M—
glo™ 1 5h,()3h,(7)

is given by

1 . . _
a \2 _a p _1pa B _ B _ pp v
(K W)~ h* )R 2/’1 (hﬂ# h#ﬂ thﬂ>

(e, ﬂ)-lbﬁ [, (22, )]
H oV 2 v s a

1p,
2
-Z(m. +h,  —h )(hﬂv"+hﬁ";v—h"vﬂ> (4.4)
+
4

0| —

Lon(d=¢ =08, —~ g +h) =2 [ (

B p Pa
; B 1 s
20" — b ) Wy +5hn

In Eq. (4.4), both the semicolon ., and D, denote covariant differentiation using the background field g,, + h;‘v,

Via = D,Vy =0,V = T2V, (4.5)
and R=R,,&"", R,, = R, with
P A A
R = 0,4 — 0,4 + [ — I/ T (4.6)

By Eq. (4.22) of Ref. [18], the term in Eq. (3.26) needed for 6L (g; + h;“)/éh, is
_ ~ —/ 1 _ _
L@ =6 =0.g, = g+ 1) = VE(-3h R R 1) S 1 ). “.7)

In Ref. [1], (see Eq. 4.29) a gauge-fixing condition that respects transformations corresponding to diffeomorphism of the background
fields g,, and @ is employed. This condition depends explicitly on both fields. (A discussion of gauge conditions that respect this
invariance is in ref. [29].) Instead, the gauge-fixing

__1 v 1 Iz 1.iw
Ly=-3 g(hw—- W)(h =3 ) (4.8)
is used. The independence of physical results on the gauge-fixing condition is discussed in [30]. The FP Lagrangian for the fermionic
ghost fields Ny and 'I; associated with Eq. (4.8) is (Eq. (5.19) of Ref. [1])

Lahost = \/En* (n#® = R"*p,). (4.9

In Egs. (4.4), (4.7) and (4.9), g denotes det(g,, + h" ,) and R denotes the Ricci scalar evaluated at gt hm

Having seen how a LM field can be used to ehmmate diagrams involving the graviton field in diagrams beyond one-loop order,
we can examine the divergences arising in the generating functional of Eq. (3.25).

The divergences that arise in models involving scalars, vector, and spinor fields in flat spacetime can, under many circumstances,
be absorbed by renormalizing the fields themselves, their masses, or the couplings characterizing their interactions. This is a feature
of the so-called “Standard Model” of particle interaction. (See, for example, Ref. [31].)

Divergences also arise when computing radiative effects in curved spacetime. (Three useful references are [32-34].) There are
now also divergences associated with radiative effects resulting from the propagation of the metric field. If we follow the argument
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following Eq. (3.19) and apply it to that portion of Eq. (3.24) that does not involve the matter field &, = @, +y,, then we see that
the only diagrams involving the propagation of the metric (graviton) field are the one-loop diagrams that follow from Egs. (4.1),
(4.8), and (4.9).

The divergences arising in these one-loop diagrams were computed in Eq. (5.24) of Ref. [1] to be

ASg aiv = (‘g) (ﬁR2 + ;—ORWRHV) , (4.10)
where the metric is evaluated at the sum of Zuv (the full background metric) and h“v, which is a solution to the equation of motion
for the metric in the presence of the background field g,,, using the EH alone to determine these equations of motion (Eq. (3.26)).
(In Eq. (4.10), € = 8x%(n — 4), where n is the number of dimensions.)

There are also divergences resulting from the remaining contributions to the generating functional I' in Eq. (3.24). These
remaining portions are given by the path integral

/Dy/, exp{i/dxﬁd,(g'i+hiA,d_>[+y/,)}. (4.11)

This represents all Feynman diagrams for a scalar field &; with background &,, propagating in a background metric g, + h;‘v,

where g,, is a general background metric and hﬁv is a solution to the Eq. (3.26). This equation of motion involves solely the EH
Lagrangian; it does not have any contribution from the scalar field.

A discussion of the divergences arising from the propagation of a scalar field in the presence of a background metric (in this
case, g, + hA ) appears in Refs. [33,34]. The action there consists not only of the free part of Eq. (3.26) but, in addition, a mass

uv
term and self-interaction term. We also include a cosmological constant term. In total, we have

Sp = /dxﬁd,(g,w +h,, D +y)

- /dx \/g(—%g"vdu¢6v¢+ % (R —m?) ¢ - 4—’1!¢4 +A) . (4.12)

Divergences arise both from diagrams in which the only external field is the background metric (the “vacuum diagrams”) and
also from diagrams in which there is a background scalar field, as well as possibly contributions from the external metric. This
external metric is denoted by g,,. The “vacuum diagrams” do not contribute when the background metric is flat.

The “vacuum diagrams” result in divergences when ¢ = 0 that are proportional to (Eq. (3.45) of Ref. [33])

vz (4.13)

or are proportional to

VER, \ER%, \/gR,R"™, \[gR,.,R"* or /[gOR, (4.14a)

where [] = 0"9,,.
The divergences at ¢ = 0 that arise from Feynman diagrams involving external scalar fields are proportional to

Vee" o, 0,6, \zd, [z (4.15a)

\gR$*. (4.15b)

It is possible to systematically remove all the divergences in Eqs. (4.10), (4.13)-(4.15). First, divergences involving terms of
the form of Eq. (4.15a) can be absorbed by the usual field strength, mass, and coupling constant renormalizations, respectively.
Meanwhile, divergences arising from terms proportional to \/E (Eq. (4.13)) can be absorbed by the cosmological constant A. This
holds to all orders in the loop expansion of contributions to the effective action that follow from Eq. (4.11).

The remaining divergences (those of Egs. (4.10), (4.14), (4.15b)) are all proportional to R, since R = g"'R,,, and in four
dimensions there is the topological identity

R,y R"“" = —R* + 4R, R". (4.16)
L
g

i

With the classical Lagrangian L being given by Lgy in Eq. (4.1), the term 4, in Eq. (3.10) becomes

g 1
AuV% (_\/ER) Auv\/T— (RW - Eng)

uv

HYR (4.17)

Hv>

Ve,
2

1 s Ve
= (3= 28" ) 5 R

where we have set

, 1

ARV = pH — Eg’”/l, A= g%y (4.18)
Thus, after renormalizing the A#Y field as

AP = AbS + 18" R+ ¢, R*Y (4.19)
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one can see from Eq. (4.17) that the divergences in the effective action (4.10) which involves external metric fields can be absorbed
in the coefficients ¢, and c,.

There is no need to introduce extra terms into the classical action (as was done in Refs. [13,14]) to eliminate divergences
that arise at higher loop orders when considering the Einstein-Hilbert action of Eq. (4.1) alone [6,7]. Such terms involve having
propagators that are quartic in the momentum transfer, which compromises unitarity. When a Lagrange multiplier (LM) field is used
to eliminate higher-loop divergences, BRST invariance is intact, and so the resulting theory is unitary [19]. This we further discuss
in an appendix below.

5. Discussion

In this work, we considered, for simplicity, the renormalization of a theory involving a single scalar field interacting with a
gravitational field. Using the LM approach, we evaluated the effective action in closed form. We have shown that extra solutions to
the Einstein classical equation of motion, which contribute to the effective action, arise. We have established that, in the presence
of a LM field, the radiative corrections arising from internal metric fields are restricted to one-loop order. The only diagrams beyond
one loop order have solely matter fields propagators. The renormalization group equation, which reflects the possibility of choosing
generic renormalization scales, could lead to interesting insights into the behavior of the model in the ultraviolet regime. It should
be possible to apply the same approach, which maintains unitarity, if there were also multiple scalar or non-Abelian vector gauge
fields coupled to the gravitational field.

If spin-1 matter fields were to couple to the metric field, then one must consider the Einstein—Cartan action in place of the EH
action of Eq. (38) [35]. The Einstein—Cartan action possesses two distinct local gauge invariances and consequently, its quantization
is more involved than quantizing the EH action [36,37]. The problem of using a LM field to eliminate higher loop diagrams in a
model involving spin-% fields coupled to the metric is currently being considered. If the couplings can be shown to be consistent
with unitarity and renormalizability, it may be possible to consistently extend the Standard Model to incorporate gravity.
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Appendix. Unitarity with LM fields

In order to illustrate the unitarity with the presence of LM fields, we consider a simple model described by the Lagrangian with
a scalar field A and a LM field B :
C =—%(ADA+m2A2)— %A“ — (BOJA + m*AB) — %A3B. (A1)

We note that there appears in the quadratic part of the Lagrangian a mixing between the field A and B. In order to diagonalize this
part, we introduce a new field C defined by C = A + B so that (A.1) may be written in the form

L= —%(CDC +m2C?) + %(BDB +m2B?) - 3§B(c — By - %(c - B, (A.2)

!
where the two-point functions involving the A and C fields are decoupled, though now the self coupling of B and C are more

complicated.
Following Ref. [19], we split these fields into a background and quantum part:

C=C+C, B=B+B. (A.3)
Identifying the solutions of the classical equations of motion with the background fields, we obtain the equations

O+ m?)C = —%(é -8 -£BC- B2, (A.4a)
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(a) Scalar quartic vertex. (b) B? quartic vertex. (c) B3 quartic vertex.

Fig. 5. Feynman rules of the vertices coming from the Lagrangian (A.2) using the background field method. Solid lines denote the quantum field C, while
dashed lines represent the quantum field B. © represents contributions of the background field C.
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Fig. 6. One-particle irreducible one-loop diagrams that contribute to the C-C scattering amplitude.

O+m?)B = —%B(c‘ - B2 (A.4b)
In order to preserve the original equation of motion, one must have B = 0, in which case (A.4a) becomes:
O+ m?)C = —%C‘? (A.5)

Thus, using (A.3), we see that the LM field is a purely quantum field (this is discussed in the case of a gauge theory in Ref. [38]).
Moreover, in (A.2), the part quadratic in the quantum fields C and B leads to the propagators:

1 1

Dee(k) = +———— Dpglk)=——————; A6
cc(®) k2 —m? +ie 5k) k2 —m? +ie (8.6)
while the part involving the interaction of the fields is given by
& v 8 Aot 28 3, 38
Eim——Z(C+C) +ﬁ(C+C) B —a(C+C)B +ZB4 (A7)

Using these expressions, one may derive the corresponding Feynman rules (see Fig. 5) needed for the evaluation of the Feynman
loop diagrams.

Let us consider first the contribution to the C—C scattering amplitude involving the background field C, shown in Figs. 6(a, b).

One can verify that the imaginary part of this forward scattering amplitude is proportional to the cross-section corresponding to
the process shown in Figs. 6(a’, b’) in accordance to the unitarity requirement.

Next, let us consider the sunset diagrams depicted in Fig. 7. The 2-loop contributions arising from the diagrams in Figs. 7(a, b, c)
cancel out, since in the presence of LM there are no net contributions beyond one-loop order. (we refer the reader to the Appendix
A of Ref. [18] for more detail.) This implies that corresponding imaginary parts should add up to zero. This may be verified by
computing the contributions from the diagrams in Figs. 7(a’, b’, ).

The results above confirm the unitarity of the LM theory, which relates cross sections to the imaginary parts of the forward
scattering amplitudes, in accordance with the optical theorem.

10
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Fig. 7. Sunset (two-loop order) diagrams.

A.1. Extended LM formalism

When the determinant factor det £ ; j 172 js included, which corresponds to the extended LM formalism as outlined in Refs. [20,21],
unitarity remains intact. Next, we will illustrate it with the scalar model considered above.
Using the background field method, the determinant factor leads to the following Lagrangian

12 o1 (A — e L g 1 =2
det /7L (C)—epoTrln<1+ 2—|:|+m2 Ce, (A.8)

where we have omitted a field-independent term which may be absorbed in a normalization factor. Expanding Eq. (A.8) in powers
of g, we obtain

2
A 1 g 1 5 g 1 ) 3
det 20" (C) = Tr|le— 2 (— ¢ lo) . A9

¢ © exp2 f 20+ m? 8 +m? +0() A9

The first term in the exponential yields a tadpole contribution which vanishes in dimensional regularization. The second term leads
to a contribution which cancels that shown in Figs. 6(b), which arises from the LM fields. Note that in Eq. (A.9) there are no terms
of the form g2C?, which correspond to contributions arising from the sunset diagrams shown in Fig. 7. This reflects the fact that
such contributions cancel out.

Data availability

No data was used for the research described in the article.
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