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1 Introduction 

In lhis paper, we shall give a complete description of the group of automor­
phisms of the group algebra QDn, where Dn denotes the DihedraJ group of 
order 2n, 11 odd. Then, we shaJI use simillar methods to give a new proof 
of the automorphism conjecture for Dn, namely, we shaJl show that every 
normaJized automorphism u of ZDn can be written in the form u = Tµ o (), 
where () is an automorphism induced by an automorphism of the group Dn 
and Tµ is a conjugation by a unit µ E QDn. This fact also follows from 
a result of G. Peterson [5, theorem 3.6]. Our technique offers a different 
approach to this problem. 

2 Rational Group Algebras 

We shaJI use the following presentation for Dn: 

Dn =< a,bjan = b2 = I.bah= a - 1 >. 

It follows from [4, theorem 2.2] that the rational group algebra of this 
group is of the form: 

QDn ~QED QED (ED din M2(Qa)) 
#I 

where Qa = Q(~d + (; 1
) and ~d denotes a primitive root of unity of order d. 

1 Both authors were partially supported by a research grant from CNPq. 
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In order to describe the group af automorphisms of this algebra, which 
we denotP by Aut(QDn), we introduce three subgroups. 

First, for each elementµ E U(QDn), where U(QDn) stands for the set 
of invertible elements of QDn, let us denote by r,, the inner automorphism 
induced byµ and set: 

Inn(QDn) = {r,, Iµ E U(QDn) }, 

which is a. normal subgroup of Aut(QDn)-
Also, given an automorphism <Pd : Qd ..... Qd, tiln,d-::/- I, we define an 

automorphism <Pd: M2(Qd)-+ M2(Qd) by: 

¢d(a;1) = (¢d(Oij)) , (a;j) E M2(Qd)-

For each family of automorphisms ( <Pd )din we shall denote by 4> = ( tl>d) din 

d/1 
the automorphism of QDn which is the identity in the first two components 
and coincides with <l>d in M2( Qd ), for each d. We set: 

M = { cJ> = (<Pd) din I <Pd : Qa --+ Qd is an automorphism, din, d -I- l } 
df-1 

Finally, let e 1, e2 be the identity elements of the first two components and 
denote by 1 : QDn --+ QDn the automorphism of QDn such that 1'( e1 ) = e2 
and 1( e2) = e1 and is the identity on the other simple components. Set: 

f={l,7}. 

To fully describe Aut(QDnl we shall need some technical results whose 
proofs are rather sim!)le. 

Lemma 2.1 Let f..8 be roots of unity such that [Q(fJ): Q(O] = 2 and o(f.) 
is odd. Then o(fJ) = m.o(O where m equals 3,4 or 6 . 

Proof. Since f. E Q( 0) and o(fl is odd, we have that f. = 0J. for some 
positive integer j , and hence o(fllo( 0). Write: 

o(fl 
o(fJ) = 

b1 b, 
P1 ···Pt 
pr' ... pr• q~• ... q~• 
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with b; S a; and p;, q; pairwise different prime rational integers, 1 S i S 

t, 1 S j $ s. 
Since [Q(O) : (Q(n] = 2 we readily see that </>(o(O)) = 2</>(o({)), where 

</> denotes Euler's Totient function. Thus, a; = b;. l ::; i ::; t and 

qfi-l . . . q~•-1(q1 - 1) .. . (q. - 1) = 2. 

Hence, we have the following possibilities: either q1 = 2 with c1 = 2 or 

Q1 = 2 with c1 = I and q2 = 3 with C2 = 1, or Q1 = 3 with c1 = 1. The 

result follows D 

Lemma 2.2 Assume there exists a Q-isomorphism <I>: M 2(Q,1) - M2(Qm), 

where d and m are divisors of n. Then d = m. 

Proof. Such an isomorphism maps the center of M2(Q,1) onto the center 

of M2(Qm), so we obtain, by restriction, a Q-isomorphism </>: Q,1 - Qm. 

Since Q,1 is a normal extension of Q, we have that ¢ is actually an 

automorphism and thus Q,1 = Qm-

Let {J be a root of unity such that Q( 0) = Q( {d, {m ). We claim that 

[Q(O) : Q({d)] = 1 or 2. In fact, since {m is a root of 

X 2 
- (cm + c;;,1 )X + 1 E Q(lm + {;;;1 )[X] = Q({,1 + {i1 )[X] C Q({,1)[X] 1 

it follows that [Q(8) : Q({d)] = [Q({d,{m) : Q({,1)] 5 2. Also, note that 

[Q(O) : Q({d + {;; 1 
)] = [Q(O): Q({m + {;;;1 )} SO [Q(8): Q({d)] = 

[Q(O) : Q({m)]. 
If this dimension is 1, it follows readily that Q(O) = Q({m) = Q({,1) and, 

since m and n are odd, [6, 111.2.14] shows that m = d. 

If [Q(O); Q({m)] = 2, taking into account lemma 2.1 and the fact that m 

and d are both odd we obtain again that m = d. □ 

We are now ready to prove: 

Theorem 2.3 Aut(QDn) = (lnn(QDn) >4M) x r 

Proof. Since the elements in lnn(QDn) act trivially on Z(QDn), the center 

of QDn, it is clear that Inn(QDn) n M = {l}. Furthermore, an easy 

computation shows that u-1rµu E lnn(QDn), for all u E M and Tµ E 

Inn(QDn), Also, (Jnn(QDn) ><IM)nf = {l} and clearly 7 commutes with 

every element in ( lnn(QDn) ><IM). 
Thus. we only need to prove that given an arbitrary element ¢ E Aut( QD~ 

it can be written as a product of elements of the given subgroups. To do so, 
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denote by A1 , A2 the first two simple components of QDn, Since these are 
the only two components such that A1 ~ A2 ~ Q, we have that ~,(At)= Ai 
or ,t,(At) = A2. 

Define () E A ut( QD,.) equal to ,t, or t/J o-, accordingly. Then IJ( Ai) = A; 
for i = 1, 2 a.nd lemma 2.2 shows that actually() fixes all simple components 
of QDn, 

It will suffice to show now that 9 E Inn( QDn) >IM. 
For each component M2 (Qd), din, d 'f 1, 9 induces, by restriction to 

the respective center, a Q-automorphism 'Pd: Qd-+ Qd, Set 4' = (t/>d) din. 
#I 

We claim that 9o4'-1 E /nn(QDn)• In fact, 610~-• is the identity map-
ping on the first two components and is a Qd-automorphism when restricted 
to M2(Qd), djn, d 'f 1. By the Theorem of Skolem-Noether (3, Theorem 
4.3.1], the result follows. □ 

3 Automorphisms of the Integral Group Ring 

We begin this section by showing, in a very elementary way, that Fn = 
Q({ + {-1 ), where { is a primitive root of unity of order n, is a minimal 
splitting field for Dn over Q. 

The conjugacy classes os Dn are: { 1}, bD~ = b < a >, and all the classes 
of the form { ai, a-i}, 1 S i S n21 . Thus, if I{ is a splitting field for Dn, we 
know that /{ Dn has exactly n21 + 2 simple components. 

We denote 15:; = 1 +a+···+ an-I and set: 

D' +bD' 91 = n n 
2n 

D' -bD' 
g 

_ n n 
I 2 - 2n , 

e; = ~(2 + (e + {-i )(a+ a-1) + ((2i + {-2i )(a2 + a-2) + ... 
n-1 · !!±.!. · n-1 !!±.!. I +({_2_ 1 +{ 2 1 )(a_2_ + a 2 )) , 1 Si :5 n2 . 

Notice that E = {91,92} U {ei}i<i<~• is a set of "21 + 2 elements in 
- - 2 the center of FDn. 

Clearly, the elements 

l+{ia+· · ·+({ia)"-1 . !,· = _____ .;.;__...;..__ 1 < • < n 
' n ' - -

a.re idempotents in C < a > such that Li=I /; = 1. Since C < a > has n 
simple components, these are the principal idempotents of C < a > . Hence, 
e; = /; + /n-i is also an idempotent, I :5 i :5 n21 and: 
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Thus 

n-1 
-2- n-1 D' 
L e, = L /; = 1 - fn = 1 - ~-
•=l i=I n . 

n-1 
-2-

91 + 92 + I: e; = 1 
i=l 

and E is the set of principal idempotents of F Dn- Consequently, F is the 
minimal splitting field of Dn over Q. 

Since 91 + 92 = P:-, it follows from [ 1, lemmal] that 

where F Dn( 1-~) is the sum of all the non commutative simple components 
of FDn. 

We have that F(Dn/ D~) ~ FEB F, so: 

n-1 
- 2- n-1 

2n = (FDn: F] = 2 + E((FDn)e;: F] ~ 2 + 4--, 
i=I 

2 

and thus [(FDn)e;: F] = 4, 1 ~ i ~ n21 • 

Hence, we can write: 

n-1 
-2-

FDn ~ FEB Ft1HffiM2(F)). 
i-1 

Now, let t/.•: ZDn - ZDn be a normalized automorphism. We shall use 
our knowledge of the structure of F Dn to prove that T/,J can be written in the 
form '1/J = Tµ o IJ, where 6 is an automorphism induced by an automorphism 
of Dn and r,, is a conjugation by a unitµ E QDn, 

We shall denote also by t/J the natural extension of this map to an auto­
morphism of F Dn. Notice that T/,J must permute the principal idempotents, 
preserving the dimensions of the respective simple components. Also, since 
91 is the only principal idempotent whose augmentation is 1, we must have 
that ¢(91) = 91; hence, ,J,(g2) = 92-
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Set e = 9t + 92 = '!f- and let W be the F-linear subspace with basis B1 = 
-l n-1 ~ . { } 

{1,a+a , ... ,a 2 +a 2 }. Not1cethatthesetB2 = e,et,•··,e!!? CW 

is linearly independent; thus, it is also a basis of W. 

Since 1/J( B2 ) = B2 , t/; gives, by restriction, an automorphism of W . 

Denote by P the matrix of 1/J relatively to the basis B2 ; then, P = (xii) is a 

permutation matrix with xu = I and Zit = 0 if i '# 1. 
Let Q be the matrix of t/; relatively to the basis B1 and set: 

A=! [ : 

2 2 2 

€ + €-1 e2 + e-2 {!!=!. {~ 
2 + 2 

1l 

L e=1. ~ en-1 + en+l e< !!? )2 + e n\-1 
2 + { 2 

Then it is easy to see that Q = APA-1 • 

The entries in the fh column, j '# 1, are the coefficients of eJ-I when 

written as a linear combination of the elements in B 1 • Taking into account 

(2, Theorem 33.8], if we denote by Xi the irreducible character of Dn afforded 

by the simple component F Dnei, 1 ~ j ~ n;t, we can write: 

Xn2J (1) l 
x.=.1.(a) 

Xn-1

2

(aT) . 
--r 

Lemma 3.1 Tiu: nuilT'ii· Q is a permutation matrix. 

Proof. Siuce VJ is a normalized automorphism of ZDn, it follows that Q 

is a matrix with intE·gral entries and it will sufficE' to show that Q1Q = I, 

where Q1 denotes th«) transpose of Q. 
Now, Q'Q = (A- 1 )1P1A1APA-1 • Since P1P = I, it is enough to show 

that A1 A commutes with P. To this end, set A1 A = (Yij ); then clearly, 

Yu = n.:p.. Also, 

where f denotes the augmentation mapping of ZDn. Thus, 

6 



hence: 

So: 

n-1 --r 
Y1; = 2 + })l;; + C;;) = 1, for all j. 

j=I 

Since A 1 A is symmmetric, we also have that y,1 = 1, , 2 ~ i ~ n21 , 
One of tlw orthogonality relations (see [2, 31.11)) gives, in our case, that: 

n-1 -,-
XA:(l)x,(1) t L 2n(ai)x,(a-i) = Oici2n. 

i=l 

n-1 

(1) (1) + ~ ( ;) , ( ;) _ 61c12n T n(l)x,(l) ;\k :Xt ~ Xk a XI a - -------, 
i=l 2 

thus: 
!!.±.! . 

1 1 2 
1 n+2 2 2 

n2A1A = 1 2 n+2 2 = (y;;)-

1 2 2 n+2 

Set n2 P1A1AP = (z;1 ) and let u E S!!i.! be the permutation such that 
l 

P = (6a(j)J ). 

Then Z;j = Ya(i)a(j)· Since tb(e) = e, we see that Zit = Ya(i)J = 1, for all 
i > 1 and thus. also ZJi = 1, for all i > 1. / 

If i, j -/- 1 and i :/= j, we have that o( i) -/- o(j ). Thus, z;; =· Y .. (i)CJ(j) = 2 
and. when i = j-/- 1, we have that z;; = y.,(i)<1(i) = n + 2. Hence, PA 1 AP1 = 
A 1 A as desired. D 

We are now ready to prove: 

Theorem 3.2 There exists a unit µ E QDn and an automorphism 8 of 
ZDn induced from an automorphism od Dn such that V' = r,_. o 8. 

Proof. Since t/1 is a normalized automorphism and permutes class sums, 
we have that tb(a+ a- 1 ) = aJ + a-J, for some index j, I$ j $ n 21 • We 
claim that gcd(j. n) = 1. To see this, we compute: 
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(a+ a-1 
)" = 2 + t ('.')(a"- 2

' + a"+
2
') . 

i=l I 

since t/J permutes class sums, we see that tbe coefficient of 1 in 1f,((a+a-1 )") 

is equal to 2. On the other hand, we have that: 

n-1 

ip(a + a-1 )" = (ai + a-i)" = 2 + t (7) (ai(-2i) + a1(2i) ). 

•=I 
Thus, a2ii f 1 for I :::; i ::; 1121 ; consequently gcd(j, n} : I and thus 

o(ai) = o(a). 
Finally, let I): D,. ~ D,. be the automorphism defined by O(a) = ui and 

8(b) =band denote also by I) its natural extension to ZD,. . 
Then, 1)- 1 o'f/, extended to QD,., fixes all conjugacy classes of D,. and thus 

the center of QD,. . By the Theorem of Skolem-Noether, working romponen­

twise, we can find an inner automorphism r,, of QD,. such that 9-1 o,f, = r,,. 

Hence t/• = (}or,,. □ 
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