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 A B S T R A C T

A Lagrange multiplier field can be used to restrict radiative corrections to the Einstein–Hilbert 
action to one-loop order. This result is employed to show that it is possible to couple a 
scalar field to the metric (graviton) field in such a way that the model is both renormalizable 
and unitary. The usual Einstein equations of motion for the gravitational field are recovered, 
perturbatively, in the classical limit. By evaluating the generating functional of proper Green’s 
functions in closed form, one obtains a novel analytic contribution to the effective action.

. Introduction

It has long been known that when the equations of motion are satisfied, the divergences that arise at one-loop order in 
he Einstein–Hilbert effective action can be absorbed by a field renormalization [1–3]. However, once the metric couples to a 
calar [1,2], vector [4], or spinor field [5], or one goes to two-loop order [6,7], this is no longer true. In order to eliminate 
uch unwanted divergences, it has been suggested that by extending the number of physical fields through supersymmetric 
oupling (supergravity) [8], extending the concept of particles to strings [9], adjusting the canonical structure of the theory (loop 
ravity) [10], invoking non-perturbative behavior (asymptotic safety) [11,12], or by including additional terms into the basic 
instein–Hilbert action [13,14], one might obtain a realistic theory of quantum gravity. Although much progress has been made 
long these lines, these approaches have not yet proven to be entirely satisfactory.
It has been known for some time that by using a Lagrange Multiplier (LM) field to ensure that the classical equations of motion 

re satisfied, radiative corrections to the classical action in the full effective action are restricted to one-loop order [15]. This suggests 
 way of quantizing the Einstein–Hilbert Action [16–18], with additional contributions from a scalar field [19]. In this manner, the 
sual classical action is recovered at tree level and unwanted divergences are all removed through renormalization, without the 
ntroduction of extra fields or dimensions, or compromising unitarity.
In this paper, we provide details of how a model in which the metric couples to a scalar can have both satisfactory classical and 

uantum properties through use of an LM field. This is a continuation of the work in Ref. [19].
In the next section, we use a standard integral to illustrate how an LM field can be used to eliminate radiative effects beyond one-

oop order in perturbation theory. In Section 3, a general discussion of how this approach can be used in field theory is presented. 
e note here the presence of a supplementary solution to the classical equations of motion which may possibly simulate ‘‘dark 
atter’’ effects. In Section 4, we show how the metric interacting with a scalar field can be treated so as to have a renormalizable 
nd unitary theory. A brief discussion of the results is given in Section 5. In the Appendix, we exemplify, in a scalar model, the 
nitarity of the theory by showing that the cross sections are related to the imaginary part of forward scattering amplitudes.
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2. A simple illustration

Let us begin with the simple integral: 

𝑍 = ∫
𝑑𝑔
2𝜋

𝑑𝜆
2𝜋

exp
[

𝑖
(

𝐿(𝑔) + 𝜆𝐿′(𝑔)
)]

. (2.1)

By integrating first over 𝜆, then using the resulting 𝛿-function to integrate over 𝑔, we obtain: 

𝑍 = 1
2𝜋

∑

𝐴

exp
(

𝑖𝐿(𝑔𝐴)
)

|𝐿′′(𝑔𝐴)|
, (2.2)

where 𝑔𝐴 is a solution to 
𝐿′(𝑔𝐴) = 0. (2.3)

We can reinterpret 𝑔 as a ‘‘quantum field’’, 𝐿(𝑔) as a ‘‘classical action’’, 𝜆 as a LM field, 𝑔𝐴 as a solution to the classical equation 
of motion, exp (𝑖𝐿′′(𝑔𝐴)

) as the sum of tree-level diagrams, and [𝐿′′(𝑔𝐴)
]−1∕2 as ‘‘one-loop diagrams with external legs on the mass 

shell’’, and 𝑍 itself as the generating functional.
We now modify 𝑍 so that [20,21]: 

𝑍 = ∫
𝑑𝑔
2𝜋

𝑑𝜆
2𝜋

(

𝐿′′(𝑔)
)1∕2 exp

(

𝑖
[

𝐿(𝑔) + 𝜆𝐿′(𝑔)
])

= ∫
𝑑𝑔
2𝜋

(

𝐿′′(𝑔)
)1∕2 𝛿(𝐿′(𝑔)) exp [𝑖𝐿(𝑔)] .

(2.4)

Having added the factor of (𝐿′′(𝑔))1∕2 to the integrand of Eq. (2.1), one can show explicitly that the form of 𝑍 now remains 
invariant under a change of variables in which 𝑔′ = 𝑔′(𝑔).1

Sources 𝑗 and 𝐽 are now introduced so that:
𝑍(𝑗, 𝐽 ) = exp{𝑖𝑊 (𝑗, 𝐽 )}

= ∫
𝑑𝑔
2𝜋

𝑑𝜆
2𝜋

(𝐿′′(𝑔))1∕2 exp{𝑖(𝐿(𝑔) + 𝜆𝐿′(𝑔) + 𝑗𝑔 + 𝐽𝜆)}. (2.5)

‘‘Background fields’’ 𝑔̄ and 𝜆̄ are defined so that [23,24]: 

𝑔̄ =
𝜕𝑊 (𝑗, 𝐽 )

𝜕𝑗
, 𝜆̄ =

𝜕𝑊 (𝑗, 𝐽 )
𝜕𝐽

, (2.6)

and a Legendre transform leads to
𝛤 (𝑔̄, 𝜆̄) = 𝑊 (𝑗, 𝐽 ) − 𝑗𝑔̄ − 𝐽𝜆̄,

where 

exp{𝑖𝛤 (𝑔̄, 𝜆̄)} = ∫
𝑑ℎ
2𝜋

𝑑𝐻
2𝜋

(𝐿′′(𝑔̄ + ℎ))1∕2 exp{𝑖(𝐿(𝑔̄ + ℎ) + (𝜆̄ +𝐻)𝐿′(𝑔̄ + ℎ) + 𝑗ℎ + 𝐽𝐻)}. (2.7)

with 

𝑗 = −
𝜕𝛤 (𝑔̄, 𝜆̄)
𝜕𝑔̄

, 𝐽 = −
𝜕𝛤 (𝑔̄, 𝜆̄)
𝜕𝜆̄

. (2.8)

We now can set the background field for the LM field equal to zero (ie. 𝜆̄ = 0) as physical contributions to one-particle irreducible 
(1PI) Green’s functions (GF) are computed by expanding 𝛤 (𝑔̄, 0) in powers of 𝑔̄.

3. General field theory considerations

First, let us recall some of the features of ‘‘background field quantization’’ [1,23,24]. If we begin with the generating functional 
𝑍(𝑗) for a field 𝜒(𝑥) with a Lagrangian (𝜒) and source 𝑗(𝑥), then upon restoring Planck’s constant ℏ, we have 

𝑍(𝑗) = 𝑒
𝑖
ℏ𝑊 (𝑗) = ∫ 𝜒 exp

{

𝑖
ℏ ∫ 𝑑𝑥((𝜒) + 𝑗(𝑥)𝜒(𝑥))

}

. (3.1)

A background field 𝜒̄(𝑥) is given by 

𝜒̄(𝑥) =
𝛿𝑊 (𝑗)
𝛿𝑗(𝑥)

, (3.2)

and through a Legendre transform 

𝛤 (𝜒̄) = 𝑊 (𝑗) − ∫ 𝑑𝑥 𝑗(𝑥)𝜒̄(𝑥),
(

𝑗(𝑥) = −
𝛿𝛤 (𝜒̄)
𝛿𝜒̄(𝑥)

)

, (3.3)

1 See, however, Ref. [22].
2 
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we obtain 

exp
{ 𝑖
ℏ
𝛤 (𝜒̄)

}

= ∫ 𝑞 exp
{

𝑖
ℏ ∫ 𝑑𝑥 ((𝜒̄ + 𝑞) + 𝑗(𝑥)𝑞(𝑥))

}

(3.4)

upon letting 𝜒(𝑥) = 𝜒̄(𝑥) + 𝑞(𝑥). It has been shown [24] that 𝑊 (𝑗) is the generating functional for all connected Feynman diagrams 
and that 𝛤 (𝜒̄) is the generating functional for all connected one-particle irreducible diagrams. If we make the expansions 

𝛤 (𝜒̄) = 𝛤 (0)(𝜒̄) + ℏ𝛤 (1)(𝜒̄) + ℏ2𝛤 (2)(𝜒̄) +⋯ , (3.5)

and 
(𝜒̄ + 𝑞) = (𝜒̄) + ′(𝜒̄)𝑞 + 1

2!
′′(𝜒̄)𝑞2 + 1

3!
′′′(𝜒̄)𝑞3 +⋯ , (3.6)

then, by Eq. (3.4), we find that 

exp
( 𝑖
ℏ
𝛤 (0)(𝜒̄)

)

= exp
(

𝑖
ℏ ∫ 𝑑𝑥(𝜒̄)

)

, (3.7)

and 

exp
(

𝑖𝛤 (1)(𝜒̄)
)

= det
(

𝜕2(𝜒̄)
𝜕𝜒̄(𝑥)𝜕𝜒̄(𝑦)

)−1∕2

. (3.8)

with the term ′(𝜒̄)𝑞 cancelling. The contributions to 𝛤 (𝑛)(𝜒̄) (𝑛 > 2) arise from one-particle irreducible Feynman diagrams with 
𝑛-loops involving vertices derived from vertex terms in the expansion of Eq. (3.6) containing at least three powers of 𝑞(𝑥), and 
propagators arising from (′′(𝜒̄))𝑞2. It is important to note that the equation of motion for the background field 𝜒̄

′(𝜒̄) = 0, (3.9)

is not used to derive this expansion for 𝛤 (𝜒̄).
The general development outlined in the preceding section can be directly applied to a model with a classical Lagrangian cl(𝑔𝑖(𝑥))

and action 

𝑆cl(𝑔𝑖, 𝜆𝑖) = ∫ 𝑑𝑥
[

cl(𝑔𝑖(𝑥)) + 𝜆𝑖(𝑥)
𝛿cl(𝑔𝑖(𝑥))
𝛿𝑔𝑖(𝑥)

]

. (3.10)

Paralleling the way in which Eq. (2.7) is obtained, we find that the generating functional 𝛤 (𝑔𝑖(𝑥), 𝜆𝑖(𝑥)) for one-particle irreducible 
diagrams is given by 

exp
{

𝑖𝛤 (𝑔̄𝑖(𝑥), 𝜆̄𝑖(𝑥))
}

= ∫ ℎ𝑖(𝑥)𝐻𝑖(𝑥) det
(

𝛿2cl(𝑔̄𝑖(𝑥) + ℎ𝑖(𝑥))
𝛿ℎ𝑖(𝑥)𝛿ℎ𝑗 (𝑦)

)1∕2

× exp 𝑖∫ 𝑑𝑥
[

cl(𝑔̄𝑖(𝑥) + ℎ𝑖(𝑥)) +
(

𝜆̄𝑖(𝑥) +𝐻𝑖(𝑥)
) 𝛿cl(𝑔̄𝑖(𝑥) + ℎ𝑖(𝑥))

𝛿ℎ𝑖(𝑥)

+ 𝑗𝑖(𝑥)ℎ𝑖(𝑥) + 𝐽𝑖(𝑥)𝐻𝑖(𝑥)
]

.

(3.11)

as in Eq. (3.4). We now set the source functions and background for the LM field in Eq. (3.11) equal to zero, 
𝜆̄𝑖 = 𝐽𝑖 = 0, (3.12)

since we are only interested in GF involving external fields 𝑔̄𝑖.
In Ref. [21], the situation in which the classical action ∫ 𝑑𝑥cl(𝑔𝑖(𝑥)) is invariant under the gauge transformations 

𝑔𝑖 → 𝑔𝑖 + 𝑅𝑖𝑗 (𝑔)𝜉𝑗 (3.13)

is considered. This is accompanied by transformations of the LM field 𝜆𝑖(𝑥) as well as of the two fermionic and one bosonic ghost 
fields used to exponentiate the functional determinant det1∕2

(

𝛿2cl
𝛿𝜙𝑖𝛿𝜙𝑗

)

. It is shown in Ref. [21] that the imposition of the gauge 
conditions 

𝐹𝑖𝑗𝑔𝑗 = 0 = 𝐹𝑖𝑗𝜆𝑗 (3.14)

leads to a simple Faddeev-Popov (FP) determinant [23,25], 
det

(

𝐹𝑖𝑗𝑅𝑗𝑘(𝑔𝑖)
)

, (3.15)

as well as a gauge-fixing contribution to the action 

∫ 𝑑𝑥gf = ∫ 𝑑𝑥
[

− 1
2𝛼

(

𝐹𝑖𝑗𝑔𝑗
)2 − 1

𝛼
(

𝐹𝑖𝑗𝜆𝑗
)

(𝐹𝑖𝑘𝑔𝑘)
]

. (3.16)

If one were to choose the gauge fixing to leave background gauge invariance unbroken, then 
𝑔̄ → 𝑔̄ + 𝑅 (𝑔̄)𝜉 . (3.17)
𝑖 𝑖 𝑖𝑗 𝑗

3 
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remains a symmetry, and the gauge condition is now of the form 
𝐹𝑖𝑗 (𝑔̄)ℎ𝑗 = 0 = 𝐹𝑖𝑗 (𝑔̄)𝐻𝑗 , (3.18)

so that the FP determinant is given by
det

(

𝐹𝑖𝑗 (𝑔̄)𝑅𝑗𝑘(𝑔̄ + ℎ)
)

.

The generating functional in Eq. (3.11) is now 

exp{𝑖𝛤 (𝑔̄𝑖, 𝜆̄)} = ∫ ℎ𝑖𝐻𝑖 det
1∕2

⎡

⎢

⎢

⎢

⎣

𝛿2
(

cl(𝑔̄𝑖 + ℎ𝑖) −
1
2𝛼 (𝐹𝑖𝑗 (𝑔̄𝑖)ℎ𝑗 )

2
)

𝛿ℎ𝑖(𝑥)𝛿ℎ𝑗 (𝑦)

⎤

⎥

⎥

⎥

⎦

det
(

𝐹𝑖𝑗 (𝑔̄𝑖)𝑅𝑗𝑘(𝑔̄𝑖 + ℎ𝑖)
)

× exp 𝑖∫ 𝑑𝑥
[

cl(𝑔̄𝑖 + ℎ𝑖) +𝐻𝑖
𝛿cl(𝑔̄𝑖 + ℎ𝑖)

𝛿ℎ𝑖
− 1

2𝛼
(𝐹𝑖𝑗 (𝑔̄)ℎ𝑗 )2 −

1
𝛼
(𝐹𝑖𝑗 (𝑔̄)ℎ𝑗 )(𝐹𝑖𝑗 (𝑔̄)𝐻𝑗 ) + 𝑗𝑖ℎ𝑗

]

.

(3.19)

It is now possible to proceed in two ways. The first option is to integrate over 𝐻𝑖 in Eq. (3.19) and then use the resulting 
𝛿-function to integrate over ℎ𝑖. This approach is close to what was done with 𝑍 in Eq. (2.4) of the preceding section. A second 
option is to simply derive the Feynman rules for the propagators and vertices that follow from Eq. (3.19) and then consider the 
possible Feynman diagrams that result.

Before examining these two options, we will extend the type of model considered in Eq. (3.10). We will be identifying the field 
𝑔𝑖(𝑥) with the metric 𝑔𝜇𝜈 and the classical Lagrangian cl with the Einstein–Hilbert (EH) Lagrangian. By using the LM field 𝜆𝜇𝜈 (𝑥), we 
will be able to eliminate the unwanted higher loop divergences that are known to arise when using the EH Lagrangian alone [15]. 
However, we will also include the action for a scalar field interacting with the metric by adding to cl a term 

𝛷 = 𝛷(𝑔𝑖, 𝛷𝐼 ). (3.20)

We will not employ a LM field to eliminate higher-loop diagrams involving the ‘‘matter field’’ 𝛷𝐼  and that follow from 𝐿𝛷 as 
the divergences arising in these diagrams can be absorbed through standard renormalization, and if we were to restrict ourselves 
to one-loop order by use of LM fields, unwanted Landau poles will arise in the running coupling [15].

When 𝑔𝑖 undergoes the gauge transformation of Eq. (3.13), then 
𝛷𝐼 → 𝛷𝐼 + 𝑅𝐼𝑗 (𝛷)𝜉𝑗 . (3.21)

If 𝛷𝐼  has a background piece 𝛷̄𝐼  about which there is a quantum fluctuation 𝜓𝐼  (𝛷𝐼 = 𝛷̄𝐼 + 𝜓𝐼 ), then 𝛤𝑖 in Eq. (3.19) now 
depends on 𝑔̄𝑖, 𝛷̄𝐼  (i.e., 𝛤 = 𝛤 (𝑔̄𝑖, 𝛷̄𝐼 )) and the argument of the exponential also has the contributions 

𝛷(𝑔̄𝑖 + ℎ𝑖, 𝛷̄𝐼 + 𝜓𝐼 ) + 𝑘𝐼𝜓𝐼 , (3.22)

with 

𝑘𝐼 = −
𝛿𝛤 (𝑔̄𝑖, 𝛷̄𝐼 )
𝛿𝛷̄𝐼

. (3.23)

After combining Eqs. (3.19) and (3.22), it is possible to then compute the integral over 𝐻𝑖(𝑥), leaving us with 

exp{𝑖𝛤 [𝑔̄𝑖(𝑥), 𝛷̄𝐼 (𝑥)]} = ∫ ℎ𝑖𝜓𝐼 det
(

𝐹𝑖𝑗 (𝑔̄)𝑅𝑗𝑘(𝑔̄ + ℎ𝑖)
)

det 1∕2
[

𝛿2

𝛿ℎ𝑖(𝑥)𝛿ℎ𝑗 (𝑦)

(

cl(𝑔̄𝑖 + ℎ𝑖) −
1
2𝛼

(𝐹𝑖𝑗 (𝑔̄𝑖)ℎ𝑗 )2
)

]

× exp 𝑖

{

∫ 𝑑𝑥
[

cl(𝑔̄𝑖 + ℎ𝑖) + 𝛷(𝑔̄𝑖 + ℎ𝑖, 𝛷𝐼 + 𝜓𝐼 ) −
1
2𝛼

(

𝐹𝑖𝑗 (𝑔̄𝑖)ℎ𝑗
)2 + 𝑗𝑖ℎ𝑖 + 𝑘𝐼𝜓𝐼

]

}

× 𝛿
[

𝛿
𝛿ℎ𝑖

(

cl(𝑔̄𝑖 + ℎ𝑖) −
1
2𝛼

(

𝐹𝑖𝑗 (𝑔̄𝑖)ℎ𝑗
)2
)

]

.

(3.24)

The functional integral over ℎ𝑖 in Eq. (3.24) can be computed using the functional 𝛿-function, leading to 

exp{𝑖𝛤 (𝑔̄𝑖, 𝛷̄𝐼 (𝑥))} =
∑

𝐴
∫ 𝜓𝐼det −1∕2

[

𝛿2

𝛿ℎ𝑖(𝑥)𝛿ℎ𝑗 (𝑦)

(

cl(𝑔̄𝑖 + ℎ𝐴𝑖 ) −
1
2𝛼

(𝐹𝑖𝑗 (𝑔̄𝑖)ℎ𝐴𝑗 )
2
)

]

× det
(

𝐹𝑖𝑗 (𝑔̄𝑖)𝑅𝑗𝑘(𝑔̄𝑖 + ℎ𝐴𝑖 )
)

exp 𝑖∫ 𝑑𝑥
[

cl(𝑔̄𝑖 + ℎ𝐴𝑖 ) + 𝛷(𝑔̄𝑖 + ℎ𝐴𝑖 , 𝛷̄𝐼 + 𝜓𝐼 ) −
1
2𝛼

(𝐹𝑖𝑗 (𝑔̄)ℎ𝐴𝑗 )
2

+ 𝑗𝑖ℎ𝐴𝑖 + 𝑘𝐼𝜓𝐼

]

,

(3.25)

where ℎ𝐴𝑖  is a solution to the classical equation of motion 
𝛿
𝛿ℎ𝑖

[

cl(𝑔̄𝑖 + ℎ𝐴𝑖 ) −
1
2𝛼

(𝐹𝑖𝑗 (𝑔̄)ℎ𝐴𝑗 )
2
]

= 0. (3.26)

We can identify each of the contributions on the right side of Eq. (3.25) with particular sets of Feynman diagrams. The 
one-loop contributions to the effective action coming from diagrams that exclusively involve the field 𝑔𝑖 come from the term 
4 
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Fig. 1. Typical tree-level contributions. 𝐺⃝, 𝐻⃝, 𝐹⃝ represents contributions of the fields 𝑔̄𝜇𝜈 and ℎ𝐴𝜇𝜈 , 𝛷̄𝐼 , respectively.

det−1∕2
[

𝛿2

𝛿ℎ𝑖(𝑥)𝛿ℎ𝑗 (𝑦)

(

cl(𝑔̄𝑖 + ℎ𝐴𝑖 ) −
1
2𝛼 (𝐹𝑖𝑗 (𝑔̄)ℎ

𝐴
𝑗 )

2
)

]

. The one-loop contribution of the FP ghost fields is given by det (𝐹𝑖𝑗 (𝑔̄)𝑅𝑗𝑘(𝑔̄𝑖 + ℎ𝐴𝑖 )
)

.

The tree-level contribution coming from cl(𝑔̄) alone all contribute exp 𝑖 ∫ 𝑑𝑥
[

cl(𝑔̄𝑖 + ℎ𝐴𝑖 ) −
1
2𝛼 (𝐹𝑖𝑗 (𝑔̄)ℎ

𝐴
𝑗 )

2
]

. Upon integrating over 
𝜓𝐼 , ∫ 𝜓𝐼 exp 𝑖 ∫ 𝑑𝑥𝛷(𝑔̄𝑖 +ℎ𝐴𝑖 , 𝛷̄𝐼 +𝜓𝐼 ) gives the sum of all diagrams for the field 𝛷𝐼  propagating in a background field 𝑔̄𝑖 and 𝛷̄𝐼 .

Let us consider a diagrammatic approach to these terms appearing in Eq. (3.25). If we first make the expansion 

𝛷(𝑔̄𝑖 + ℎ𝐴𝑖 , 𝛷̄𝐼 + 𝜓𝐼 ) = 𝛷(𝑔̄𝑖 + ℎ𝐴𝑖 , 𝛷̄𝐼 ) + ∫ 𝑑𝑥
(

𝜕𝛷
𝜕𝛷̄𝐼 (𝑥)

𝛷(𝑔̄𝐼 + ℎ𝐴𝐼 , 𝛷̄𝐼 )
)

𝜓𝐼 (𝑥)

+ 1
2! ∬

𝑑𝑥𝑑𝑦
(

𝜕2𝛷
𝜕𝛷̄𝐼 (𝑥)𝜕𝛷̄𝐽 (𝑦)

𝛷(𝑔̄𝐼 + ℎ𝐴𝑖 , 𝛷̄𝐼 )
)

𝜓𝐼 (𝑥)𝜓𝐽 (𝑦) +⋯

(3.27)

then the term 

exp 𝑖∫ 𝑑𝑥
[

cl(𝑔̄𝑖 + ℎ𝐴𝑖 ) −
1
2𝛼

(𝐹𝑖𝑗 (𝑔)ℎ̄𝐴𝑗 )
2 + 𝛷(𝑔̄𝑖 + ℎ𝐴𝑖 , 𝛷̄𝐼 )

]

(3.28)

represents tree-level diagrams [26,27]. In particular, Fig.  1(a) is the propagator following from cl(𝑔̄𝑖 + ℎ𝐴𝑖 ) − (𝐹𝑖𝑗ℎ𝐴𝑗 )
2∕2𝛼 when 

considering terms quadratic in ℎ𝐴𝑖  when 𝑔̄𝑖 = 0; interactions in this expression lead to tree-level diagrams with 𝐺⃝ and 𝐻⃝ representing 
contributions proportional to 𝑔̄𝜇𝜈 and ℎ𝐴𝜇𝜈 . Figs.  1(c) and 1(d) are typical of such diagrams. The propagator in Fig.  1(b) follows from 
the term in 𝛷(𝑔̄𝑖 + ℎ𝐴𝑖 , 𝛷̄𝐼 ) that is bilinear in 𝛷̄𝐼  when 𝛷̄𝐼 = 𝑔̄𝑖 + ℎ𝐴𝑖 = 0. Terms in Eq. (3.27) that are at least cubic in 𝜓𝐼  lead to 
diagrams such as the tree-level diagrams of Fig.  1(f), where 𝐹⃝ represents a term proportional to 𝛷̄𝐼 . Fig.  1(e) comes from a term 
in 𝛷(𝑔̄𝑖 + ℎ𝐴𝑖 , 𝛷̄𝐼 ) that is quadratic in 𝑔̄𝑖 and linear in ℎ𝐴𝑖  and 𝛷̄𝐼 . It is also possible to construct higher loop diagrams in the metric 
field only contributing as an external field and interior propagators being that of the field 𝛷𝐼 . Such diagrams appear in Fig.  2.

Finally, in Eq. (3.25), det −1∕2
[

𝛿2

𝛿ℎ𝑖(𝑥)𝛿ℎ𝑗 (𝑦)

(

cl(𝑔̄𝑖 + ℎ𝐴𝑖 ) −
1
2𝛼

(

𝐹𝑖𝑗 (𝑔̄𝑖)ℎ𝐴𝑗
))

]

 leads to one-loop diagrams with the metric propagating 
on internal lines and 𝑔̄𝑖 and ℎ𝐴𝑖  appearing as external fields. Similarly, det

(

𝐹𝑖𝑗 (𝑔̄𝑖)𝑅𝑗𝑘(𝑔̄𝑖 + ℎ𝐴𝑖 )
) gives one-loop ghost field contributions 

with 𝑔̄𝑖 and ℎ𝐴𝑖  being external fields. These two types of diagrams are illustrated in Figs.  3 and Fig.  4 respectively. The only diagram 
with contributions beyond one-loop only have internal propagators resulting from the scalar field. Of particular interest is the way 
in which the propagation of the scalar 𝛷𝑖 is affected by ℎ𝐴𝑖  which is a solution of the equation of motion of the gravitational field 
not coupled to 𝛷  itself (ie. Eq. (3.26)).
𝐼

5 
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Fig. 2. Typical higher loop diagrams from the scalar field.

Fig. 3. Typical one-loop diagrams with a propagating metric.

Fig. 4. Typical one-loop diagrams from the FP ghost sector.

Again, we set the background field associated with the LM equal to zero, as we are only interested in GF with external fields 
𝑔𝑖. Terms such as 𝑚𝑖𝑗𝑘𝑙 𝑔̄𝑖ℎ𝑗ℎ𝑘ℎ𝑙, then vanish and so the stability of the action due to terms of order ℎ𝑖ℎ𝑗ℎ𝑙 not lead to an unstable 
vacuum.

It is now possible to see how these results follow from the Feynman diagrams coming from the path integral arising from the 
expression for 𝛤  that follows from Eqs. (3.19) and (3.22). We will see though that the contribution of ℎ𝐴𝑖  to the background 𝑔̄𝑖
does not arise from Feynman diagrams alone. (Perturbation theory using only Feynman diagrams is a limited way of examining the 
effective action. It does not, for example, reveal the effect of instantons on the effective action for Yang–Mills theory.) If we expand 
cl and 𝛷 as follows 

cl(𝑔̄𝑖 + ℎ𝑖) = cl(𝑔̄𝑖) + cl,𝑖(𝑔̄𝑖)ℎ𝑖 +
1
2!
cl,𝑖𝑗 (𝑔̄𝑖)ℎ𝑖ℎ𝑗 +⋯ , (3.29a)

𝛷(𝑔̄𝑖 + ℎ𝑖, 𝛷̄𝐼 + 𝜓𝐼 ) = 𝛷(𝑔̄𝑖, 𝛷̄𝐼 ) +
𝜕𝛷(𝑔̄𝑖, 𝛷̄𝐼 )

𝜕𝑔𝑖
ℎ𝑖 +

𝜕𝛷(𝑔̄𝑖, 𝛷̄𝐼 )
𝜕𝛷̄𝐼

𝜓𝐼 +⋯ , (3.29b)

then the terms in the effective Lagrangian that are bilinear in the quantum fields 𝜓𝐼 , ℎ𝑖, and 𝐻𝑖 are of the form 

(

𝜓𝐼 ℎ𝑖 𝐻𝑖
)

⎛

⎜

⎜

⎝

𝑐𝐼𝐽 𝑏𝐼𝑗 0
𝑏𝑖𝐽 𝑎𝑖𝑗 𝑎𝑖𝑗
0 𝑎𝑖𝑗 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝜓𝐽
ℎ𝑗
𝐻𝑗

⎞

⎟

⎟

⎠

. (3.30)

There are no terms bilinear in 𝐻 − 𝐻 or 𝜓 − 𝐻 . By inverting the matrix in Eq. (3.30), we can determine the propagators for 
these fields, 

⎛

⎜

⎜

⎝

𝐜 𝐛 0
𝐛 𝐚 𝐚
0 𝐚 0

⎞

⎟

⎟

⎠

−1

=
⎛

⎜

⎜

⎝

𝐜−1 0 −𝐜−1𝐛𝐚−1
0 0 𝐚−1

−𝐚−1𝐛𝐜−1 𝐚−1 −𝐚−1 + 𝐚−1𝐛𝐜−1𝐛𝐚−1

⎞

⎟

⎟

⎠

. (3.31)

From Eq. (3.31), we see that the propagators associated with ⟨ℎ𝑖ℎ𝑗⟩ and ⟨ℎ𝑖𝜓𝐽 ⟩ (or ⟨𝜓𝐼ℎ𝑗⟩) vanish, while the ones associated with 
⟨𝜓𝐼 (𝑥)𝜓𝐽 (𝑦)⟩ and ⟨𝐻𝑖(𝑥)ℎ𝑗 (𝑦)⟩ (or ⟨ℎ𝑖(𝑥)𝐻𝑗 (𝑦)⟩) are 𝑐−1𝐼𝐽  and 𝑎−1𝑖𝑗 , respectively. But now we note that from Eqs. (3.19) and (3.22), that 
in any vertex involving the field 𝐻𝑖(𝑥), that field enters at most linearly.

From these observations, it follows that the only Feynman diagrams that can arise from Eqs. (3.19) and (3.22) are tree-level 
diagrams that follow from cl alone, one-loop diagrams that follow from cl alone, and diagrams to any order in the loop expansion 
that involve propagation of the field 𝜓  in the presence of the background fields 𝑔̄  and 𝛷̄  [15,19].
𝐼 𝑖 𝐼

6 
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This result coincides with what we had obtained in Eq. (3.25), provided that in Eq. (3.25) the sum over 𝐴 were to include only 
the contribution ℎ𝐴𝑖 = 0. In this case, Eq. (3.26) reduces to the usual classical equations of motion for the gravitational field. Other 
solutions to Eq. (3.26) do not arise from the Feynman rules in perturbation theory. As noted above, these extra solutions to the 
classical field equations may possibly be associated with non-perturbative aspects of gravity. Such non-perturbative solutions of 
Eq. (3.26) may mimic ‘‘dark matter’’ effects [28], as they provide a background to the ‘‘matter field’’ 𝛷𝐼 .

4. Divergences with quantized gravitational and scalar fields

In this section, we show how the approach outlined in Section 3 can be applied to a scalar field in the presence of a metric 𝑔𝜇𝜈
with the EH Lagrangian.

We consider the ’t Hooft and Veltman model (see Refs. [1,2]), and we will use the notation used there. The Lagrangian for the 
metric 𝑔𝜇𝜈 is 

EH = −
√

𝑔 𝑅, (4.1)

and for the scalar 𝛷 is 
𝛷 = −

√

𝑔 𝑔𝜇𝜈
(

𝜕𝜇𝛷
) (

𝜕𝜈𝛷
)

. (4.2)

The background fields 𝑔̄𝜇𝜈 and 𝜆̄𝜇𝜈 are associated with 𝑔𝜇𝜈 and the LM field 𝜆𝜇𝜈 , respectively, with 

𝑔𝜇𝜈 = 𝑔̄𝜇𝜈 + ℎ𝜇𝜈 , 𝜆𝜇𝜈 = 𝜆̄𝜇𝜈 +𝐻𝜇𝜈 . (4.3)

According to Eq. (4.24) of Ref. [1], the term in Eq. (4.1) needed for 𝛿
2cl(𝑔̄ + ℎ)
𝛿ℎ𝑖(𝑥)𝛿ℎ𝑗 (𝑦)

 is given by 

EH(𝜙 = 𝜙̄ = 0, 𝑔𝜇𝜈 → 𝑔̄𝜇𝜈 + ℎ𝐴𝜇𝜈 ) =
√

𝑔̄
[

−
( 1
8
(ℎ𝛼𝛼)

2 − 1
4
ℎ𝛼𝛽ℎ

𝛽
𝛼

)

𝑅̄ − 1
2
ℎ𝛼𝛼

(

ℎ𝛽 ;𝜇
𝛽 𝜇 − ℎ

𝛽 ;𝜇
𝜇 𝛽 − 𝑅̄

𝛽
𝜈ℎ

𝜈
𝛽

)

+ 1
2
𝐷̄𝛼

(

ℎ𝜈𝜇ℎ
𝜇 ;𝛼
𝜈

)

− 1
2
𝐷̄𝛽

[

ℎ𝛽 𝜈
(

2ℎ𝜈𝛼;𝛼 − ℎ
𝛼 𝜈
;𝛼

)]

− 1
4

(

ℎ𝜈𝛽;𝛼 + ℎ
𝜈
𝛼;𝛽 − ℎ

;𝜈
𝛽𝛼

)(

ℎ𝛽 ;𝛼
𝜈 + ℎ𝛽𝛼;𝜈 − ℎ

𝛼 ;𝛽
𝜈

)

+ 1
4

(

2ℎ𝜈𝛼;𝛼 − ℎ
𝛼 ;𝜈
𝛼

)

ℎ𝛽𝛽;𝜈 +
1
2
ℎ𝜈𝛼ℎ𝛽 𝛽;𝜈𝛼

− 1
2
ℎ𝜈𝛼𝐷̄𝛽

(

ℎ𝛽 ;𝛼
𝜈 + ℎ𝛽𝛼;𝜈 − ℎ

𝛼 ;𝛽
𝜈

)

− ℎ𝜈𝛽ℎ
𝛽
𝛼𝑅̄

𝛼
𝜈

]

.

(4.4)

In Eq. (4.4), both the semicolon ;𝛼 and 𝐷̄𝛼 denote covariant differentiation using the background field 𝑔̄𝜇𝜈 + ℎ𝐴𝜇𝜈 , 

𝑉𝛽;𝛼 ≡ 𝐷̄𝛼𝑉𝛽 = 𝜕𝛼𝑉𝛽 − 𝛤 𝜈𝛼𝛽𝑉𝜈 , (4.5)

and 𝑅̄ = 𝑅̄𝜇𝜈 𝑔̄𝜇𝜈 , 𝑅̄𝜇𝜈 = 𝑅̄𝛼𝜇𝛼𝜈 with 

𝑅̄𝜇𝜈𝛼𝛽 = 𝜕𝛼𝛤
𝜇
𝛽𝜈 − 𝜕𝛽𝛤

𝜇
𝛼𝜈 + 𝛤

𝜇
𝛼𝜆𝛤

𝜆
𝛽𝜈 − 𝛤

𝜇
𝛽𝜆𝛤

𝜆
𝛼𝜈 . (4.6)

By Eq. (4.22) of Ref. [18], the term in Eq. (3.26) needed for 𝛿cl(𝑔̄𝑖 + ℎ𝐴𝑖 )∕𝛿ℎ𝑖 is 

(𝜙 = 𝜙̄ = 0, 𝑔𝜇𝜈 → 𝑔̄𝜇𝜈 + ℎ𝐴𝜇𝜈 ) =
√

𝑔̄
(

−1
2
ℎ𝛼𝛼𝑅̄ + ℎ𝛽𝛼𝑅̄

𝛼
𝛽 − ℎ

𝛽
𝛽

𝛼
;𝛼 + ℎ𝛼𝛽 ;𝛼𝛽

)

. (4.7)

In Ref. [1], (see Eq. 4.29) a gauge-fixing condition that respects transformations corresponding to diffeomorphism of the background 
fields 𝑔̄𝜇𝜈 and 𝛷 is employed. This condition depends explicitly on both fields. (A discussion of gauge conditions that respect this 
invariance is in ref. [29].) Instead, the gauge-fixing 

gf = −1
2
√

𝑔̄
(

ℎ 𝜈
𝜇 ;𝜈 −

1
2
ℎ𝜈𝜈;𝜇

)(

ℎ𝜇𝜆 ;𝜆 −
1
2
ℎ𝜆 ;𝜇
𝜆

)

(4.8)

is used. The independence of physical results on the gauge-fixing condition is discussed in [30]. The FP Lagrangian for the fermionic 
ghost fields 𝜂𝜇 and 𝜂⋆𝜇  associated with Eq. (4.8) is (Eq. (5.19) of Ref. [1]) 

ghost =
√

𝑔̄ 𝜂⋆𝜇
(

𝜂𝜇;𝛼𝛼 − 𝑅̄
𝜇𝛼𝜂𝛼

)

. (4.9)

In Eqs. (4.4), (4.7) and (4.9), 𝑔 denotes det(𝑔̄𝜇𝜈 + ℎ𝐴𝜇𝜈 ) and 𝑅̄ denotes the Ricci scalar evaluated at 𝑔̄𝜇𝜈 + ℎ𝐴𝜇𝜈 .
Having seen how a LM field can be used to eliminate diagrams involving the graviton field in diagrams beyond one-loop order, 

we can examine the divergences arising in the generating functional of Eq. (3.25).
The divergences that arise in models involving scalars, vector, and spinor fields in flat spacetime can, under many circumstances, 

be absorbed by renormalizing the fields themselves, their masses, or the couplings characterizing their interactions. This is a feature 
of the so-called ‘‘Standard Model’’ of particle interaction. (See, for example, Ref. [31].)

Divergences also arise when computing radiative effects in curved spacetime. (Three useful references are [32–34].) There are 
now also divergences associated with radiative effects resulting from the propagation of the metric field. If we follow the argument 
7 
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following Eq. (3.19) and apply it to that portion of Eq. (3.24) that does not involve the matter field 𝛷𝐼 = 𝛷̄𝐼 +𝜓𝐼 , then we see that 
the only diagrams involving the propagation of the metric (graviton) field are the one-loop diagrams that follow from Eqs. (4.1), 
(4.8), and (4.9).

The divergences arising in these one-loop diagrams were computed in Eq. (5.24) of Ref. [1] to be 

𝛥𝑆EH div =
(
√

𝑔̄
𝜖

)

( 1
120

𝑅̄2 + 7
20
𝑅̄𝜇𝜈𝑅̄

𝜇𝜈
)

, (4.10)

where the metric is evaluated at the sum of 𝑔̄𝜇𝜈 (the full background metric) and ℎ𝐴𝜇𝜈 , which is a solution to the equation of motion 
for the metric in the presence of the background field 𝑔𝜇𝜈 , using the EH alone to determine these equations of motion (Eq. (3.26)). 
(In Eq. (4.10), 𝜖 = 8𝜋2(𝑛 − 4), where 𝑛 is the number of dimensions.)

There are also divergences resulting from the remaining contributions to the generating functional 𝛤  in Eq. (3.24). These 
remaining portions are given by the path integral 

∫ 𝜓𝐼 exp
{

𝑖∫ 𝑑𝑥𝛷(𝑔̄𝑖 + ℎ𝐴𝑖 , 𝛷̄𝐼 + 𝜓𝐼 )
}

. (4.11)

This represents all Feynman diagrams for a scalar field 𝛷𝐼  with background 𝛷̄𝐼 , propagating in a background metric 𝑔̄𝜇𝜈 + ℎ𝐴𝜇𝜈 , 
where 𝑔̄𝜇𝜈 is a general background metric and ℎ𝐴𝜇𝜈 is a solution to the Eq.  (3.26). This equation of motion involves solely the EH 
Lagrangian; it does not have any contribution from the scalar field.

A discussion of the divergences arising from the propagation of a scalar field in the presence of a background metric (in this 
case, 𝑔̄𝜇𝜈 + ℎ𝐴𝜇𝜈) appears in Refs. [33,34]. The action there consists not only of the free part of Eq. (3.26) but, in addition, a mass 
term and self-interaction term. We also include a cosmological constant term. In total, we have

𝑆𝛷 = ∫ 𝑑𝑥𝛷(𝑔̄𝜇𝜈 + ℎ𝐴𝜇𝜈 , 𝛷̄ + 𝜓)

= ∫ 𝑑𝑥
√

𝑔
(

−1
2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 + 1

2
(

𝜉 𝑅 − 𝑚2)𝜙2 − 𝜆
4!
𝜙4 + 𝛬

)

. (4.12)

Divergences arise both from diagrams in which the only external field is the background metric (the ‘‘vacuum diagrams’’) and 
also from diagrams in which there is a background scalar field, as well as possibly contributions from the external metric. This 
external metric is denoted by 𝑔̄𝜇𝜈 . The ‘‘vacuum diagrams’’ do not contribute when the background metric is flat.

The ‘‘vacuum diagrams’’ result in divergences when 𝜖 = 0 that are proportional to (Eq. (3.45) of Ref. [33]) 
√

𝑔, (4.13)

or are proportional to 
√

𝑔 𝑅,
√

𝑔𝑅2,
√

𝑔𝑅𝜇𝜈𝑅
𝜇𝜈 ,

√

𝑔𝑅𝜇𝜈𝛼𝛽𝑅
𝜇𝜈𝛼𝛽 or √

𝑔 □𝑅, (4.14a)

where □ ≡ 𝜕𝜇𝜕𝜇 .
The divergences at 𝜖 = 0 that arise from Feynman diagrams involving external scalar fields are proportional to 

√

𝑔𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙,
√

𝑔𝜙2,
√

𝑔𝜙4; (4.15a)

√

𝑔𝑅𝜙2. (4.15b)

It is possible to systematically remove all the divergences in Eqs. (4.10), (4.13)–(4.15). First, divergences involving terms of 
the form of Eq. (4.15a) can be absorbed by the usual field strength, mass, and coupling constant renormalizations, respectively. 
Meanwhile, divergences arising from terms proportional to √𝑔 (Eq. (4.13)) can be absorbed by the cosmological constant 𝛬. This 
holds to all orders in the loop expansion of contributions to the effective action that follow from Eq. (4.11).

The remaining divergences (those of Eqs. (4.10), (4.14), (4.15b)) are all proportional to 𝑅𝜇𝜈 , since 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 , and in four 
dimensions there is the topological identity 

𝑅𝜇𝜈𝛼𝛽𝑅
𝜇𝜈𝛼𝛽 = −𝑅2 + 4𝑅𝜇𝜈𝑅𝜇𝜈 . (4.16)

With the classical Lagrangian cl being given by EH in Eq. (4.1), the term 𝜆𝑖 𝛿cl𝛿𝑔𝑖
 in Eq. (3.10) becomes

𝜆𝜇𝜈
𝛿

𝛿𝑔𝜇𝜈

(

−
√

𝑔𝑅
)

= 𝜆𝜇𝜈

√

𝑔
2

(

𝑅𝜇𝜈 − 1
2
𝑅𝑔𝜇𝜈

)

=
(

𝜆𝜇𝜈 − 1
2
𝑔𝜇𝜈𝑔𝛼𝛽𝜆𝛼𝛽

)

√

𝑔
2
𝑅𝜇𝜈 ≡

√

𝑔
2
𝛬𝜇𝜈𝑅𝜇𝜈 , (4.17)

where we have set 
𝛬𝜇𝜈 = 𝜆𝜇𝜈 − 1

2
𝑔𝜇𝜈𝜆, 𝜆 ≡ 𝑔𝛼𝛽𝜆𝛼𝛽 . (4.18)

Thus, after renormalizing the 𝛬𝜇𝜈 field as 
𝛬𝜇𝜈 = 𝛬𝜇𝜈 + 𝑐 𝑔𝜇𝜈𝑅 + 𝑐 𝑅𝜇𝜈 (4.19)
ren 1 2
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one can see from Eq. (4.17) that the divergences in the effective action (4.10) which involves external metric fields can be absorbed 
in the coefficients 𝑐1 and 𝑐2.

There is no need to introduce extra terms into the classical action (as was done in Refs. [13,14]) to eliminate divergences 
that arise at higher loop orders when considering the Einstein–Hilbert action of Eq. (4.1) alone [6,7]. Such terms involve having 
propagators that are quartic in the momentum transfer, which compromises unitarity. When a Lagrange multiplier (LM) field is used 
to eliminate higher-loop divergences, BRST invariance is intact, and so the resulting theory is unitary [19]. This we further discuss 
in an appendix below.

5. Discussion

In this work, we considered, for simplicity, the renormalization of a theory involving a single scalar field interacting with a 
gravitational field. Using the LM approach, we evaluated the effective action in closed form. We have shown that extra solutions to 
the Einstein classical equation of motion, which contribute to the effective action, arise. We have established that, in the presence 
of a LM field, the radiative corrections arising from internal metric fields are restricted to one-loop order. The only diagrams beyond 
one loop order have solely matter fields propagators. The renormalization group equation, which reflects the possibility of choosing 
generic renormalization scales, could lead to interesting insights into the behavior of the model in the ultraviolet regime. It should 
be possible to apply the same approach, which maintains unitarity, if there were also multiple scalar or non-Abelian vector gauge 
fields coupled to the gravitational field.

If spin- 12  matter fields were to couple to the metric field, then one must consider the Einstein–Cartan action in place of the EH 
action of Eq. (38) [35]. The Einstein–Cartan action possesses two distinct local gauge invariances and consequently, its quantization 
is more involved than quantizing the EH action [36,37]. The problem of using a LM field to eliminate higher loop diagrams in a 
model involving spin- 12  fields coupled to the metric is currently being considered. If the couplings can be shown to be consistent 
with unitarity and renormalizability, it may be possible to consistently extend the Standard Model to incorporate gravity.
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Appendix. Unitarity with LM fields

In order to illustrate the unitarity with the presence of LM fields, we consider a simple model described by the Lagrangian with 
a scalar field 𝐴 and a LM field 𝐵 : 

 = −1
2
(𝐴□𝐴 + 𝑚2𝐴2) −

𝑔
4!
𝐴4 − (𝐵□𝐴 + 𝑚2𝐴𝐵) −

𝑔
3!
𝐴3𝐵. (A.1)

We note that there appears in the quadratic part of the Lagrangian a mixing between the field 𝐴 and 𝐵. In order to diagonalize this 
part, we introduce a new field 𝐶 defined by 𝐶 = 𝐴 + 𝐵 so that (A.1) may be written in the form 

 = −1
2
(𝐶□𝐶 + 𝑚2𝐶2) + 1

2
(𝐵□𝐵 + 𝑚2𝐵2) −

𝑔
3!
𝐵(𝐶 − 𝐵)3 −

𝑔
4!
(𝐶 − 𝐵)4, (A.2)

where the two-point functions involving the 𝐴 and 𝐶 fields are decoupled, though now the self coupling of 𝐵 and 𝐶 are more 
complicated.

Following Ref. [19], we split these fields into a background and quantum part: 
𝐶 = 𝐶̄ + , 𝐵 = 𝐵̄ + . (A.3)

Identifying the solutions of the classical equations of motion with the background fields, we obtain the equations 
(□ + 𝑚2)𝐶̄ = −

𝑔
(𝐶̄ − 𝐵̄)3 −

𝑔
𝐵̄(𝐶̄ − 𝐵̄)2, (A.4a)
6 2
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Fig. 5. Feynman rules of the vertices coming from the Lagrangian (A.2) using the background field method. Solid lines denote the quantum field , while 
dashed lines represent the quantum field . 𝐶⃝ represents contributions of the background field 𝐶̄.

Fig. 6. One-particle irreducible one-loop diagrams that contribute to the 𝐶̄–𝐶̄ scattering amplitude.

(□ + 𝑚2)𝐵̄ = −
𝑔
2
𝐵̄(𝐶̄ − 𝐵̄)2. (A.4b)

In order to preserve the original equation of motion, one must have 𝐵̄ = 0, in which case (A.4a) becomes: 
(□ + 𝑚2)𝐶̄ = −

𝑔
6
𝐶̄3. (A.5)

Thus, using (A.3), we see that the LM field is a purely quantum field (this is discussed in the case of a gauge theory in Ref. [38]).
Moreover, in (A.2), the part quadratic in the quantum fields  and  leads to the propagators: 

𝐷 (𝑘) = + 𝑖
𝑘2 − 𝑚2 + 𝑖𝜖

𝐷(𝑘) = − 𝑖
𝑘2 − 𝑚2 + 𝑖𝜖

; (A.6)

while the part involving the interaction of the fields is given by 

int = −
𝑔
4!
(𝐶̄ + )4 + 𝑔

2!2!
(𝐶̄ + )22 −

2𝑔
3!

(𝐶̄ + )3 +
3𝑔
4!

4. (A.7)

Using these expressions, one may derive the corresponding Feynman rules (see Fig.  5) needed for the evaluation of the Feynman 
loop diagrams.

Let us consider first the contribution to the 𝐶̄–𝐶̄ scattering amplitude involving the background field 𝐶̄, shown in Figs.  6(a, b).
One can verify that the imaginary part of this forward scattering amplitude is proportional to the cross-section corresponding to 

the process shown in Figs.  6(a’, b’) in accordance to the unitarity requirement.
Next, let us consider the sunset diagrams depicted in Fig.  7. The 2-loop contributions arising from the diagrams in Figs.  7(a, b, c) 

cancel out, since in the presence of LM there are no net contributions beyond one-loop order. (we refer the reader to the Appendix 
A of Ref. [18] for more detail.) This implies that corresponding imaginary parts should add up to zero. This may be verified by 
computing the contributions from the diagrams in Figs.  7(a’, b’, c’).

The results above confirm the unitarity of the LM theory, which relates cross sections to the imaginary parts of the forward 
scattering amplitudes, in accordance with the optical theorem.
10 
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Fig. 7. Sunset (two-loop order) diagrams.

A.1. Extended LM formalism

When the determinant factor det ,𝑖𝑗1∕2 is included, which corresponds to the extended LM formalism as outlined in Refs. [20,21], 
unitarity remains intact. Next, we will illustrate it with the scalar model considered above.

Using the background field method, the determinant factor leads to the following Lagrangian 

det 1∕2′′(𝐶̄) = exp 1
2
Tr ln

(

1 +
𝑔
2

1
□ + 𝑚2

)

𝐶̄2, (A.8)

where we have omitted a field-independent term which may be absorbed in a normalization factor. Expanding Eq. (A.8) in powers 
of 𝑔, we obtain 

det 1∕2′′(𝐶̄) = exp 1
2
Tr

[

𝑔
2

1
□ + 𝑚2

𝐶̄2 −
𝑔2

8

(

1
□ + 𝑚2

𝐶̄2
)2

+ 𝑂(𝑔3)

]

. (A.9)

The first term in the exponential yields a tadpole contribution which vanishes in dimensional regularization. The second term leads 
to a contribution which cancels that shown in Figs.  6(b), which arises from the LM fields. Note that in Eq. (A.9) there are no terms 
of the form 𝑔2𝐶̄2, which correspond to contributions arising from the sunset diagrams shown in Fig.  7. This reflects the fact that 
such contributions cancel out.
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