





In order to describe the group af automorphisms of this algebra, which
we denote by Aut(QD,), we introduce three subgroups.

First, for each element u € U(QD,), where U(QD,) stands for the set
of invertible elements of QD,,, let us denote by 7, the inner automorphism
induced by g and set:

Inn(QD,) = {r, | p € U(QD,) },

which is a normal subgroup of Aut(QD,,).
Also, given an automorphism ¢4 : Q¢ — Qqg,4|n,d # 1, we define an
automorphism @q : M2(Qq) — M>(Qq) by:

ddlaiy) = (¢a(ai;)) > (ai;) € Ma(Qu).
For each family of automorphisms (¢d)ajn we shall denote by & = (E) din
di#1

the automorphism of QD,, which is the identity in the first two components
and coincides with ¢q in M,(Qyg), for each d. We set:

M = {® = (¢4) yyn | b4 : Qu — Qq is an automorphism, djn, d # 1 }
d#1

Finally, let €1, e; be the identity elements of the first two components and
denote by v : QD, — QD the automorphism of QD,, such that v(e;) = e,
and y(ez) = €; and is the identity on the other simple components. Set:

F={177}‘

To fully describe Aut(QD,) we shall need some technical results whose
proofs are rather simple.

Lemma 2.1 Let £.8 be roots of unity such that [Q(8) : Q(&)] = 2 and o(£)
is odd. Then o(8) = m.o(£) where m equals 3,4 or 6.

Proof. Since £ € Q(f) and o(£) is odd, we have that £ = 67, for some
positive integer j, and hence o(£)|o(8). Write:

of§) = ph...ph
Ay C1 Cs

off) = pyY'...p{'ey" .48



with b; < @; and p;,q; pairwise different prime rational integers, 1 £ ¢ £
t,1<j<s.

Since [Q(8) : (Q(£)] = 2 we readily see that ¢(o(6)) = 2¢(0(£)), where
¢ denotes Euler’s Totient function. Thus, a; = b;. 1<i<tand
@t g g = 1) (g = 1) =2

Hence, we have the following possibilities: either ¢ = 2 with ¢y =2 or
g1 =2 withe; =1and g =3 withey =1, 0r ¢ = 3 with ¢; = 1. The
result follows O

Lemma 2.2 Assume there ezists a Q-isomorphism ¢ : M2(Qa) — Ma(Qm),
where d and m are divisors of n. Thend =m.

Proof. Such an isomorphism maps the center of M2(Qg) onto the center
of M2(Q.m), so we obtain, by restriction, a Q-isomorphism ¢ : Q4 — Qm.

Since Qq is a normal extension of Q, we have that ¢ is actually an
automorphism and thus Qg = Q.

Let 8 be a root of unity such that Q(8) = Q(&4,ém). We claim that
[Q(8) : Q(&)] = 1 or 2. In fact, since {m is a root of

X2 = (€ + E2DX + 1 € Qlém + X = Q&4 + £71)[X] C Q(&)IX],

it follows that [Q(8) : Q(&)] = [Q(€a,&m) : Q(&4)] < 2. Also, note that
(QO): Q(Ex + V)] = [Q(8) : Qém + €21)] 50 [Q(B) : Q)] =
1Q(6) : Qém)]-
If this dimension is 1, it follows readily that Q(6) = Q(£m) = Q(&2) and,
since m and n are odd, [6, I11.2.14] shows that m = d.
If [Q(8); Q(€m)) = 2, taking into account lemma 2.1 and the fact that m
and d are both odd we obtain again that m = d. (=]
We are now ready to prove:

Theorem 2.3 Aut(QD,) = (Inn(QD,) 4 M) x T

Proof. Since the elements in Inn(QD,) act trivially on Z(QD,), the center
of QD,, it is clear that Inn(QD,) N M = {1}. Furthermore, an easy
computation shows that o~'7,0 € Inn(QDy), for all 0 € M and 7, €
Inn(QD,). Also, (Jan(QD,)Y4M)NT = {1} and clearly y commutes with
every element in (Inn(QDy) 4 M).

Thus. we only need to prove that given an arbitrary element 3 € Aut(QD,
it can be written as a product of elements of the given subgroups. To do so,
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denote by A;, A; the first two simple components of QD,,. Since these are
the only two components such that 4, & A, & Q, we have that ¥(4,) = 4,
or ¥(A1) = A,.

Define 8 € Aut(QD,) equal to ¥ or ¥ o+ accordingly. Then #(4;) =
for i = 1,2 and lemma 2.2 shows that actua.lly # fixes all simple components
of QD,.

It will suffice to show now that 8 € Inn(QD,) A M.

For each component M3(Qq4), din, d # 1, 8 induces, by restriction to

the respective center, a Q-automorphism ¢4 : Q4 — Qq. Set ¢ = (¢q) 4 -
d#1
We claim that 80 ®~1 € Inn(QD,). In fact, §0 &1 is the identity map-
ping on the first two components and is a Qg-automorphism when restricted
to M2(Qq), djn, d # 1. By the Theorem of Skolem-Noether [3, Theorem

4.3.1], the result follows. o

3 Automorphisms of the Integral Group Ring

We begin this section by showing, in a very elementary way, that F, =
Q(€ + £71), where £ is a primitive root of unity of order n, is a minimal
splitting field for D,, over Q.

The conjugacy classes os D, are: {1}, bD!, = b < a >, and all the classes
of the form {a’,a'},1< i< "’ . Thus, if A is a splitting field for D,,, we

know that K’ D, has exactly L + 2 simple components.
We denote D! = 1+a+---+ a" ! and set:
Di, + bD!, D - bD",
9= ~ op 927 Sugg ~

6 = f2+E+E7 N et a )+ (X +EH) (P Ha D)+
HET HEFNRT + 0™, 1gigng

Notice that £ = {¢;,9:} U {e; }1<‘<“" , is a set of 271 + 2 elements in
the center of FD,,.
Clearly, the elements
1+ Eia 4L 6 o dll (Eia)n—l

fi= . y 1<i<n

are idempotents in C < @ > such that "%, f; = 1. Since C < a > has n
simple components, these are the principal idempotents of C < @ > . Hence,
€ = fi + fu-i is also an idempotent, 1 < i < 251 and:



n—1
Dl

;el_zfl_l_ n—l—T

Thus

n—1
fntgt+y e=1
i=1
and F is the set of principal idempotents of FD,. Consequently, F is the
minimal splitting field of D,, over Q.
Since gy + g2 = 2"3, it follows from [1, lemmal] that

A 7 nr
FD, = FD, 25 g FD, (i - DT) % F(Da/ D)) & FDa(1 - %’),

where FD, (1- I—)ﬁ;l) is the suin of all the non commutative simple components
of F'D,,.
We have that F(D, /D))= Fg F, so:

n—-1
2n = [FDn: Fl=2+ Y [(FDn)e;: F] > 2+4
=1
and thus [(FDy)e;: F] =4, 1 <1< 254,
Hence, we can write:

n—1

n—1

FD,=F@& F® (P M(F).
i-1

Now,let ¢ : ZD, — ZD, be a normalized automorphism. We shall use
our knowledge of the structure of F D, to prove that i can be written in the
form ¥ = 1, 0, where 8 is an automorphism induced by an automorphism
of D, and 7, is a conjugation by a unit 4 € QD,,.

We shall denote also by ¥ the natural extension of this map to an auto-
morphism of FD,. Notice that ¥ must permute the principal idempotents,
preserving the dimensions of the respective simple components. Also, since
@1 is the only principal idempotent whose augmentation is 1, we must have

that ¥(g;) = g1; hence, ¥(g2) =



Sete=g1+9g2 = Qni and let W be the F-linear subspace with basis By =
{1,a+a7?,.. .,a"_z-‘,+ag'}l‘}. Notice that the set By = {e,e1,.. -,eg_gl} cw
is linearly independent; thus, it is also a basis of W.

Since ¥(B2) = Ba, ¥ gives, by restriction, an automorphism of W.
Denote by P the matrix of ¥ relatively to the basis By; then, P = (zij)is a
permutation matrix with zy; =1 and zj3 =0 ifi#1.

Let Q be the matrix of ¥ relatively to the basis B; and set:

1 2 2 5

B= ntl

A—l 1 E+¢! e24e? .. 5-7l+£.g-
n

LT e ety (P g

Then it is easy to see that Q = APA™!.
The entries in the j* column, j # 1, are the coefficients of e,_; when
written as a linear combination of the elements in B;. Taking into account

[2, Theorem 33.8]. if we denote by x; the irreducible character of D,, afforded
by the simple component FDye;, 1 <7< 1'2'—1-, we can write:

1 xa(l) - xaz(1)
s AL (@ 5 x=z1(a)
5
1 xi(a™F) -+ xan(a™)

Lemma 3.1 The malriz Q is a permutation matriz.

Proof. Since ¥ is a normalized automorphism of ZD,, it follows that Q
is a matrix with integral entries and it will suffice to show that Q'Q = I,
where Q! denotes the transpose of O.

Now, Q'Q = (A~1)!P'AtAPA~". Since P'P = I, it is enough to show
that A'A commutes with P. To this end, set A'A = (y;;); then clearly,
yu = Ezﬂ Also,

n-1

_r ‘e .
e)=2+ > 267 +£7)=0,1<5¢<

=1

n—1

2 L)

where € denotes the augmentation mapping of ZD,,. Thus,



n-1

.. .. n—1
PR R ;
=1 2
hence:
n—1
vi; =2+ Y (946 Y)=1, forallj.
=1

Since A'A is symmmetric, we also have that y,, =1, , 2 <igad
One of the orthogonality relations (see [2, 31.11]) gives, in our case, that

n=1

xe(Dxi(1) + Y 2xk(a')xi(a™) = éx2n.
=1

So: 1
= ; ; §ki2n 1 1
W)+ 3 xaladdxi(a’) = 2T XeLx()
=1
thus:
"—'zﬂ 1 1 1
1 n+ 2 2 2
n?AtA = 1 2 n+2 ... 2 = ()

Set n2PLA'AP = (z;;) and let 0 € S_*__ be the permutation such that
= (4

o(s)s)-
Then z,; = y,(i)o(;)- Since ¥(e) = e, we see that z;; = Yo(inn = 1, for all
t > 1 and thus, also 2;; = 1, for all ¢ > 1. s

If:,7# 1 and i # j, we have that o(i) # o(5). Thus, z,; = Yo(i)o(j) = 2
and, when i = j # 1, we have that z;; = y,,(,),,(,) =n+2. Hence, PA'AP! =
At A as desired. o

We are now ready to prove:

Theorem 3.2 There ezists a unit p € QD, and an automorphism 8 of
ZD, induced from an automorphism od D, such thal = 1, 086.

Proof. Since ¥ is a normalized automorphism and permutes class sums,
we have that ¥(a+ a™') = a? + a7, for some index j, 1 € j < "’ . We
claim that ged(j.n) = 1. To see this, we compute:



n—1
2
~1\n =2 n n—-21 an+2| .
(a+a™) + g ; (a"* + )
since ¥ permutes class sums, we see that the coefficient of 1 in ¥((a +a=1)?)
is equal to 2. On the other hand, we have that:

o=l
Pla+a) =(a’ +a) =2+ Z (1:) (@?(=2) 4 (),
=1
Thus, a?’ # 1 for 1 < i < “—;1-; consequently ged(j,n) = 1 and thus
o(a?) = o(a).
Finally, let 8 : D,, — D,, be the automorphism defined by 8(a) = o’ and
6(b) = b and denote also by 8 its natural extension to ZD,,.
Then, 8~ o1 extended to QD,,, fixes all conjugacy classes of D,, and thus
the center of QD,,. By the Theorem of Skolem-Noether, working componen-

twise, we can find an inner automorphism 7, of QD,, such that 8~ o) = 7.
Hence vy = 8o 7,,. O
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