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Abstract: This paper presents a heading alignment procedure for drone navigation em-
ploying a single hover GNSS antenna combined with low-grade MEMs-IMU sensors. The
design was motivated by the need for a drone-mounted differential interferometric SAR
(DinSAR) application. Still, the methodology proposed here applies to any Unmanned
Aerial Vehicle (UAV) application that requires high-precision navigation data for short-
flight missions utilizing cost-effective MEMs sensors. The method proposed here involves
a Bayesian parameter estimation based on a simultaneous cumulative Mahalanobis metric
applied to the innovation process of Kalman-like filters, which are identical except for the
initial heading guess. The procedure is then generalized to multidimensional parameters,
thus called parametric alignment, referring to the fact that the strategy applies to alignment
problems regarding some parameters, such as the heading initial value. The motivation
for the multidimensional extension in the scenario is also presented. The method is highly
applicable for cases where gyro-compassing is not available. It employs the most straight-
forward optimization techniques that can be implemented using a real-time parallelism
scheme. Experimental results obtained from a real UAV mission demonstrate that the
proposed method can provide initial heading alignment when the heading is not directly
observable during takeoff, while numerical simulations are used to illustrate the extension
to the multidimensional case.

Keywords: sensor fusion; navigation and position/orientation; signal processing; heading
alignment

1. Introduction
Navigation is a core component of drone guidance, control, and navigation (GNC)

systems, which themselves are essential subsystems of drones. To function effectively,
orientation and navigation must adhere to specific performance standards, which are
often focused on precision, accuracy, integrity, availability, and continuity. These last
four parameters, the required navigation performance criteria (RNP), form the basis for
navigation specifications.

Our paper’s scenario is a planned drone flight spanning some kilometers subject to
eventual wind perturbations. The radar-borne terrain imagery requires the drone to carry
three radars operating in P-, L-, and C-bands with cross-track (InSAR) and differential inter-
ferometry (DinSAR) for three distinct imagery reconstructions, with different penetration
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and detail grading; see [1]. The self-navigation system of any drone does not attain the
required precision to retrieve the complete path evolution within less than ±10 mm in the
absolute spatial position, ±0.1◦ in pitch and roll angles, and ±1◦ in the heading accuracies.
Thus, it carries extra IMU and a GNSS receptor operating in the differential mode.

When using low-cost inertial sensors for navigation of UAVs, such as IMUs based on
MEMs technology and single-antenna GNSS receivers, one faces a significant challenge:
obtaining the vehicle’s true heading before taking off. In this context, the usual way to find
heading orientation with satisfactory accuracy in aerial navigation of UAVs with a single
GNSS antenna relies on gyro-compassing, e.g., see [2] for an account of existing forms of
heading alignment.

In short, the measurements available come from the GNSS in the differential mode,
providing a very accurate position, together with 3D translational accelerations and ro-
tations supplied by an MEMs-IMU. The latter is a low-cost sensor, which suffers from
degrading bias and relatively low accuracy compared to aerospace IMU standards. It
cannot perform gyro-compassing, thus lacking precision to measure attitude angles by
simply integrating the kinematic variables.

In a GNSS/INS loosely coupled integration scheme performed by a Kalman-like
filtering algorithm, the pitch and roll estimates are more accurate than the heading, mainly
because of their orientation relative to the gravity vector. The accelerometers in the INS
module continuously measure the gravity acceleration vector, which in steady flight is
orthogonal to the heading plane, providing good information on pitch and roll angles;
however, it is poorly correlated with the heading angle; see Figure 1. Suppose a lever
arm between the GNSS antenna and the IMU exists. In that case, it may provide some
correlation information with the heading angle depending on the path profile developed
by the UAV.

Figure 1. The diagram illustrates the invariance in the projections of the gravity vector ( f b
ib,x, f b

ib,y, f b
ib,z)

on the body axes of a UAV after a change in the initial heading (yaw rotation). Thus, even before the
flight, the readings would be the same for frames b1 and b2, making it impossible to determine the
initial heading of the UAV.

This paper further develops the heading determination ideas outlined in [3] that suit
the post-processed flow. The expansion of this technique is two-fold. First, we adapt to
the real-time scenario of navigation based on the loosely coupled GNSS/INS integration
problem, and then it is adapted to the multiparameter alignment problem. The filter
processing could take a parallel form in real-time, seeking the heading estimate while
adopting a rougher prior heading guess until the convergence.
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The heading alignment technique can be extended to multiple parameter alignment in
a multivariable extension of the previous method to tackle the simultaneous adjustments,
with interest to the navigation problem. For example, it applies to an accurate lever
arm or body-to-IMU rotation determination in a UAV platform. Also, considering the
improvement in IMU bias stability in up-to-date MEMs devices, the bias can be taken for
granted as fixed during short drone flights, and the multivariable alignment technique
applies to their determination as well. Although more demanding and requiring more
steps, the multivariable method leads to better values than the starting values, since, under
certain conditions, it produces a monotone decreasing sequence in terms of an estimation
error. With that, the number of steps can be chosen as a compromise between the accuracy
and effort required for the drone application in mind.

This paper reads as follows. Section 2 briefly introduces the elements of an inertial
navigation system, the dynamics, and the GNSS measurement models. It details the
preliminary alignment procedure for the pitch and roll angles. It presents the extended
Kalman filter on Lie groups. It describes how the RMS mean value of the innovation process
can qualify parameter adjustments, namely, the guesses of the initial heading. Section 2
ends with a brief presentation of the quadratic fitting optimization technique, which is our
ultimate tool. Section 3 develops the heading alignment method as a Bayesian parametric
estimation in post-processed and real-time tailored for UAV navigation. This section also
includes results with experimental data, see Figure 2, from a study of an actual UAV
platform used to evaluate the log-likelihood curve profile and the convergence process.
Section 4 develops the multidimensional extension using quadratic fit optimization adapted
to the multidimensional problem. It produces a monotone decreasing sequence that assures
a better parameter vector adjustment. Considering the cost of multiple evaluations, some
algorithm ideas are devised. Concluding remarks appear in Section 5.

20

40

60

80

100

120

140

Mission Date: 
2024-06-12

60°N

65°N

La
tit

ud
e

10°E 20°E 30°E
Longitude

Esri, HERE, Garmin

Figure 2. The flight profile of a mission conducted in June 2024 in Sweden at the indicated map
location. Two ZED-F9P GNSS receivers and an ADIS 16945 inertial system were used.

2. Inertial Navigation System for Drones
The usual approach to achieving an accurate solution to the navigation problem

of the UAV platform is to employ a Kalman-like filter to combine GNSS low-frequency
measurements with high-frequency MEMs-IMU measurements. In particular, our scenario
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considers the UAV platform mounted with a GNSS receiver capable of RTK positioning,
such that the filter can update the predicted PVA state variables with highly accurate
position measurements. The filter can adequately yield satisfactory results if the initial
orientation and sensor bias estimation are accomplished on the ground with the required
accuracy for the UAV mission. Although static leveling methods can reasonably estimate
initial pitch and roll angles when the drone is on the ground, the heading angle remains to
be determined when the gyro-compass technique cannot be used due to sensor biases and
their instability. Moreover, initial ground roll and pitch angles are not so critical since they
are well observed by the filter and corrected during the flight without much trouble.

While the drone is at rest before takeoff, the biases of the IMU sensors can be well
estimated by the same stochastic filter fed with Zero-Velocity-Updates (ZVUs). During this
period of pre-tuning, the bias estimation converges, and afterward, the filter parameters
switch to the calibrated flight mode. If the drone flight is short, the bias fluctuations will be
insignificant and not detrimental to the estimation quality during the flight. In other words,
for short flights, the heading’s initial orientation of the drone is the main problem; for longer
flights, bias re-estimation and heading orientation are both challenging. This scenario,
combined with any fine adjustments of mechanical parameters of the UAV platform, such
as the lever arm or IMU-to-body orientation motivates for multivariable alignment.

NOTATION: The following notation is adopted: xγ
βα for a vector, x represents the

coordinates of some kinematic property (position, velocity, etc.) of frame α with regard to
frame β, expressed in frame γ. The body frame is indicated by b, the inertial frame by i,
whereas the Earth Centered Earth Fixed (ECEF) frame is indexed by e. We denote by [ω]×

the skew-symmetric matrix associated with the angular rate vector ω.
The INS kinematic model and the GNSS measurements are both provided in the

ECEF frame. This choice allows the GNSS measurements to update the trajectory without
coordinate transformation.

2.1. Dynamic and Measurement Models

The PVA kinematic navigation equations in continuous time are given as [4,5],

Ċe
b = Ce

b[ω
b
ib]
× − [ωe

ie]
×Ce

b, (1a)

ṗe
eb = ve

eb, (1b)

v̇e
eb = Ce

b f b
ib − 2[ωe

ie]
×ve

eb + ge (1c)

where the position pe
eb = [xe

eb ye
eb ze

eb]
⊺ refers to the Earth Centered Earth Fixed (ECEF) frame,

and
ωe

ie =
[
ωe cos(L) 0 −ωe sin(L)

]⊺
where ωe is the Earth rotation rate, and L is the latitude; ωb

ib, f b
ib ∈ R3 are the angular

velocity and specific force, respectively. Gravity may be obtained through a gravity model;
the simplified model encountered in [6] suffices for our purposes.

In [7], it is pointed out that the INS kinematic model in Equation (1) is exact since there
is no model error or uncertainty. The uncertainty in navigation problems comes from the
sensors and local gravity anomalies.

Gyroscopes and accelerometers are subject to errors that limit the accuracy at which
angular rotations or specific forces are measured. The following simplified inertial sensor
models are suitable for achieving reliable results for drone missions with short flights:

ω̃b
ib = ωb

ib + bg + εg, (2a)

f̃ b
ib = f b

ib + ba + εa, (2b)
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where f̃ b
ib and ω̃b

ib are IMU’s noisy values of the specific force and angular velocity, respec-
tively. εg ∼ N (0, σ2

g) and εa ∼ N (0, σ2
a ) form independent and identically distributed (iid)

white noise sequences and are related to the angular random walk (ARW) and velocity
random walk parameters of the IMU. In addition, bg, ba are the gyroscope and accelerome-
ter biases, respectively, which are expressed in the body frame. The biases are modeled as
random walk processes of form

dbg = BgdWg, (3a)

dba = BadWa, (3b)

where Wg and Wa are Wiener processes of appropriate dimensions and Bg and Ba are
diffusion coefficient matrices associated with the IMU’s bias instability.

GNSS positions, even when determined via RTK in differential mode, refer to the
ECEF frame. The INS kinematic model is also expressed in the ECEF, such that the GNSS
measurements furnish trajectory updates without coordinate transformation. If a navigation
solution is required in the local frame coordinates, one can readily transform from ECEF to
NED coordinates (see [4]). In this work, we consider that the hover antenna is shifted from
the origin of the UAV body coordinate system, whereas the UAV body origin coincides
with the IMU origin.

Therefore, the model for the actual measurement must take into account a lever arm
effect to provide a meaningful measurement to feed the Kalman filter, as shown in the
following equation:

pGNSS = pe
eb + Ce

blb + ν (4)

where ν
iid∼ N (0, R) is the GNSS noise, assumed to be uncorrelated white noise with

covariance R.

2.2. Coarse Alignment: Pitch and Roll Angles

Initialization of the inertial navigation system for drone navigation is crucial to achieve
accurate navigation results. Before takeoff, while the UAV is resting on the ground, the INS
measures zero linear and angular velocities besides the biases and noises. Thus, the initial
values for the gyroscope biases can be estimated by averaging their measurements during
this stationary period. The initial position can be accurately obtained by averaging GNSS
measurements over a sufficiently long time window.

Furthermore, the “leveling method” [4] can be used to obtain the initial pitch (θ0)
and roll (ϕ0) angles. The principle behind the leveling method is that when the INS is
stationary, the accelerometer triad only perceives the acceleration of gravity. As a result,
from trigonometry, the initial pitch and roll angles can be determined as follows:

θ0 = arctan

 f̄ b
ib,x√

( f̄ b
ib,y)

2 + ( f̄ b
ib,z)

2

, (5a)

ϕ0 = arctan(− f̄ b
ib,y,− f̄ b

ib,z) (5b)

where f̄ b
ib,x, f̄ b

ib,y, f̄ b
ib,z are the average accelerometer outputs during a time window. Note

that the roll angle measure should be expressed with the four-quadrant arc tangent function.
The accuracy of Equation (5) is limited mainly by the accelerometer biases [5].

Regarding the initial alignment of a UAV platform’s heading, several determination
methods are available with varying levels of precision and complexity [2,8]. The primary
constraint in the application here is that the onboard sensors are limited to a 6-DoF MEMs-
IMU and a single GNSS antenna. In such a setting, methods that rely on external reference
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points captured by cameras or devices measuring distance and angles are not practicable.
Similarly, multi-antenna GNSS approaches would be helpful but are not in consideration.
Metallic structures and significant electromagnetic interference exclude methods based on
the Earth’s magnetic field measurements. Lastly, the drone trajectories during missions
do not allow for a direct relationship between heading and course (movement direction),
ruling out methods that rely on the velocity vector for heading estimation.

With the widespread adoption of MEMs technology, gyro-compass methods that
utilize these devices for determining heading have been developed [9]. They rely on
the devices’ ability to accurately measure Earth’s angular velocity against a significant
error source arising from bias instability and fluctuations induced by temperature changes.
The literature describes various methods to address these issues, including maytagging,
carouseling, and their variants. Nonetheless, these approaches require additional oper-
ational action during platform initialization. In contrast, our scenario aims to minimize
operator intervention. The following sections discuss a statistical analysis for determining
parameters, leveraging the evolution of extended Kalman filters during flight to estimate
these initial parameters.

2.3. The Kalman Filter and Its Role in Qualifying Parameters

The Kalman filter innovation signal forms a zero-mean uncorrelated Gaussian white
noise sequence in the pure linear Gaussian scenario. In practical scenarios, this charac-
terization is obliterated, in general. However, the innovation signal remains a merit for
good tuning, as it carries a filter’s ability to make one-step predictions and connects to the
filter likelihood [10]. It encounters applications, such as multiple targets tracking [11,12]
to create measurement associations using Mahalanobis or a similar distance. Filter likeli-
hood is at the heart of other filtering schemes, such as interacting multiple models (IMMs)
filtering [10,13] or particle filtering [14,15], to mention a few.

For the GNSS/INS integration problem tailored for drone navigations, one can employ
filters that account for the rigid body kinematics in different manners, such as based
on Euler angles, quaternions, or evolving in matrix Lie groups. The latter is employed
in [3] with good results, where an EKF based on Lie groups, developed in [16,17], applies
for the loosely coupled integration of GNSS/INS of an actual UAV for an application
involving drone-borne DinSAR systems. The discrete-time EKF in a Lie group takes the
following form:

X̂k+1|k = X̂k|k exp∧G(Ω̂k), (6a)

Pk+1|k = F Pk|kF
⊺ + Jr(Ω̂k)Qk Jr(Ω̂k)

⊺ (6b)

Kk+1 = Pk+1|kH
⊺(Rk+1 +H Pk+1|kH

⊺)−1 (6c)

X̂k+1|k+1 = X̂k+1|k exp∧G(Kk+1ηk+1), ηk+1 = yk+1 − h(X̂k+1|k) (6d)

Pk+1|k+1 = (I − KH )Pk+1|k(•)⊺ + KRk+1K⊺ (6e)

where

F := AdG(exp∧G(−Ω̂k)) + Jr(Ω̂k)Ck (6f)

Ck :=
∂

∂ϵ
[Ω(X̂k|k exp∧G(ϵ))]

∣∣∣
ϵ=0

(6g)

H :=
∂

∂ϵ
[h(X̂k+1|k exp∧G(ϵ))]

∣∣∣
ϵ=0

, (6h)

References [16,17] bring theoretical background on the Kalman filters evolving in
Lie Groups. In simple terms, the state of a Kalman filter in a Lie group is a matrix that
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incorporates the kinematic variables of the navigation system. The implementation of the
prediction and update step for the EKF in the Lie group is carried out by replacing the
usual addition operation with the exponential map of the Lie group; see (6a)–(6d).

Consequently, k → X̂k|k is the state estimate that contains the estimate of position,
velocity, attitude, and eventually estimates of sensor biases; in addition, k → yk are the
position measurements provided by the GNSS.

Here, of interest is the innovation process k → ηk showing the mean update of the
filter, Equation (6d). The process k → ηk may differ from an ideal sequence of Gaussian
white noise, compromised by bias, time correlation, and other imperfections. Still, it yields
the simplest form of filter accuracy grading, which is suitable for verification, adjustment,
and comparison by probing its RMS value.

To illustrate, let us consider two filters, F(p1) and F(p2), parameterized differently by
p1 and p2. Taking into account their respective innovation processes k→ η1

k , η2
k , a simple

form of ranking their relative accuracy is to evaluate

Pi
RMS =

1
N2 − N1

N2

∑
k=N1

(ηi
k)

2, i = 1, 2

along the same set of data trajectory for a period of time N2 − N1 long enough so that
the estimates Pi

RMS become relevant and converge within the required precision. The
best performer is clearly arg min1,2 Pi

RMS, even if their innovations may be associated with
correlation and bias. However, for all defects, the RMS value of the innovation is a practical
indicator of filter performance.

In Section 3, we show how the filter innovation RMS can rank heading initialization
for drone navigation systems.

2.4. Unidimensional Quadratic Fit

The last preparatory section presents our primary optimization tool throughout this
work. It is the simplest form of finding the minimum of a scalar function without recurring
to the gradient (or, for that matter, to the derivatives in general, which may or may not
exist), assuming that the function is unimodal or suffices to find the nearest local minimum.
See [18] for the following construction.

Given scalars x1, x2, x3 and corresponding values y1 = f (x1), y2 = f (x2), y3 = f (x3),
the quadratic function passing through these points is

q(x; x1, x2, x3) =
3

∑
i=1

yi
∏j ̸=i

(
x− xj

)
∏j ̸=i

(
xi − xj

) .

A new point x4 for which the derivative of q vanishes is such that

x4 =
1
2

b23y1 + b31y2 + b12y3

a23y1 + a31y2 + a12y3
(7)

where aij = xi − xj, bij = x2
i − x2

j . The point x4 is a minimum provided that

3

∑
i=1

yi

∏j ̸=i
(

xi − xj
) > 0. (8)

A sequence xi, i = 1, 2, . . . is produced by successively applying the quadratic fit above,
finding an approximation for the minimum of the original function f as in Equation (7)
for x4, and keeping the three out of four points with smaller values of f . Under certain
conditions, the sequence is monotonic and converges to the minimum [18].
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3. Heading Alignment for UAVs
The heading alignment procedure applies differently depending on whether the

application is in real-time or post-mission. The more straightforward case is the post-
mission one, which will be studied next.

3.1. Post-Mission Heading Alignment

In the post-mission scenario, we seek a reliable initialization of the heading angle (ψ0)
of a UAV platform using the flight track of the drone. Moreover, we are interested in using
low-cost MEMs sensors without a gyro-compass capability.

For this purpose, we adjust the Bayesian parametric estimation scheme described
in ([19] [cap. 16]) to the present problem. The method applies when all flight data are
collected and represented generically by y1:N , and it evaluates the posterior distribution
p(ψ0|y1:N). Once the posterior distribution is obtained, the strategy is to find the most likely
value for the initial heading ψ0 according to p(ψ0|y1:N), which results in the Maximum a
Posteriori (MAP) estimator for the initial heading.

To start, note that from Bayes’ theorem, one has

p(ψ0|y1:N) ∝ p(y1:N |ψ0)p(ψ0) (9)

p(ψ0) is some prior distribution related to a (rough) heading orientation adopted before
takeoff. For simplicity, consider E[ψ0] = 0 (in degrees or radians) and p(ψ0) = N (0, σ2

ψ) as
a prior for the heading initial orientation. Moreover, note that p(y1:N |ψ0) can be factorized
in the form

p(y1:N |ψ0) =
N

∏
k=1

p(yk|y1:k−1, ψ0). (10)

In view of the two statistical moments furnished by the KF, we assume that the
marginal measurement distribution along the path t→ yk, p(yk|y1:k−1, ψ0) is well approxi-
mated by a Gaussian distribution of form

p(yk|y1:k−1, ψ0) = N (h(X̂ψ0
k|k−1), Rk +H Pψ0

k|k−1H
⊺) (11)

where X̂ψ0
k|k−1 and Pψ0

k|k−1 come from the filtering solution in Equation (6) associated with
some fixed ψ0 value. Hence, the most likely value for the initial heading can be found by
solving minψ0 − log(p(ψ0|y1:N)).

Let φ(ψ0) = − log(p(ψ0|y1:N)). Then,

φ(ψ0) =
N

∑
k=1
− log(p(yk|y1:k−1, ψ0))− log(p(ψ0)) + cte

=
N

∑
k=1

1
2

log(|Sψ0
k |) +

1
2
∥ηψ0

k ∥
2
(S

ψ0
k )−1

+
1

2σ2
ψ

∥ψ0∥2 + cte (12)

with Sψ0
k = Rk +H Pk|k−1H

⊺ and η
ψ0
k = yk − h(X̂ψ0

k|k−1) is the filter innovation process at
time k. Note that for each value of ψ0, Equation (12) provides the respective log-likelihood
up to a constant such as p(ψ0|y1:N) ∝ exp(−φ(ψ0)). Thus, for a sufficient number of
evaluations of different values for ψ0, one can build the distribution p(ψ0|y1:N) using the
filtering solution.

Now, we assume that the noise possesses a smooth (continuous of C2 class) unimodal
distribution. The implication is that the likelihood in Equation (12) has a global minimum,
say ψ∗0 , and according to the Taylor approximation, φ(ψ0) = ∥ψ0 − ψ∗0∥2

H + O(∥ψ0 − ψ∗0∥4)

where H is the Hessian of x → φ(x) evaluated at the minimum ψ∗0 . In the notation
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above, for a multivariable parameter ψ0, the first term in the rhs is the quadratic form
(x− ψ∗0 )

⊺H(x− ψ∗0 ).
This is a scenario where quadratic fitting can be applied [18]; when ψ0 is scalar, such

as the initial heading, it suffices to evaluate ψ0 → φ(ψ0) in three distinct points, and one
can obtain the approximated log-likelihood function and estimate its minimum using the
quadratic fit in Section 2.4. By applying it successively to the three best points, the optimal
value can be reached.

In the multivariable case, the parameter ψ0 belongs to an n-dimensional Euclidean
space and this paper extends the quadratic fit to search in such a space; see Section 4.2. Of
course, other optimization methods using derivatives or not could be used. The focus on
the quadratic fit and its generalization regards the simplicity of the optimization procedure
since each evaluation of the cost φ requires the observation during a period of length
N of the filter result, namely the innovation process k → η

ψ0
k and the filter covariances

k→ Sψ0
k for each parameter value ψ0. Computational effort and time to converge should

be of regard.
Therefore, this work proposes a heading alignment scheme that is well suited for

drone navigation using low-cost MEMs-IMU sensors. They consist of three independent
D-LIE-EKFs, each with a different initial heading value {ψ1

0 ψ2
0 ψ3

0}. After running these
three filters, three samples from the log-likelihood φ(ψi

0), i = 1, 2, 3 are obtained. After
that, a unidimensional quadratic curve is fitted to the sample pairs (ψ1

0 , φ(ψ1
0)) (ψ

2
0 , ϕ(ψ2

0)),
(ψ3

0, φ(ψ3
0)), and a minimizer point ψ∗0 is determined; see Equation (7). Such a new value

may attain precision and suffice to halt the procedure. The quadratic fit approximation
improves as long as the three chosen points become nearer to the minimum; further
iterations are a matter of the project’s required accuracy since the quest to attain the optimal
requires producing a minimizing sequence as described in Section 2.4.

3.2. Real-Time Heading Alignment

In real-time operations, we devise a procedure to provide initial heading estimates
during the actual flight of the drone, allowing an initial time window for a satisfactory
estimation. During the calibration window, the following steps are involved (see also
Figure 3):

1. Initialize a set of three filters {F(ψi
0)}i=1,2,3, each parameterized by an initial heading

ψi
0 otherwise equal initial conditions. The central value of ψi

0 would carry a rough
estimate of the initial heading;

2. Acquire streaming data from the GNSS and the IMU. Note that these are obtained at
different sampling rates;

3. Feed the independent filters with the measurements, executing the prediction step,
Equation (6a), at the accelerometer/gyroscope sampling rate, and the update step,
Equation (6d), at the GNSS sampling rate;

4. During update step, compute for each filter the k-th term of the sum in Equation (12).
5. Using the three values of φ(ψi

0), parameterize a parabola and find its minimum,
representing an estimate of the initial heading ψ∗0 .

6. Finally, create a new filter F(ψ∗0 ) initialized with the best initial heading estimate and
fed the data collected so far.

After accumulating sufficient values, that is, N in Equation (12) is large enough, the
estimate should converge to the initial heading that maximizes the posterior probability,
thus, performing an MAP estimation of ψ0. A stopping criterion must be adopted to assess
convergence, and due to the reduced time to converge, the initial estimation window is
small and coincides with initial drone maneuvers.
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During the estimation window, one of the three filters considered produces the trajec-
tory estimation. Considering the filter processing time, the trajectory estimation provided
by the correct filter F(ψ∗0 ) should be able to catch up to the most recent data in the stream.

Startup

Filter Steps

Log-
likelihood
calculation
(when the innovation
is calculated)

Parabola fitting and
heading estimation

Filter initialized
with estimated head-
ing
(convergence achieved)

X0, P0

ψ1
0 ψ2

0 ψ3
0

GNSS: pGNSS

IMU: ω̃b
i,b, f̃ b

i,b

η
ψ0
k , Sψ0

k η
ψ0
k , Sψ0

k η
ψ0
k , Sψ0

k

F(ψ1
0) F(ψ2

0) F(ψ3
0)

∝ φk−1(ψ0) + log(|Sψ0
k |) + ∥η

ψ0
k ∥

2
(S

ψ0
k )−1

φ(ψ1
0) φ(ψ2

0) φ(ψ3
0)

(Yet not

converged...)
ψ1

0 ψ2
0 ψ3

0

×

ψ∗0

ψ∗0

F(ψ∗0 )

X0,′ P0

Figure 3. Illustrative diagram showing the steps involved in obtaining the heading estimate via MAP
of p(ψ0|y1:N) in a real-time application of a drone navigation system.

3.3. Heading Alignment Performance Evaluation

Figure 4 shows an example of a single-step filter-based heading alignment optimization
proposed in this work applied to a real navigation dataset collected during an actual
flight test of a UAV, specifically, the one depicted in Figure 2. It shows the results after
convergence during an actual flight mission. Three choices of initial heading angles are
ψ1

0 = −6◦, ψ2
0 = 6◦, and ψ3

0 = 18◦ guessed from a rough estimate given by a simple
off-the-shelf compass.

The actual log-likelihood curve for ψ0 is shown from calculations on a fine angle grid,
using 60 distinct initial heading values ranging from −180◦ to 180◦. Near the minimum, a
quadratic fit passes through points ψ1

0, ψ2
0, and ψ3

0 to estimate the precise value. The best
initial heading in this example is ψ∗0 = 4.38◦. Note that the quadratic approximation is
close to the exact curve, and both minima nearly coincide.

The above example corresponds to the post-mission heading alignment operation
scenario. In a second experiment, we evaluate the convergence of the method using the
same drone flight trajectory now devoted to real-time operation. The result is summarized
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in Figure 5, depicting how the initial heading value and the quadratic approximation evolve
over time.

−

−

−

−

−

−

−

−
− − − −

Figure 4. Quadratic approximation (blue curve) obtained by sampling three distinct initial heading
values. The black curve is the log-likelihood function obtained for the real data flight in Figure 2.
Note the remarkable precise sinusoidal profile. The minimum point of the quadratic approximation
(in green) is taken as the estimate for the initial heading.

In an initial stretch, the first 40 s of the trajectory, the filter has not yet performed
an update step in flight (only ZVU updates), and therefore, no innovation calculation or
heading estimation occurs. From the end of this interval, the in-flight update step execution
begins, and the heading starts to be estimated.

The method does not provide an accurate estimate in the second time stretch, roughly
between 100 and 130 s. The estimate fluctuates greatly due to the low curvature of the
parabola associated with large distribution variances.

Finally, after about 130 s (90 s from the start of the flight), the initial heading esti-
mate converges to a value of ψ∗0 = 4.38◦. At this point, the curvature of the parabola is
significantly higher.

−

−

−

−

−

−

− −

Figure 5. Two perspectives following the evolution of heading estimation: the first is a three-
dimensional mesh representation of the parabolas fitted over time; the second is a view of the ψ0 vs.
time plane, illustrating the evolution of the estimated heading values (the parabola’s minimum point).
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4. Extension to Multidimensional Alignments
Here, we discuss multidimensional alignments in analogy with the scalar case. The

idea is to extend the problem studied in Section 3 where we wish to evaluate the perfor-
mance of a filter F(p) regarding a multidimensional parameter p ∈ Rm.

The motivation relies on dealing with the accelerometer and gyroscope bias. Also,
in some situations, the preliminary alignment of pitch and roll described in Section 2.2
cannot be applied or leads to poor results. In some cases, other parameters are necessary
before taking off for a UAV platform, such as the IMU-to-Body rotation matrix or the lever
arm to the GNSS antenna. Although the scalar method applied to the heading assessment
in Section 3 could be applied sequentially by component, a multivariate method that can
deal with all parameters simultaneously is desirable for faster determination. We propose
extending the scalar method to deal with such a scenario.

4.1. Multidimensional Alignment

Suppose that we are dealing with a multidimensional alignment problem of a UAV
platform where a parameter Θ ∈ Rm is constant but unknown during the flight. Following
the same approach as described before, we define the posterior distribution of these
parameters as

p(Θ|y1:N) ∝ p(y1:N |Θ)p(Θ)

with prior p(Θ) = N (0, Σ). Moreover, note that p(y1:N |Θ) can be factorized in the form

p(y1:N |Θ) =
N

∏
k=1

p(yk|y1:k−1, Θ). (13)

As before, employing the two moments estimated by the KF, we assume that the
marginal measurement distribution along the path t→ yk, p(yk|y1:k−1, Θ) is well approxi-
mated by a Gaussian distribution of the form

p(yk|y1:k−1, Θ) = N (h(X̂Θ
k|k−1), Rk +H PΘ

k|k−1H
⊺) (14)

where X̂Θ
k|k−1 and PΘ

k|k−1 come from the filtering solution in Equation (6) associated with
some fixed Θ m-dimensional value. Hence, the most likely value for the parameter Θ can
be found by solving minΘ φ(Θ) where φ(Θ) = − log(p(Θ|y1:N)). Then,

φ(Θ) =
N

∑
k=1
− log(p(yk|y1:k−1, Θ))− log(p(Θ)) + cte

=
N

∑
k=1

1
2

log(|SΘ
k |) +

1
2
∥ηΘ

k ∥
2
(SΘ

k )−1 +
1
2
∥Θ∥2

Σ−1 + cte (15)

with SΘ
k = Rk + H Pk|k−1H

⊺ and ηΘ
k = yk − h(X̂Θ

k|k−1) is the filter innovation process at
time k. Note that for each value of Θ, Equation (15) provides the respective log-likelihood
up to a constant such as p(Θ|y1:N) ∝ exp(−φ(Θ)). Thus, by the account of the filtering
innovation process and correlation matrices, with successive evaluations of parameter Θ,
associated with decreasing values of φ, one can reach the minimum of φ(Θ) and obtain its
unique minimizing argument Θ∗.

4.2. Quadratic Fit: Multidimensional Extension

Many optimization methods could apply to the multidimensional MAP problem by
minimizing φ(Θ) in Equation (15). Alternatively, the equivalent MMS estimator can be
evaluated by sampling the approximate conditional distribution p(Θ|y1:N). However,
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a general feature of the outlined scenarios is that the evaluation until convergence of
Equation (15) (or even Equation (12)) at each Θ (or ψ0) is relatively expensive due to the
filter parameter calculations along N stages, which can be relatively large. Furthermore,
attaining the optimal will be costly and perhaps unnecessarily time-consuming, and a
procedure that guarantees the monotonicity of the cost, in the sense that φ(Θk) > φ(Θk+1)

whenever Θk ̸= arg min− log(p(Θ|y1:N)), is highly desirable.
Considering these constraints, we propose an optimization procedure that applies to

the multidimensional case, relying on the simplicity of the quadratic fitting concerning the
number of evaluations and the easiness of calculus. First, we brought the linear algebra
tools to bear to allow the quadratic fit method to be applied to a multidimensional function
using a planar bisection passing through three points.

The problem we wish to unravel is as follows: Given x1, x2, x3 ∈ Rn and the corre-
sponding values y1 = f (x1), y2 = f (x2), y3 = f (x3), find the plane in ( f (x), x) ∈ Rn+1

containing these points. If p1 = [y1 x1]
⊺, p2 = [y2 x2]

⊺, and p3 = [y3 x3]
⊺ are the corre-

sponding points in Rn+1, the plane containing these points can be represented as P = {z ∈
Rn+1 : ⟨z, n⃗⟩ = c0, for some c0, where n⃗ = (p2 − p1)× (p3 − p1)/∥(p2 − p1)× (p3 − p1)∥.
Applying Givens rotations successively, one obtains a rotation matrix T such that for any
z ∈ P , 

α

β

0
...
0

 = Tz

Applying such transformation to z1 = 0, z2 = p2 − p1, and z3 = p3 − p1, we obtain
Tz1 = 0 and 

α2

β2

0
...
0

 = Tz2,


α3

β3

0
...
0

 = Tz3

and three coordinate pairs as (α1, β1) = (0, 0), (α2, β2), and (α3, β3). Now, by setting the
correspondence (y1, y2, y3) ≡ (α1, α2, α3) and (x1, x2, x3) ≡ (β1, β2, β3) in Equation (7),
a minimizing value β4 and the corresponding quadratic value α4, provided that Equa-
tion (8) is satisfied. From the fact that T is a rotation matrix, thus it is a length-preserving
transformation, and the final result in the original coordinate is obtained by

[
∼
x4

]
= T−1


α4

β4

0
...
0

+ p1

The first component could be the resulting quadratic value if the indicated constant c0

is determined, but it is of no avail in the calculus here.

4.3. The Minimizing Algorithm

A strategy to apply the multidimensional quadratic fit extension in Section 4.2 must
be developed. The basic assumption is that the original operating point, say (x0, f (x0)),
is near the minimum; therefore, the search is local. Also, finding the minimum is not
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necessarily the goal. One may be satisfied with improving the operating point since seeking
the minimum might be time-consuming, computationally expensive, or other practical
issues may prevent the quest. Whichever is the reason, the idea is to produce an algorithm
to find new operating points while monotonically decreasing costs.

The first notion is to investigate two neighboring points x1, x2 around x0 and find the
corresponding values yi = f (xi), i = 1, 2, apart from the present operating point (x0, y0);
this represents the most economic spatial covering of the neighborhood of x0. To choose
directions x1 − x0 and x2 − x0, we can borrow from curvature integration methods and use
the idea of sigma points around x0. Given a unitary norm vector (the vector notation is
used here to facilitate understanding) v⃗ ∈ Rn, create a set of 2n sigma points centered at x0,
such as the construction of the set of points is represented by the operator R : Rn → Rn×2n

,
which applied to v⃗ produces a set of Rn-valued vectors,

χ(x0) = σR (⃗v) + x0

containing each combination of π rotations component-wise over v⃗. That is, for some uni-
tary v⃗ = [ v1 v2 ··· vn ]⊺, each v⃗i ∈ R (⃗v) has the form [ ±v1 ±v2 ··· ±vn ]⊺ with v⃗1 = v⃗, together
with each of the possible distinct signal combinations from i = 2, . . . , 2n. Evaluations of the
function f on such a grid centered at some x ∈ Rn are indicated by

F (x) = f (χ(x) + x) (16)

The scalar value σ modulates the hypervolume of the sigma points covering. It relates
to the uncertainty of the distance between x0 and the unknown optimal value x∗. It should
be chosen in a way to satisfy x∗ ∈ Co(χ(x0)) preferably, where Co(·) is the convex hull set.
Algorithm 1 proceeds with the complete construction and evaluation of the sigma points as
the departing idea just described, performing an exhaustive search using x0 as a central
point at each performed quadratic fit.

Algorithm 1 A complete step of sigma point evaluations

Require:
1: Initial parameter x0, performance evaluation y0 = f (x0),
2: scalar σ > 0 and unitary vector v⃗.

Ensure: If x0 is not an optimal parameter, f (x̃0) = ỹ0 < y0
3: R (⃗v)← v⃗ and χ(x0)← σR (⃗v) + x0.
4: F (x0)← χ(x0), ▷ evaluations on the grid, Equation (16)
5: i← 1,
6: while i ≤ 2n−1 do
7: (x̄i, ȳi)← minx q(x; x0, xj, xℓ) ∀xj, xℓ ∈ χ(x0) + x0, ▷ multidimensional quadratic

fit, Section 4.2
8: i← i + 1
9: end while

10: (x̃0, ỹ0)←
(
arg mini=1,...2n−1 ȳi, mini=1,...2n−1 ȳi

)
The proposed Algorithm 1 is conceptually interesting. Still, it is clearly inefficient since

a new minimum, say x4 is found along one direction at each three-point evaluation, and
point x4 can play the role of a new central point more efficiently than x0 in Algorithm 1.
Since the one-step fit just described produced a monotone decreasing variation, namely
f (x0) ≥ f (x4), a variation of Algorithm 1 can be devised to reduce the number of evalua-
tions to attain a better operating point at each step.

Algorithm 2 presents a form that speeds up Algorithm 1 by centering the sigma points
at the minimum value at each quadratic fitting step. It again involves a direction given
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by a unitary v⃗ together with the corresponding “sigma points directions” constellation,
v⃗i ∈ R(⃗v), i = 1, . . . , 2n, as follows. Given an operation point xk and a direction v⃗i, at
each new step, it employs two sigma points symmetrically displaced concerning xk, say
xk,1, xk,2 = ±σk v⃗i + xk, thus requiring only two new evaluations. Next, the constellation
is re-centered at the newly found minimum, and a new direction v⃗j ∈ R(⃗v) is explored,
distinct from any of the previously explored.

Note that the total number of sigma points directions are exhausted after 2n−1 iter-
ations (i.e., K > 2n−1 in Algorithm 2), and the choice of directions should restart anew.
Moreover, with an eye to parsimony, the number of sigma points can be further reduced for
the purpose here. It seems enough to explore 2n unitary vectors in n orthogonal directions
in a n-dimensional parameter space, and if K = n the whole set of directions is examined,
namely R (⃗v)/U ≡ ∅ in Algorithm 2. Lastly, the dispersion parameter σ in Algorithm 1 is
substituted by a sequence {σk}, to express the decreasing distance to the optimal, if one
can avail.

Algorithm 2 A stepwise decreasing algorithm

Require:
1: Initial parameter x0 and performance evaluation y0 = f (x0),
2: An unitary direction vector v⃗ and a sequence σk > 0, k = 1, . . . , K.

Ensure: If x0 is not an optimal parameter, y0 > y1 > · · · > yk
3: Set R (⃗v)← v⃗,
4: i← 1, v⃗i ← v⃗, k← 0, U ← ∅.
5: while k ≤ K do
6: xk,1, xk,2 = ±σk v⃗i + xk
7: y1 ← f (xk,1), y2 ← f (xk,2) ▷ two new evaluations
8: (xk+1, yk+1)← minx q(x; xk, xk,1, xk,2) ▷ quadratic fit, Section 4.1
9: k← k + 1

10: U ← ±v⃗i
11: if R (⃗v)/U ̸= ∅ then
12: i← i + 1
13: v⃗i ← u⃗ ∈ R (⃗v) s.t. u⃗ ̸∈ U
14: else
15: i← 1, v⃗i ← v⃗, U ← ∅.
16: end if
17: end while

To illustrate the operation of Algorithm 2, a Monte Carlo simulation was performed, in
which the following elements at each sample were randomly generated: the optimal param-
eter value x∗ and a positive definite matrix such that the cost is f (x) = (x− x∗)⊺M(x− x∗).

The matrix M is defined by a set of non-negative eigenvalues, λ ∈ Rn, λi > 0, in which
half of the eigenvalues range between 0.1 and 10, and half between 10 and 160. Another
support random symmetric matrix provides the orthogonal eigenvectors. The reason for
generating eigenvalues with different intervals is to include scenarios where the quadratic
form defining f is ill-conditioned. The initial operating point x0 is also randomly generated.

The vector v⃗ is chosen as one of the coordinate directions and σk = 5
√

2, ∀k. As in
Algorithm 2, once a minimum is computed, the operating point is re-centered, and the next
orthogonal direction is adopted to the minimizing algorithm. Table 1 shows the average
relative gain from the initial cost produced by some number of iterations of Algorithm 2.
Figure 6 shows convergence towards the minimum in an ill-conditioned case.
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Table 1. Average relative gain evaluation, 100( f (x0)− f (xk))/ f (x0)% obtained through 500 Monte
Carlo evaluations.

Number of Iterations

Mean Gain (%) K = 1 K = 5 K = 50 K = 100 K = 500

R2 69.43 92.27 99.91 99.98 100

R6 27.89 78.33 98.77 99.58 99.99

Table 1 shows that the minimization method for the 2D case achieves, on average,
a relative gain above 99% in 50 iterations, whereas the 6D case requires twice as many
iterations to reach the same percentage gain. As expected, this is mainly due to the
dimensional number, as a larger number of directions must be assessed (26−1 = 32 in 6D
against 2 directions in 2D), leading to an extended convergence effort to reach the optimal.

Figure 6 depicts the convergence path in an ill-conditioned problem, exhibiting a long
zigzag pattern. The minimization process is expected to converge much faster when the
Hessian matrix of an actual cost f near the optimal provides a well-conditioned positive
quadratic form.

Directions Points

Operation/Minimum 
Points

Optimal Point

Countour Lines

Figure 6. Path convergence of Algorithm 2 in a ill-conditioned problem in two dimensions.

5. Conclusions
This paper develops a technique to improve heading alignment applied to the

GNSS/INS integration scenario tailored for drone navigation problems using low-cost
MEMs-IMU sensors. It also accounts for multidimensional parameter alignment, resulting
in better accuracy of the overall navigation solution for a UAV platform.

The data presented concerning heading alignment come from actual operational flights
in the post-processed or in-mission flight modes. Synthetic data are used in this paper to
illustrate the extension to the multivariable alignment, which is mathematically sound but
still in progress.

It develops a parameter estimation scheme called parameter alignment, which differs
from traditional estimation methods. The name choice is inspired by the initial concept
of “heading alignment”, referred to as “parametric alignment” when generalized to any
parameter. It relies at any time on three identical stochastic filters, except for some initial
parameter (or parameter vector). Bayesian analysis yields the metric in Equation (12), which
is a qualifying measure of each filter made up by the innovation process and the covariance
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matrix sequences produced by the EKF-Lie filters. The unidimensional quadratic fit applies
straightforwardly to these measures, pointing out the optimal value. This work also extends
to the multidimensional case, in which the different optimization methods could apply. In
particular, we propose an optimization procedure based on the quadratic fit that improves
the parameter alignment value at each step and is well suited to the scenario since it
calculates the qualifying measure sparingly. Numeric experiments using synthetic data
demonstrate the proposed method’s applicability to finding the initial heading for a drone
navigation system. In addition, using the actual dataset from UAV missions, we show
that better performance can be achieved in real applications of drone navigation where the
IMU is incapable of gyro-compassing. The method proposed in this work is a reasonable
alternative for low-cost drone navigation systems. As far as the authors know, it originates
an approach to the initial heading alignment problem that is well suited for the navigation
of UAV platforms.
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