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ABSTRACT
This paper derives a general Bartlett correction formula to improve
the inference based on the likelihood ratio test in a multivariate
model under a quite general parameterization, where themean vec-
tor and the variance-covariance matrix can share the same vector of
parameters. This approach includes a number of models as special
cases such as non-linear regression models, errors-in-variables mod-
els, mixed-effects models with non-linear fixed effects, and mixtures
of the previous models. We also employ the Skovgaard adjustment
to the likelihood ratio statistic in this class ofmultivariatemodels and
derive a general expression of the correction factor based on Skov-
gaard approach. Monte Carlo simulation experiments are carried out
to verify the performance of the improved tests, and the numerical
results confirm that the modified tests are more reliable than the
usual likelihood ratio test. Applications to real data are alsopresented
for illustrative purposes.
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1. Introduction

Acommonly used testing procedure is thewell-known and time-honoured likelihood ratio
(LR) test. The asymptotic chi-squared distribution (χ2) of the LR statistic (denoted here as
ω) is frequently used to test hypotheses of interest in parametric (regression) models, since
its exact distribution is not easy to obtain in finite-sized samples. The null rejection rates
(i.e. the rejection rates under the null hypothesis) based on the asymptotic distribution
may be not close to the adopted significance level. In this case, therefore, the asymptotic
approximation provided by the chi-squared distribution to the exact null distribution of
the test statistic (that is, the distribution obtained under the null hypothesis) produces
unreliable results. On the other hand, higher-order asymptotic theory may help attenuate
this issue, since more terms in the Taylor expansion are considered in the approximation.
Based on this procedure, Bartlett [1] proposed an improved LR statistic. His argument
goes as follows: suppose that, under the null hypothesis, E(ω) = k + B/n + O(n−2) =
k{1 + k−1B/n + O(n−2)}, where B is a constant that can be consistently estimated under
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2 T. F. N. MELO ET AL.

the null hypothesis and k is the difference of the dimensions of the parameter spaces under
the alternative and null hypotheses. Then, the expected value of the transformed statistic
ω∗ = ω/(1 + k−1B/n)would be closer to the one from aχ2

k distribution than the expected
value of the original LR statistic. This became widely known as the Bartlett correction.
Lawley [2] showed the remarkable fact that the Bartlett correction, under mild regularity
conditions, guarantees that all the moments of the adjusted statistic ω∗ are equal to those
of the χ2

k distribution up to orderO(n−1). This implies that the Bartlett correction factor
1 + k−1B/n also corrects the distribution of the statistic ω to orderO(n−1). Moreover, the
null distribution of themodified statisticω∗ remains χ2

k with approximation error of order
O(n−2) when B is replaced by a

√
n-consistent estimate (see, for example, [3]).

Bartlett correction has become a widely used method for improving the large-sample
chi-squared approximation to the null distribution of the LR statistic when the sample size
is finite. Several papers have been published giving closed-form expressions for comput-
ing Bartlett correction factors in special models. To mention a few, but not limited to, the
reader is referred to Zucker et al. [4], Cordeiro [5], Barroso and Cordeiro [6], Cordeiro
et al. [7], Fujita et al. [8], Araújo et al. [9], Guedes et al. [10] and Larsson [11], among
many others. DiCiccio and Stern [12] provides a good discussion on Bartlett correction
in both frequentist and Bayesian settings. For a detailed survey of Bartlett correction, the
reader is referred to Cribari–Neto and Cordeiro [13] and Cordeiro and Cribari–Neto [14]
and the references cited therein. It is worth mentioning that the vast majority of the
works regarding Bartlett’s corrections to the LR statistic consider that the mean vector and
variance-covariance matrix do not share any parameters. In such cases, the Bartlett cor-
rection factor does not need some derivatives of the log-likelihood function with respect
to the model parameters (and their corresponding expected values), simplifying its com-
putation in some sense; see the above-mentioned references. There are, however, models
where themean vector and variance-covariancematrix share parameters as, e.g. the class of
structural errors-in-variables models (see Section 2). Models with this complex paramet-
ric structure require also the mixed derivatives of the log-likelihood function with respect
to the model parameters (and their expected values) to attain a general Bartlett correction
factor to the LR statistic. This complexity may explain why the derivation of a Bartlett cor-
rection to the LR statistic is noticeable only in simple models where the mean vector and
variance-covariance matrix share parameters. For instance,Wong [15] derived the Bartlett
correction factor by means of orthogonal parameterization for a simple linear regression
model when both variables are subject to measurement errors under a specific identifia-
bility condition (see also Arellano-Valle and Bolfarine [16] for Bartlett corrections under
different identifiability conditions), whereas Wong [17] computed the Bartlett correction
factor under a measurement error model which compares several measurement instru-
ments with a standard one. It should be noted that these works were carried out under
simple errors-in-variables models. As we shall see in what follows, we have been able to
derive a general Bartlett correction factor to the LR statistic in a multivariate model where
the mean vector and the variance-covariance matrix can share parameters.

In this paper, we shall derive a general closed-form expression for the Bartlett correction
factor to the LR statistic in the class of multivariate models with general parameterization
to improve the inference based on the LR test in this class of models. This class of multi-
variate models was introduced by Patriota and Lemonte [18]. In the multivariate normal
model with general parameterization, the mean vector and the variance-covariance matrix



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 3

can share parameters. This approach unifies several importantmultivariate normalmodels,
even errors-in-variables models in a more complex framework than the above mentioned
such as, for instance, models under different kinds of heteroscedastic regimes. We also
derive a closed-formexpression for the Skovgaard [19]’s correction to the LR statistic under
normality. Skovgaard’s corrections were previously studied inMelo et al. [20] under a gen-
eral class of elliptical distributions, but only an algorithm to compute the corrected version
was offered. Here, instead, we provide a closed-form analytical expression to the Skov-
gaard correction under normality. It is worth stressing that the closed-form expression of
the Skovgaard correction factor is provided using matrix notation, which has numerical
advantages since it requires only simple operations on matrices and vectors.

One may argue that the use of improved tests becomes less appealing in the era of big
data, since the null distribution of the conventional and improved test statistics will closely
follow the asymptotic distribution for large sample sizes. This is true, but, naturally, there
exist actual data examples where the sample size is small, and so the chi-squared approx-
imation to the null distribution of the usual LR statistic will produce unreliable results.
In these cases, where small-sized samples are observed, it is known that the asymptotic
tests with no correction are less reliable than the corrected ones. Empirical examples with
small samples are reported in some works. For example, Lemonte et al. [21] considered an
empirical application to a biaxial fatigue dataset on the lifetime of n = 15 metal pieces in
the process of metal extrusion; Vargas et al. [22] presented an empirical example related to
an experiment to study the size of squid eaten by sharks and tuna, where the study involved
measurements taken onn = 22 squids; andMedeiros and Ferrai [23] considered a real data
example where it is investigated the effect of emulsion components on n = 20 orange bev-
erage emulsion properties; among others. In short, even in the era of big data, small samples
are observed in different areas and, consequently, the use of improved tests in such a case
is always justifiable.

We provide general expressions to the correction factors in matrix notation. Although
the algebraic forms of the Bartlett correction factor as well as the Skovgaard adjustment are
cumbersome, they can be incorporated into some software with numerical linear algebra
facilities such as object-oriented matrix programming language Ox; see Doornik [24].

This paper is organized as follows. Section 2 presents the model and some moments of
derivatives of the log-likelihood function. In Section 3, we present a generalmatrix formula
for computing the Bartlett correction factor. For the sake of completeness, we also present
an expression inmatrix notation to compute the Skovgaard adjustment to the LR statistic in
this section. In Section 4, we consider some useful examples of the proposed formulation.
Numerical evidence of the effectiveness of the finite sample corrections is presented and
discussed in Section 5. The numerical results show that themodified tests aremore reliable
in finite samples than the usual LR test. Section 6 contains applications to real data. Finally,
Section 7 concludes the paper.

2. Themodel

According to Patriota and Lemonte [18], the multivariate normal model under a general
parameterization can be represented as

Y i = μi + εi, i = 1, 2, . . . , n, (1)
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where Y i is a random qi-vector of dependent variables, μi := μi(θ) is a mean function
(whose shape is assumed to be known) which is three times continuously differentiable
with respect to each element of θ = (θ1, θ2, . . . , θp)�. Also, θ ∈ � ⊆ R

p is a p-vector of
unknown parameters of interest. We assume that the independent random errors εi (i =
1, 2, . . . , n) follow a multivariate normal distribution, εi ∼ Nqi(0,�i), where�i := �i(θ)

is a positive definite qi × qi variance-covariance matrix, and the entries of�i are assumed
to be four times continuously differentiable in each element of θ . The functions μi and
�i have to be defined in such a way that all elements of θ are identifiable in the general
model (1). It is evident that covariates can also be included in both μi and �i.

It is worth mentioning that the model in (1) covers many important regression models,
probably it includes allmultivariate normalmodels with independent vector responses. For
example, it may be applied in an errors-in-variables model in which we observe two vari-
ables, namely Yi and Xi, and the relationship between them is given by Yi = α + βxi +
ei and Xi = xi + ui, where xi ∼ N (μx, σ 2

x ), ei ∼ N (0, σ 2) and ui ∼ N (0, σ 2
u ), with σ 2

u
known. Additionally, consider that xi, ei and ui are mutually uncorrelated. Then, denot-
ing Y i = (Yi,Xi)

� and θ = (α,β ,μx, σ 2
x , σ 2)�, we can write this model as the general

formulation (1), where Y i ∼ N2(μ,�), and

μ := μ(θ) =
(

α + βμx
μx

)
, � := �(θ) =

(
β2σ 2

x + σ 2 βσ 2
x

βσ 2
x σ 2

x + σ 2
u

)
.

The above model corresponds to the simple linear regression where the covariate xi is not
observed directly, instead of it, it is observed a surrogate variable, Xi. Notice that the mean
vector and the variance-covariance matrix have a parameter in common, and so it corre-
sponds to a simple example where the usual approach (assuming that the mean vector and
the variance-covariance matrix do not share any parameter) is not applicable. The effort to
derive a Bartlett correction factor in this simple model is very hard, as mentioned earlier.
However, the general expression that we will derive for the Bartlett correction factor as well
as for the Skovgaard adjustment term can be applied to this model with minimal effort.

To simplify notation, define μi := μi(θ), �i := �i(θ), ui = Y i − μi, Y = vec(Y1,
Y2, . . . ,Yn), μ := μ(θ) = vec(μ1,μ2 . . . ,μn), � := �(θ) = diag{�1,�2, . . . ,�n} and
u = Y − μ, where vec(·) is the vec operator, which transforms a matrix into a vector by
stacking the columns of the matrix one underneath the other. The log-likelihood function
for θ , apart from an unimportant constant, is given by

�(θ) = −1
2

n∑
i=1

log{det(�i)} − 1
2

n∑
i=1

tr{�−1
i uiu�

i }

where tr{·} means the trace operator. Note that we can also express �(θ) = −(1/2)
log{det(�)} − (1/2)tr{�−1uu�}. Here, we assume valid the usual regular conditions [25,
Ch. 9] on the behaviour of �(θ) as the sample size n approaches infinity, such as the regular-
ity of the first three derivatives of �(θ)with respect to θ and the uniqueness of themaximum
likelihood (ML) estimate θ̂ = (θ̂1, θ̂2, . . . , θ̂p)� of θ = (θ1, θ2, . . . , θp)�. Moreover, define
the following quantities (we naturally assume that they do exist and are finite):

ai(r) = ∂μi
∂θr

, ai(rs) = ∂2μi
∂θr∂θs

, Ci(r) = ∂�i

∂θr
,
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Ci(rs) = ∂2�i

∂θr∂θs
, Ai(r) = ∂�−1

i
∂θr

= −�−1
i Ci(r)�

−1
i ,

ar = ∂μ

∂θr
, ars = ∂2μ

∂θr∂θs
, arst = ∂3μ

∂θr∂θs∂θt
, Cr = ∂�

∂θr
,

Crs = ∂2�

∂θr∂θs
, Crst = ∂3�

∂θr∂θs∂θt
, Crstv = ∂4�

∂θr∂θs∂θt∂θv
,

Ar = ∂�−1

∂θr
= −�−1Cr�

−1,

Ars = ∂2�−1

∂θr∂θs
= −ArCs�

−1 −�−1Crs�
−1 − �−1CsAr,

Arst = ∂3�−1

∂θr∂θs∂θt
= −ArsCt�

−1 − AsCrt�
−1 − AsCtAr

− ArCst�
−1 −�−1Crst�

−1 − �−1CstAr

− ArCtAs − �−1CrtAs − �−1CtArs,

Arstv = ∂4�−1

∂θr∂θs∂θt∂θv
= −ArstCv�

−1 − AstCrv�
−1 − AstCvAr − ArtCsv�

−1

− AtCrsv�
−1 − AtCsvAr − ArtCvAs − AtCrvAs

− AtCvArs − ArsCtv�
−1 − AsCrtv�

−1 − AsCtvAr

− ArCstv�
−1 −�−1Crstv�

−1 −�−1CstvAr − ArCtvAs

− �−1CrtvAs − �−1CtvArs − ArsCvAt − AsCrvAt

− AsCvArt − ArCsvAt −�−1CrsvAt − �−1CsvArt

− ArCvAst − �−1CrvAst − �−1CvArst ,

where r, s, t, v = 1, 2, . . . , p. In addition, define the following quantities: Di = [ai(1),
ai(2), . . . , ai(p)], V i = [vec(Ci(1)), vec(Ci(2)), . . . , vec(Ci(p))],

Fi =
[
Di
V i

]
, Hi =

[
�i 0
0 2(�i ⊗ �i)

]−1
, u∗

i =
(

ui
−vec(�i − uiu�

i )

)
,

F =
[
D
V

]
, H =

[
� 0
0 2(� ⊗ �)

]−1
, u∗ =

(
u

−vec(� − uu�)

)
,

where D = [a1, a2, . . . , ap], V = [vec(C1), vec(C2), . . . , vec(Cp)], and ⊗ is the Kronecker
product.We assume that Fi has rank p. FromPatriota and Lemonte [18], the score function
has the form U := U(θ) = F�Hu∗, and the expected Fisher information matrix is given
byK := K(θ) = F�HF. The observed Fisher information matrix can be expressed as J :=
J(θ) = ∑n

i=1(F
�
i HiMiHiFi + Gi), whereGi is a p × pmatrix whose the (r, s)th element is

given by −(a�
i(rs)vec(Ci(rs))

�)Hiu∗
i for r, s = 1, 2, . . . , p, and

Mi =
[

�i 2�i ⊗ u�
i

2�i ⊗ ui Mi;22

]
,
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with Mi;22 = 2[(uiu�
i ) ⊗ �i +�i ⊗ (uiu�

i ) −�i ⊗ �i]. The Fisher scoring method can
be used to estimate θ by iteratively solving the equation (F(m)�H(m)F(m))θ (m+1) =
F(m)�H(m)u∗∗(m), wherem = 0, 1, 2, . . . is the iteration counter, and u∗∗(m) = F(m)θ (m) +
u∗(m). Under regularity conditions, the ML estimators obtained using this iterative
equation are asymptotically normally distributed andwemaywrite θ̂ a∼ Np(θ ,K−1), when
n is large, a∼ denoting approximately distributed. The reader is referred to Patriota and
Lemonte [18] for further details.

3. Improved LR tests

Let the p-vector θ be partitioned as θ = (ψ�, ξ�)�, where the ν-vector ψ represents the
parameter of interest, and the (p − ν)-vector ξ is the nuisance parameter vector. Consider
the problem of testing the null hypothesisH0 : ψ = ψ (0) against the composite alternative
hypothesis H1 : ψ 	= ψ (0), where ψ (0) is a fixed ν-vector. Let θ̂ = (ψ̂

�, ξ̂�
)� be the ML

estimate of θ , and θ̃ = (ψ (0)�, ξ̃�
)� be the ML estimate of θ obtained by imposing that

the null hypothesis holds. The LR statistic for testingH0 : ψ = ψ (0) is given by

ω = 2[�(ψ̂ , ξ̂) − �(ψ (0), ξ̃)].

Under the null hypothesis, the limiting distribution of the test statistic ω is χ2
ν (i.e. chi-

squared distribution with ν degrees of freedom). The null hypothesis is rejected for a
given nominal level, α say, if the observed value of the test statistic ω exceeds the upper
100(1 − α)% quantile of the central χ2

ν distribution. It is worth emphasizing that the chi-
squared distribution χ2

ν may be a poor approximation to the exact null distribution of the
above statistic when the sample size is not sufficiently large. It is thus important to obtain
refinements for inference based on this test from second-order asymptotic theory. Next,
we derive a general Bartlett correction factor to the LR statistic, and we also present an
adjusted LR statistic based on the Skovgaard [19] procedure.

The Bartlett-corrected LR statistic for testingH0 : ψ = ψ (0) is given by

ωB = ω

1 + ν−1�
,

where � := �(θ) = ε(p) − ε(p−ν), and ε(p) and ε(p−ν) can be attained from formula (2).
It follows that Pr(ωB ≤ z) = Pr(χ2

ν ≤ z) + O(n−2), whereas Pr(ω ≤ z) = Pr(χ2
ν ≤ z) +

O(n−1), a clear improvement. After long and tedious algebra, we arrive at the following
proposition.

Proposition 3.1: The Bartlett correction factor in the multivariate normal model with
general parameterization is obtained from

ε(p) = tr{K−1[L − M − N]}, (2)

where the p × p matrices L,M and N are defined through the entries

Lrs = tr{K−1E(rs)},
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Mrs = −1
6
tr{K−1P(r)K−1P(s)} + tr{K−1P(r)K−1Q(s)} − tr{K−1Q(r)K−1Q(s)},

Nrs = −1
4
tr{P(r)K−1}tr{P(s)K−1} + tr{P(r)K−1}tr{Q(s)K−1}

− tr{Q(r)K−1}tr{Q(s)K−1},

where r, s = 1, 2, . . . , p. The (t, v)th elements of the matrices E(rs), P(r), and Q(s) become

E(rs)
tv = −1

8
tr{AtvrCs + 4AstrCv + AtCvrs + AvCtrs + ArCtvs + AtvCrs + AvrCts

+ 5AtrCvs +�−1Ctvrs + Atvrs�} − 1
4
(a�

t Avsar + a�
t Avras − 3a�

t Arsav

− 3a�
v Atsar + a�

s Atvar + a�
s Atrav + a�

t Asavr − 3a�
t Aravs + a�

t Avars

+ a�
s Atavr + a�

s Avatr + a�
s Aratv + a�

r Avats − 3a�
r Atavs + a�

r Asatv

− 3a�
v Asatr − 3a�

v Arats − 3a�
v Atars + a�

tv�
−1ars − 3a�

tr�
−1avs

+ a�
vr�

−1ats + a�
t �

−1avrs − 3a�
v �

−1atrs + a�
r �

−1atvs + a�
s �

−1atvr),

P(r)
tv = −1

2
tr{AtvCr + AvCtr + AtCvr + �−1Ctvr + Atvr�} − a�

t Arav − a�
v Atar

− a�
t Avar − a�

t �
−1avr − a�

v �
−1atr − a�

r �
−1atv,

Q(s)
tv = −1

2
tr{AtvCs + AvsCt + AvCts + AtCvs + �−1Ctvs + Atvs�}

− a�
v Atas − a�

s �
−1atv − a�

v �
−1ats,

where t, v = 1, 2, . . . , p.

Proof: Appendix. �

Wehave that ε(p−ν) is obtained from (2) by taking into account only the nuisance param-
eters in ξ ; that is, r and s vary over all (p − ν) nuisance parameters in ξ . Also, all unknown
parameters in the quantities that define the Bartlett-corrected LR statistic are replaced by
their restricted ML estimates; that is, the order of the approximation remains unchanged
when the unknown parameters in �(θ) are replaced by their restricted ML estimates. The
improved LR test that uses ωB = ω/(1 + ν−1�) as test statistic follows from the compar-
ison of the observed value of ωB with the critical value obtained as the appropriate χ2

ν

quantile. The Bartlett-corrected LR test statistic is usually expressed as ω/[1 + ν−1�].
There is, however, another equivalent specification that delivers the same order of accu-
racy and has the advantage of being non-negative, that is, ω∗

B = ω exp(−ν−1�). The
Bartlett-corrected LR statistics ωB and ω∗

B are equivalent to orderO(n−1).
Another way of improving the LR test statistic is to consider the procedure developed

by Skovgaard [19]. The author generalized the results in Skovgaard [26] to improve LR
testing inference in a general setting. The adjusted likelihood ratio statistics proposed by
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Skovgaard [19] is given by

ωS = ω − 2 log(ρ),

where

ρ = (Ũ�
ϒ̄

−1K̂Ĵ−1
ϒ̄K̃−1Ũ)ν/2

ων/2−1Ũ�
ϒ̄

−1q̄

√√√√ det(K̃) det(K̂) det(̃Jψψ )

det(ϒ̄)2 det([K̃ϒ̄−1̂JK̂−1
ϒ̄]ξξ )

,

and q̄ and ϒ̄ come respectively from q = Eω1 [U(ω1)(�(ω1) − �(ω2))] and ϒ =
Eω1 [U(ω1)U(ω2)

�] by inserting θ̂ for ω1 and θ̃ for ω2 after the expected values were
computed. Also, we write Jξξ (θ) to denote the (p − ν) × (p − ν) observed information
matrix for the nuisance vector ξ . Additionally, K̂ = K (̂θ), K̃ = K (̃θ), Ĵ = J (̂θ), Ũ = U (̃θ),
J̃ = J (̃θ) and J̃ψψ = Jψψ (̃θ). After lengthy algebra, we arrive at the following proposition.

Proposition 3.2: For themultivariate normalmodel with general parameterization, we have
that

q =
n∑

i=1
Fi(ω1)

�Hi(ω1)vi(ω1;ω2), ϒ =
n∑

i=1
Fi(ω1)

�Hi(ω2)Fi(ω2),

where

vi(ω1;ω2) =
(

�i(ω1)�i(ω2)
−1(μi(ω1) − μi(ω2)

)
vec
(
�i(ω1)�i(ω2)

−1�i(ω1) −�i(ω1)
)) .

Proof: Appendix. �

According to Skovgaard [19], the statistic ω∗
S = ω(1 − ω−1 log(ρ))2 is asymptotically

equivalent to ωS. As pointed out by Skovgaard, the version ωS is the one that arises nat-
urally in the theoretical development, but the version ω∗

S , unlike ωS, has the advantage
of being non-negative. The statistics ωS and ω∗

S follow approximately the asymptotic ref-
erence χ2

ν distribution under the null hypothesis with high accuracy [19]. For a detailed
discussion on the development ofωS andω∗

S , the reader is referred to Skovgaard [19, § 5.7].
AlthoughMelo et al. [20] studied the Skovgaard correction under a general class of ellipti-
cal distributions, which includes the normal one, they only provided an algorithm to attain
the required quantities. On the other hand, our Proposition 3.2 provides a closed-form
expression for the ingredients of the Skovgaard correction under normality. The formulas
in Proposition 3.2 have not been published elsewhere.

It is noteworthy that the general expressions which define the improved LR statisticsωB,
ω∗
B, ωS and ω∗

S only involve operations on matrices and vectors and can be implemented
in computational programming languages with support for matrix operations, such as Ox
[24] or R [27], among many others. Unfortunately, the correction factors are not easy to
interpret in generality and provide no indication as to what structural aspects of the model
contribute significantly to their magnitude.

4. Special models

In what follows, we consider some special cases of the main model in (1) to illustrate the
usefulness of the general results derived in the previous section.
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4.1. Errors-in-variablesmodel

Consider the following multivariate errors-in-variables model:

zi = β0 + β1xi + qi, i = 1, 2, . . . , n, (3)

where zi is a (v × 1) latent response vector, xi is a (m × 1) latent vector of covariates, β0
is a (v × 1) vector of intercepts, β1 is a (v × m) matrix which elements are inclinations
and qi is the equation error having multivariate normal distribution with zero mean and
variance-covariance matrix �q. The variables zi and xi are not directly observed, instead
surrogate variables Zi and Xi are measured with the following additive structure Zi = zi +
ηzi and Xi = xi + ηxi , respectively. The errors ηzi and ηxi are assumed to follow a normal
distribution given by (

ηzi
ηxi

)
∼ Nv+m

[(
0
0

)
,
(
τ zi 0
0 τ xi

)]
,

where the variance-covariance matrices τ zi and τ xi are assumed to be known for all i =
1, 2, . . . , n. These matrices may be attained through an analytical treatment of the data
collection process, replications, or machine precision.

Notice that Zi = zi + ηzi and Xi = xi + ηxi have equation errors for all lines, that is, zi
and xi are not perfectly related. These equation errors are justified by the influence of other
factors than xi in the variation of zi. It is very reasonable to consider equation errors in (3)
to capture extra variability, since the variances τ zi are fixed and whether any other factor
affects the variation of zi, the estimation of the line parameters will be clearly affected.
Supposing that xi ∼ Nm(μx,�x) and considering that the model errors (qi, ηzi and ηxi)
and xi are independent, we have that the joint distribution of the observable variables can
be expressed as

Y i =
(
Zi
Xi

)
∼ Nq

[(
β0 + β1μx

μx

)
,
(
β1�xβ

�
1 +�q + τ zi β1�x
�xβ

�
1 �x + τ xi

)]
, (4)

where q = v+m. Here, the vector θ = (β�
0 , vec(β1)

�,μ�
x , vech(�x)

�, vech(�q)
�)� has

dimension p = v(m + 1) + m + m(m + 1)/2 + v(v + 1)/2, and ‘vech’ transforms a sym-
metric matrix into a vector by stacking into columns its diagonal and superior diagonal
elements. From (4), the mean vector and the variance-covariance matrix have the matrix
β1 in common. In other words, they sharemv parameters.

Next, we provide the main quantities that are used in the Fisher scoring method, Fisher
information, and Bartlett correction factor derived in the previous section. First, let us
define the following quantities:

F(r)
β0

= ∂β0
∂θr

, F(r)
β1

= ∂β1

∂θr
, F(r)

μx
= ∂μx

∂θr
,

F(r)
�x

= ∂�x

∂θr
, F(r)

�q
= ∂�q

∂θr
,
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where r = 1, 2, . . . , p. The above quantities correspond to vectors or matrices of zeros with
one in the position referring to the rth element of the parameter vector θ . Hence,

ar =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1n ⊗
(
F(r)
β0
0

)
, if r = 1, 2, . . . , v;

1n ⊗
(
F(r)
β1
μx
0

)
, if r = v + 1, . . . , v(m + 1);

1n ⊗
(
β1F

(r)
μx

F(r)
μx

)
, if r = v(m + 1) + 1, . . . , v(m + 1) + m;

1n ⊗ 0q, if r = (v + 1)(m + 1), . . . , p,

where 1n denotes an n-vector of ones, and 0q denotes an q-vector of zeros. Also,

ars = 1n ⊗
(
F(s)
β1
F(r)
μx

0

)
, arst = 0, r, s, t = 1, 2, . . . , p.

In addition, it follows that

Cr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

In ⊗
(
F(r)
β1
�xβ

�
1 + β1�xF

(r)�
β1

F(r)
β1
�x

F(r)
β1
�x 0

)
, if r = v + 1, . . . , v(m + 1);

In ⊗
(
β1F

(r)
�x
β�
1 β1F

(r)
�x

F(r)
�x
β�
1 0

)
, if r = (v + 1)(m + 1), . . . , p′;

In ⊗
(
F(r)
�q

0
0 0

)
, if r = p′ + 1, . . . , p;

In ⊗ 0q×q, otherwise,

where p′ = v(m + 1) + m + m(m + 1)/2, 0q×q denotes an q × q matrix of zeros, and In
denotes an n × n identity matrix. Additionally, we have

Crs =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
In ⊗

(
F(s)
β1
�xF

(r)�
β1

+ F(r)
β1
�xF

(s)�
β1

0
0 0

)
, if r = v + 1, . . . , v(m + 1);

In ⊗
(
F(u)
β1

F(t)
�x
β�
1 + β1F

(t)
�x
F(s)�
β1

F(u)
β1

F(t)
�x

F(t)
�x
F(u)�
β1

0

)
, if r = (v + 1)(m + 1), . . . , p′;

In ⊗ 0q×q, otherwise,
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where s = v + 1, . . . , v(m + 1). Finally, we have that

Crst =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

In ⊗
(
F(s)
β1
F(t)
�x
F(r)�
β1

+ F(r)
β1
F(t)
�x
F(s)�
β1

0
0 0

)
, if r, s = v + 1, . . . , v(m + 1),

t = (v + 1)(m + 1), . . . , p′;

In ⊗
(
F(t)
β1
F(s)
�x
F(r)�
β1

+ F(r)
β1
F(s)
�x
F(t)�
β1

0
0 0

)
, if r, t = v + 1, . . . , v(m + 1),

s = (v + 1)(m + 1), . . . , p′;

In ⊗
(
F(t)
β1
F(r)
�x
F(s)�
β1

+ F(s)
β1
F(r)
�x
F(t)�
β1

0
0 0

)
, if s, t = v + 1, . . . , v(m + 1),

r = (v + 1)(m + 1), . . . , p′;
In ⊗ 0q×q, otherwise.

Therefore, from the above quantities, the Bartlet correction factor can be obtained from
the general result in Proposition 3.1. These quantities can be consistently estimated under
the null hypothesis. Regarding the Skovgaard adjustment, it follows that

q̄ =
n∑

i=1

(
D̂(1)�
i �̃

−1
i (μ̂i − μ̃i) + 1

2 V̂
(1)�
i (�̂i ⊗ �̂i)

−1vec
(
�̂i�̃

−1
i �̂i − �̂i

)
1
2 V̂

(2)�
i (�̂i ⊗ �̂i)

−1vec
(
�̂i�̃

−1
i �̂i − �̂i

) )
,

and

ϒ̄ =
n∑

i=1

[
D̂(1)�
i �̃

−1
i D̃(1)

i + 1
2 V̂

(1)�
i (�̃i ⊗ �̃i)

−1Ṽ(1)
i

1
2 V̂

(1)�
i (�̃i ⊗ �̃i)

−1Ṽ(2)
i

1
2 V̂

(2)�
i (�̃i ⊗ �̃i)

−1Ṽ(1)
i

1
2 V̂

(2)�
i (�̃i ⊗ �̃i)

−1Ṽ(2)
i

]
,

where the quantities distinguished by the addition of ‘̂’ and ‘˜’ are evaluated at θ̂
(unrestricted estimates) and θ̃ (restricted estimates), respectively. Also,

D(1)
i = ∂μi

∂(β�
0 , vec(β)�, μ�

x )
, V(1)

i = ∂vec(�i)

∂(β�
0 , vec(β)�, μ�

x )
=
[
0,

∂vec(�i)

∂vec(β)�
, 0
]
,

and

V(2)
i = ∂vec(�i)

∂(vech(�x)�, vech(�q)�)
.

4.2. Mixed-effectsmodel

Consider the following mixed-effects model:

yi = Xiβ + Zibi + ei, i = 1, 2, . . . , n,

where yi = (yi1, yi2, . . . , yiqi)� is a (qi × 1) vector of responses of the ith experimental unit,
β is a (v × 1) parameter vector (fixed effects), Xi is a (qi × v) fixed effects specification
matrix, bi is a (m × 1) random effects vector, Zi is a (qi × m) random effects specifica-
tionmatrix, and ei = (ei1, ei2, . . . , eiqi)� is a (qi × 1) vector of random errors. Suppose that
ei ∼ Nqi(0, σ 2Iqi) and bi ∼ Nm(0,G), where b1, b2, . . . , bn, e1, e2, . . . , en are independent,
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G = G(
) is a (m × m) positive definite matrix, and 
 is am∗-vector of unknown param-
eters with m∗ = m(m + 1)/2. In matrix form, we have that Y = Xβ + Zb + e, where
Y = (y�

1 , y
�
2 , . . . , y

�
n )� is an T-vector with T = ∑N

i=1 qi, X = [X�
1 ,X

�
2 , . . . ,X

�
n ]� is an

T × vmatrix, Z = diag{Z1,Z2, . . . ,Zn} is an T × nmmatrix, b = (b�
1 , b

�
2 , . . . , b

�
n )� is an

nm-vector, and e = (e�1 , e�2 , . . . , e�n )� is an T-vector. Thus, b ∼ Nnm(0, In ⊗ G). In short,
we have that Y = μ+ ε, where μ := μ(θ) = Xβ , ε = Zb + e, and ε ∼ NT(0,�), being
� := �(γ ) = Z(In ⊗ G)Z� + σ 2IT and γ = (
�, σ 2)� an (m∗ + 1)-vector of unknown
parameters. Here, the vector θ = (β�, γ�)� has dimension p = v + m∗ + 1.

The main quantities used to obtain the Bartlett correction factor are as follows. After
some algebra, we have that ar = XF(r)

β for r = 1, 2, . . . , v, and ar = 0 for r = v + 1, . . . , p,

where F(r)
β = ∂β/∂θr corresponds to a null vector except for the rth position (r = 1, . . . , v)

which is equal to one. We have also that ars = arst = 0 for all r, s, t = 1, 2, . . . , p. In addi-
tion, the matrices Cr, Crs, and Crst are null except for r, s, t = v + 1, . . . , p − 1 which are
given by Cr = Z(In ⊗ Gr)Z�, Crs = Z(In ⊗ Grs)Z�, and Crst = Z(In ⊗ Grst)Z�, where
Gr = ∂G/∂θr , Grs = ∂2G/∂θr∂θs, and Grst = ∂3G/∂θr∂θs∂θt . Finally, it follows that Cp =
IT and Cpp = Cppp = 0T×T . Hence, the Bartlet correction factor can be obtained from the
general result in Proposition 3.1. The above quantities can be consistently estimated under
the null hypothesis. The quantities related to the Skovgaard adjustment are given by

q̄ =
n∑
i=1

⎛⎜⎝ D̂(1)�
i �̃

−1
i (μ̂i − μ̃i)

1
2 V̂

(2)�
i (�̂i ⊗ �̂i)

−1vec
(
�̂i�̃

−1
i �̂i − �̂i

)
1
2 V̂

(3)�
i (�̂i ⊗ �̂i)

−1vec
(
�̂i�̃

−1
i �̂i − �̂i

)
⎞⎟⎠ ,

and

ϒ̄ =
n∑
i=1

⎡⎢⎣D̂
(1)�
i �̃

−1
i D̃(1)

i 0 0
0 1

2 V̂
(2)�
i (�̃i ⊗ �̃i)

−1Ṽ(2)
i 0

0 0 1
2 V̂

(3)�
i (�̃i ⊗ �̃i)

−1Ṽ(3)
i

⎤⎥⎦ ,

where D(1)
i = ∂μi/∂β

� = F(r)
β , V(2)

i = (Zi ⊗ Zi)∂vec(In ⊗ G)/∂ρ� and V(3)
i =

∂vec(σ 2IT)/∂σ 2 = 1T . Finally, quantities distinguished by the addition of ‘̂ ’ and ‘̃ ’ are
evaluated at θ̂ (unrestricted estimates) and θ̃ (restricted estimates), respectively.

4.3. Nonlinearmodel

Consider the following univariate nonlinear model:

Yi = f (xi,β) + εi, i = 1, 2, . . . , n,

where Yi is the response variable, x�
i = (xi1, . . . , xiq) are observations on q known regres-

sors, and β = (β1, . . . ,βp)
� ∈ Rp is a p-vector of regression parameters (q ≤ p < n), and f

is a nonlinear function of β . Assume that ε1, ε2, . . . , εn are independent and εi ∼ N (0, σ 2)

for i = 1, 2, . . . , n. The univariate nonlinear model above defined is clearly a special case
of (1) with qi = 1. Consequently, we have that θ = (β�, σ 2)� is a (p + 1)-vector, μi =
f (xi,β) and �i = σ 2.
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The quantities related to the Bartlett correction factor are as follows. The ith element
of the n-dimensional vector ar is given by ∂f (xi,β)/∂θr for r = 1, 2, . . . , p, and zero for
r = p+ 1.Note that the ith elements ofn-dimensional vectorsars andarst are given, respec-
tively, by ∂2f (xi,β)/∂θr∂θs and ∂3f (xi,β)/∂θr∂θs∂θt for r, s, t = 1, 2, . . . , p, and zero for
r, s, t = p+ 1. Also, Cr = 0 for r = 1, 2, . . . , p, and Cr = Ip for r = p+ 1. Finally, Crs =
Crst = 0 for r, s, t = 1, 2, . . . , p + 1. Thus, the Bartlet correction factor can be obtained
from the general result in Proposition 3.1. All the above quantities can be consistently
estimated under the null hypothesis. Regarding the Skovgaard adjustment, it follows that

q̄ =
n∑

i=1

⎛⎝ 1
σ̂ 2 D̂

(1)�
i (μ̂i − μ̃i)

1
2

(
1
σ̃ 2 − 1

σ̂ 2

) ⎞⎠ ,

and

ϒ̄ =
n∑

i=1

[
1
σ̃ 2 D̂

(1)�
i D̃(1)

i 0
0 1

2σ̃ 4

]
,

where D(1)
i = ∂μi/∂β

�. The addition of ‘̂’ and ‘˜’ means quantities evaluated at θ̂
(unrestricted estimates) and θ̃ (restricted estimates), respectively.

5. Finite-sample performance

In this section, we shall report Monte Carlo simulation experiments to illustrate the per-
formance of the usual LR test which uses the usual statistic ω, and the improved LR tests
that use the corrected statistics ωB, ω∗

B, ωS, and ω∗
S in small and moderate-sized samples.

The number of Monte Carlo replications was 15,000, and the nominal levels of the tests
were α = 10%, 5% and 1%. The simulations were carried out using the matrix program-
ming language Ox [24], which is freely distributed for academic purposes and available at
http://www.doornik.com.We report the null rejection rates of the null hypothesis of all LR
tests at the 10%, 5%, and 1% nominal significance levels; that is, the percentage of times
that the corresponding observed value of the statistic exceeds the 10%, 5% and 1% upper
points of the reference χ2 distribution. These rates estimate the type I error probability
of the tests. The Monte Carlo simulation results are listed in Tables 1–3 whose entries are
percentages. As will see in what follows, the usual LR test can be quite size-distorted when
the sample size is small, and so the improved LR tests become good alternatives in such a
case.

First, we consider a particular case of the errors-in-variables model described in
Section 4.1. It is given by

Zi = β0 + β1xi + ηzi and Xi = xi + ηxi , (5)

where ⎛⎝ xi
ηzi
ηxi

⎞⎠ ∼ N3

⎡⎣⎛⎝μx
0
0

⎞⎠ ,

⎛⎝�x 0 0
0 �e 0
0 0 �u

⎞⎠⎤⎦ ,

http://www.doornik.com
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Table 1. Null rejection rates (%) under the errors-in-variables model for the usual LR statistic ω, and its
corrected versions, namely,ωB,ω∗

B,ωS, andω∗
S .

Statistic n= 15 n= 25 n= 35 n= 45 n= 55

α = 10%
ω 12.4 11.9 11.5 11.0 10.6
ωB 11.0 11.2 10.9 10.5 10.4
ω∗
B 10.9 11.1 10.9 10.5 10.4

ωS 9.3 10.4 10.3 9.9 10.0
ω∗
S 9.4 10.4 10.3 9.9 9.9

α = 5%
ω 6.4 5.8 6.1 5.9 5.5
ωB 5.6 5.3 5.8 5.6 5.4
ω∗
B 5.5 5.3 5.8 5.6 5.4

ωS 4.5 4.9 5.3 5.3 5.1
ω∗
S 4.4 4.9 5.3 5.3 5.1

α = 1%
ω 1.3 1.4 1.4 1.4 1.0
ωB 1.1 1.2 1.2 1.3 1.0
ω∗
B 1.1 1.2 1.2 1.3 1.0

ωS 0.8 1.1 1.1 1.1 0.9
ω∗
S 0.8 1.1 1.0 1.1 0.9

Table 2. Null rejection rates (%) under the mixed-effect model for the usual LR statistic ω, and its
corrected versions, namely,ωB,ω∗

B,ωS, andω∗
S .

Statistic n= 15 n= 25 n= 35

α = 10%
ω 18.5 14.9 13.1
ωB 12.8 11.9 11.0
ω∗
B 12.3 11.3 10.9

ωS 11.9 12.8 11.3
ω∗
S 10.1 12.1 11.0

α = 5%
ω 10.3 8.1 7.0
ωB 6.6 5.9 5.7
ω∗
B 6.5 5.8 5.7

ωS 5.2 5.1 5.1
ω∗
S 4.5 4.7 5.1

α = 1%
ω 2.7 1.3 1.6
ωB 1.6 0.5 1.1
ω∗
B 1.3 0.5 1.1

ωS 0.6 0.3 1.2
ω∗
S 0.5 0.3 1.1

and so

Y i =
(
Zi
Xi

)
∼ N2

[(
β0 + β1μx

μx

)
,
(

β2
1�x + �e β1�x
�xβ1 �x + �u

)]
.

To ensure the identifiability of the above model, we assume that λ = �e�
−1
u is

known. In particular, we assume that �e = �u. The parameter vector becomes θ =
(β0,β1,μx,�x,�u)

�. The true parameter values we consider are β0 = −3.5, β1 = 1.0,
μx = 20, �x = 15 and �u = 2.5. The null hypothesis is H0 : β1 = 1.0, which is tested
againstH1 : β1 	= 1.0. The rejection rates ofH0 are listed in Table 1. Notice that the usual
LR test is slightly more size-distorted than the corrected LR tests, mainly when the sample
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Table 3. Null rejection rates (%) under the nonlinear regression model for the usual LR statistic ω, and
its corrected versions, namely,ωB,ω∗

B,ωS, andω∗
S .

Statistic n= 7 n= 15 n= 25 n= 35 n= 45 n= 55 n= 100

α = 10%
ω 34.4 18.0 13.7 12.4 12.2 11.5 10.2
ωB 22.5 13.5 10.8 10.6 10.6 10.6 10.1
ω∗
B 20.2 13.0 10.6 10.5 10.6 10.6 10.2

ωS 13.2 11.5 9.9 10.2 10.2 10.3 10.0
ω∗
S 8.3 10.9 9.8 10.1 10.2 10.2 9.9

α = 5%
ω 24.8 11.0 7.4 6.5 6.2 6.1 5.3
ωB 14.7 7.4 5.5 5.1 5.4 5.4 5.0
ω∗
B 12.5 7.0 5.3 5.0 5.4 5.4 5.1

ωS 6.4 5.9 5.0 4.6 5.2 5.1 5.1
ω∗
S 4.0 5.2 4.9 4.5 5.1 5.0 5.0

α = 1%
ω 12.0 2.9 1.6 1.3 1.6 1.4 1.1
ωB 5.0 1.4 1.0 0.9 1.1 0.9 1.0
ω∗
B 3.8 1.3 1.0 0.9 1.1 0.9 1.1

ωS 0.4 1.0 0.8 0.8 1.0 0.9 1.0
ω∗
S 0.5 0.8 0.8 0.8 0.9 0.9 1.0

size is small. In addition, the size of all tests tends to the significance level as the sample
size increases, as expected.

Next, we consider the mixed-effects model given by

yij = β0 + β1tij + β2xij + b0i + b1itij + εij, (6)

where i = 1, 2, . . . , n, and j = 1, 2, . . . , 6. The values of tij are ti1 = 0, ti2 = 0.5, ti3 = 1,
ti4 = 1.5, ti5 = 2 and ti6 = 3, and xij is a dummy variable. Also, bi = (b0ib1i)� ∼ N2(0,G),
where

G =
[
ρ1 ρ2
ρ2 ρ3

]
.

Additionally, εi and bi are assumed to be independent, where εi ∼ N6(0, σ 2I6). The true
parameter values are β0 = 3.5, β1 = −0.3, β2 = 0, ρ1 = 0.35, ρ2 = −0.04, ρ3 = 0.02, and
σ 2 = 0.3. Here, the null hypothesis of interest isH0 : β2 = 0, which is tested againstH1 :
β2 	= 0. Table 2 lists the rejection rates of H0. From this table, note that the usual LR test
is quite liberal (over-rejecting the null hypothesis more frequently than expected based on
the selected nominal level). For example, for α = 5% and n = 15, the null rejection rate of
the usual LR test was 10.3%, more than twice the nominal significance level. On the other
hand, the null rejection rates of the improved LR tests are close to the nominal significance
levels. As expected, the null rejection rates of all tests tend to the significance level as the
sample size increases.

Now, we consider the nonlinear regression model given by

yi = θ1 + θ2 − θ1

1 + exp
(
− xi−θ3

θ4

) + εi, i = 1, 2, . . . , n, (7)

where εi ∼ N (0; σ 2), and θ = (θ1, θ2, θ3, θ4, σ 2)�. We set θ1 = 6.0, θ2 = 0, θ3 = 0.08,
θ4 = 0.03, and σ 2 = 0.02. Here, the covariate values were taken as random draws of the
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Figure 1. Quantile relative discrepancies.

standard normal distribution. Suppose we want to test the null hypotheses H0 : θ2 = 0
against the alternative hypothesis H1 : θ2 	= 0. The rejection rates of H0 are listed in
Table 3. From the numerical results, it is evident that the usual LR test is markedly lib-
eral (over-rejecting the null hypothesis much more frequently than expected based on the
selected nominal level). For example, for n = 7 and α = 10%, the null rejection rate of the
LR testwas 34.4%,more than threewice the nominal significance level. Again, the improved
LR tests present null rejection rates closer to the significance level than the usual LR test.
However, it is worth stressing that the improved LR tests based on the corrected statis-
tics ωS and ω∗

S present the best performances. Notice that the null rejection rates of all
the tests approach the corresponding nominal levels as the sample size grows, as expected.
Figure 1 presents curves of quantile relative discrepancies versus the correspondent asymp-
totic quantiles for the statistics ω, ωB, ω∗

B, ωS and ω∗
S . Relative quantile discrepancy is

defined as the difference between exact (estimated by simulation) and asymptotic quan-
tiles divided by the latter. The closer to zero the relative quantile discrepancy, the better is
the approximation of the exact null distribution of the test statistic by the limiting chi-
square distribution. Figure 1 reveals that the distribution of the usual LR statistic ω is
poorly approximated by the reference χ2

1 distribution when the sample size is small. On
the other hand, the distributions of the corrected statistics ωB, ω∗

B, ωS and ω∗
S are closer to

the reference χ2
1 distribution than the original LR statistic. As expected, the relative quan-

tile discrepancy of all test statistics decreases when the sample size increases. Finally, we
turn to a brief study of finite-sample power properties of the all tests. As the simulation
results in Table 3 show, the tests have different sizes when one uses their asymptotic χ2

distribution in small- and moderate-sized samples. In evaluating the power of these tests,
it is important to ensure that they all have the correct size under the null hypothesis. To
overcome this difficulty, we used 250,000Monte Carlo simulated samples, drawn under the
null hypothesis, to estimate the exact critical value of each test for the chosen nominal level.
We set n = 80 and γ = 5%. For the power simulations, we computed the rejection rates
under the alternative hypothesis β2 = δ, for δ ranging from −2.0 to 2.0. Figure 2 shows
that all tests have similar power behaviour. As expected, the powers of the tests approach
1 as |δ| grows.

Overall, in small to moderate-sized samples, the best-performing tests are the improved
LR tests based on the adjusted LR statistics, since they are less size-distorted than the usual
LR test. Hence, these tests may be recommended for testing hypotheses on the parameters
in the above class of models, which are special cases of the multivariate regression model
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Figure 2. Power of all tests.

with general parameterization studied in this paper. Among the improved tests, the LR
test on the basis of the adjusted statistics ωS and ω∗

S presented the best results. It is evident
that much more special cases of the multivariate regression model with general parame-
terization could be considered, but the main aim here is to show that the correction factors
(Bartlett and Skovgaard) derived for this class ofmultivariatemodels are always in the right
direction and provide substantial improvements on the usual LR test.

6. Real data examples

In the following, we consider real data applications to illustrate the use of the improved LR
tests in practice. All computations were performed using the Ox program. The ML esti-
mates of the model parameters are obtained by maximizing the log-likelihood function
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton non-linear optimiza-
tion algorithm.According toMittelhammer et al. [28, p.199], the BFGSmethod is generally
considered the best non-linear optimization procedure. The Ox codes used in the real data
applications can be found in the Supplementary Material.

6.1. Premature babies data

These real data were obtained from Kelly [29]. The observations are measures of serum
kanamycin levels in blood samples from 20 premature babies. One of the measurements
was obtained by the heelstick method (X), and the other using an umbilical catheter (Z).
Since both methods are subject to measurement errors, we can consider the errors-in-
variablesmodel given in (5) tomodel these data. FollowingKelly (29), we assume�e = �u.
The model parameters are β0, β1, μx, �x and �u, and the corresponding ML estimates
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are β̂0 = −1.1601, β̂1 = 1.0698, μ̂x = 20.855, �̂x = 20.352 and �̂u = 4.3737. Suppose we
want to test the null hypothesisH0 : β1 = 1 against the alternative hypothesisH1 : β1 	= 1.
The observed values of the LR statistics (and p-values between parentheses) are given
by ω = 0.2046 (p-value: 0.6510), ωB = 0.1810 (p-value: 0.6705), ω∗

B = 0.1796 (p-value:
0.6717), ωS = 0.1793 (p-value: 0.6715), and ω∗

S = 0.1790 (p-value: 0.6722). It is evident
that all tests lead to the non-rejection of the null hypothesis at the 10% nominal level.
However, the results could be different if the sample size were smaller. To illustrate this,
a subset of the real data set with 15 premature babies was chosen randomly. In this case,
the ML estimates become β̂0 = −4.0014, β̂1 = 1.2510, μ̂x = 20.8270, �̂x = 16.7540 and
�̂u = 2.3838. Now, to test H0 : β1 = 1, we obtain the observed values ω = 2.8249 (p-
value: 0.0928),ωB = 2.4190 (p-value: 0.1199),ω∗

B = 2.3885 (p-value: 0.1222),ωS = 2.3751
(p-value: 0.1233), ω∗

S = 2.3556 (p-value: 0.1248). Hence, at the 10% significance level, the
adjusted LR tests do not reject the null hypothesis unlike the unmodified LR test, which
is oversized as evidenced by the simulation results. Note also that the conclusion obtained
using the corrected LR tests is compatible with that reached based on the complete data
set.

6.2. Plasma inorganic phosphate data

These data were obtained from Davis [30, Table 3.10]. The real data refer to plasma inor-
ganic phosphate measurements obtained from 33 patients (with 13 control (group 1) and
20 obese (group 2)) in 0.0, 0.5, 1.0, 1.5, 2.0, and 3.0 hours after an oral glucose challenge.
The goal here is to investigate the effect of the group on the plasma inorganic phosphate.
We consider the mixed-effect model given in (6) to model these data, where yij is the
plasma inorganic phosphate measurements of the ith individual in the jth instant of time,
tij is the jth instant of time (in hours) in which the plasma inorganic phosphate measure-
ments of the ith individual, and xi is a dummy variable that receives the value 1 if the
ith individual belongs to group 2 (obese) and 0 if the ith individual belongs to group 1
(control), for i = 1, 2, . . . , 33 and j = 1, 2, 3, 4, 5 and 6. The fixed-effect parameters are
β0, β1, and β2, and the respective ML estimates (standard errors between parentheses)
are β̂0 = 3.6315(0.1722), β̂1 = −0.3209(0.0466), and β̂2 = 0.5331(0.2027). In addition,
ρ̂1 = 0.3480, ρ̂2 = −0.0419, ρ̂3 = 0.0238, and σ̂ 2 = 0.2802.Here, we are interested in test-
ing the null hypothesis H0 : β2 = 0 against the alternative hypothesis H1 : β2 	= 0. The
observed values of the LR statistics (and p-values between parentheses) areω = 3.9354 (p-
value: 0.0473),ωB = 3.4027 (p-value: 0.0651),ω∗

B = 3.3651 (p-value: 0.0666),ωS = 3.4367
(p-value: = 0.0638), andω∗

S = 3.4198 (p-value: 0.0644). Note that, at the 5%nominal level,
all corrected LR tests lead to the non-rejection of the null hypothesis, while the original LR
test leads to the rejection of the null hypothesis. In other words, the test based on the origi-
nal LR statisticω leads to a different conclusion than the one obtained through its modified
versions.

6.3. Secalonic acid

These data were studied in Gong et al. [31], whose objective was to explore the toxicity of
secalonic acid in grass roots. The response variable corresponds to the root length (in cm),
and the covariate is given by the dose of secalonic acid applied (inmM). The real data were
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also presented in Ritz and Streibig [32], who considered the nonlinear regression model
given in (7) to model these data. The ML estimates (standard errors between parentheses)
are θ̂1 = 6.0536(0.2589), θ̂2 = 0.3539(0.1271), θ̂3 = 0.0752(0.0039), θ̂4 = 0.0293(0.0043),
and σ̂ 2 = 0.0176(0.0094). Suppose we want to test the null hypothesisH0 : θ2 = 0 against
H1 : θ2 	= 0. We have that ω = 5.1953 (p-value: 0.0226), ωB = 3.3023 (p-value: 0.0692),
ω∗
B = 2.9285 (p-value: 0.0870), ωS = 2.3686 (p-value: 0.1238), and ω∗

S = 1.8206 (p-value:
0.1772). It is noteworthy that one rejects the null hypothesis at the 5% nominal level when
the inference is based on the usual LR test, but a different inference is reached when the
modified LR tests are used. Recall from the previous section that the unmodified LR test
is markedly oversized when the sample is small (here, n = 7), which leads us to mistrust
the inference delivered by the original LR test. Note also that the p-values of the improved
tests that use ωS and ω∗

S as test statistics are greater p-values the other ones, which is in
accordance with the simulations provided in Section 5 for the non-linear regressionmodel,
that is, based on these corrected LR tests, the null hypothesis should not be rejected at any
usual significance level.

7. Concluding remarks

We addressed the issue of performing hypothesis tests in the multivariate normal regres-
sion model with general parameterization introduced by Patriota and Lemonte [18] when
the sample size is small. It includes many of the existing (univariate as well as multivari-
ate) regression models as special cases, namely: nonlinear models, mixed-effect models,
and errors-in-variables models, among others. The main theoretical contributions of this
paper were the derivation of a Bartlett correction factor in matrix notation to the likeli-
hood ratio statistic, and the derivation of Skovgaard’s adjustment factor in matrix notation
to the likelihood ratio statistic in this class of models. The Monte Carlo simulation results
clearly indicate that the original likelihood ratio test can be considerably oversized (liberal)
and should not be recommended to test hypotheses in the multivariate normal regression
model with general parameterization when the sample is small or of moderate size. Also,
the simulation results have convincingly shown that the inference based on the modified
likelihood ratio test statistics can be much more accurate than that based on the unmod-
ified likelihood ratio test statistic. Overall, the numerical results favour the tests obtained
from applying the Bartlett correction to the likelihood ratio statistic, as well as from apply-
ing the Skovgaard’s adjustment to the likelihood ratio statistic. The empirical applications
with real data show that the uncorrected likelihood ratio test may lead to misleading con-
clusions if the sample is not large. We, therefore, recommend the use of the corrected
likelihood ratio tests to make inference in the multivariate normal regression model with
general parameterization in practice, mainly when the sample size is small.
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Appendix. Proofs

Here, we provide the sketch of the proofs of Propositions 3.1 and 3.2. The log-likelihood function
for θ , apart from an unimportant constant, is given by

�(θ) = −1
2

n∑
i=1

log{det(�i)} − 1
2

n∑
i=1

tr{�−1
i uiu�

i } = −1
2
log{det(�)} − 1

2
tr{�−1uu�},

where μi := μi(θ), �i := �i(θ), ui := ui(θ) = Y i − μi, Y = vec(Y1,Y2, . . . ,Yn), μ := μ(θ) =
vec(μ1,μ2 . . . ,μn), � := �(θ) = diag{�1,�2, . . . ,�n} and u := u(θ) = Y − μ.

A.1 Proof of Proposition 3.1

After lengthy algebra, we have that

∂�(θ)

∂θv
= −1

2
tr{�−1Cv} − 1

2
tr{Avuu� − 2u��−1av},

∂2�(θ)

∂θt∂θv
= −1

2
tr{AtCv +�−1Ctv + Atvuu� − 2Avatu� + 2a�

t �
−1av

− 2u�Atav − 2u��−1atv},
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∂3�(θ)

∂θs∂θt∂θv
= −1

2
tr{AstCv + AtCsv + AsCtv +�−1Cstv} + Astvuu�

− 2Atvasu� − 2Asvatu� − 2Avastu� + 2Avata�
s

+ 2a�
st�

−1av + 2a�
t Asav + 2a�

t �
−1asv + 2a�

s Atav

− 2u�Astav − 2u�Atasv + 2a�
s �

−1atv − 2u�Asatv

− 2u��−1astv,

∂4�(θ)

∂θrθs∂θt∂θv
= −1

2
tr{ArstCv + AstCrv + ArtCsv + AtCrsv + ArsCtv
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rs

+ 2a�
rst�
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st�
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+ 2a�
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−1asv + 2a�
t Arasv

+ 2a�
t �
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s Artav + 2a�
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+ 2a�
r Astav − 2u�Arstav − 2u�Astarv + 2a�
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−1artv + 2a�
r Asatv − 2u�Arsatv − 2u�Asartv

+ 2a�
r �

−1astv − 2u�Arastv − 2u��−1arstv},

and all the quantities in the above expressions were defined in Section 2. Note that E(u) = 0 and
E(uu�) = �, and so the joint cumulants of log-likelihood derivatives become

κtv = E
(

∂2�(θ)

∂θt∂θv

)
= −1

2
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− a�
r Atasv − a�

s Aratv − a�
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s �
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In addition, it follows that
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Finally, from the general matrix result for the Bartlett correction factor in Cordeiro [33], we
immediately obtain the (t, v)th elements of the matrices E(rs), P(r), and Q(s) given by
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s Atvar + a�

s Atrav + a�
t Asavr − 3a�

t Aravs + a�
t Avars

+ a�
s Atavr + a�

s Avatr + a�
s Aratv + a�

r Avats − 3a�
r Atavs

+ a�
r Asatv − 3a�

v Asatr − 3a�
v Arats − 3a�

v Atars + a�
tv�

−1ars

− 3a�
tr�

−1avs + a�
vr�

−1ats + a�
t �

−1avrs − 3a�
v �

−1atrs

+ a�
r �

−1atvs + a�
s �

−1atvr}.
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Therefore, the result follows.

A.2 Proof of Proposition 3.2

Let �(θ) = ∑n
i=1 �i(θ), where

�i(θ) = −1
2
log{det(�i)} − 1

2
u�
i �

−1
i ui.

Note that ui and uj are independent for i 	= j, and so we initially have that

Eω1 [U(ω1)(�(ω1) − �(ω2))] =
n∑

i=1
Fi(ω1)

�Hi(ω1)Eω1

[
u∗
i (ω1)(�i(ω1) − �i(ω2))

]
,

Eω1 [U(ω1)U(ω2)
�] =

n∑
i=1

Fi(ω1)
�Hi(ω1)Eω1

[
u∗
i (ω1)u∗

i (ω2)
�]Hi(ω2)Fi(ω2),

where Fi, Hi and u∗
i were defined in Section 2. Thus, the problem is reduced to obtain the

expectations

Eω1

[
u∗
i (ω1)(�i(ω1) − �i(ω2))

]
and Eω1

[
u∗
i (ω1)u∗

i (ω2)
�].

Note that

ui(ω2)
��i(ω2)

−1ui(ω2) = ui(ω1)
��i(ω2)

−1ui(ω1)

+ 2ui(ω1)
��i(ω2)

−1(μi(ω1) − μi(ω2))

+ (μi(ω1) − μi(ω2))
��i(ω2)

−1(μi(ω1) − μi(ω2)).

Hence, after some lengthy algebra, we have that

Eω1

[
u∗
i (ω1)(�i(ω1) − �i(ω2))

] =
(

�i(ω1)�i(ω2)
−1(μi(ω1) − μi(ω2)

)
vec
(
�i(ω1)�i(ω2)

−1�i(ω1) −�i(ω1)
)) ,

and
Eω1

[
u∗
i (ω1)u∗

i (ω2)
�] = Hi(ω1)

−1.
Therefore, the result follows. It is worth mentioning that to obtain the above expressions, we make
use of the following result. Let X ∼ Nn(0, In), where In is the n × n identity matrix, A is a n × n
symmetric (definite positive) matrix and a and b are (n × 1) vectors. It follows that

E[X(X�X)] = 0, E[XX�(X�AX)] = tr{A}In + 2A,

E[XX�(a�XX�b)] = (a�b)In + ab� + ba�.
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