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ABSTRACT
The future 21 cm intensity mapping

observations constitute a promising way to

trace the matter distribution of the

Universe and probe cosmology. Here, we

assess its capability for cosmological

constraints using as a case study the BINGO

radio telescope, that will survey the

Universe at low redshifts (0.13 < z < 0.45).

We use neural networks (NNs) to map

summary statistics, namely, the angular

power spectrum (APS) and the Minkowski

functionals (MFs), calculated from

simulations into cosmological parameters.

Our simulations span a wide grid of

cosmologies, sampled under the ΛCDM
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scenario, {Ωc, h}, and under an extension

assuming the Chevallier–Polarski–Linder

(CPL) parametrization, {Ωc, h, w0, wa}. In

general, NNs trained over APS outperform

those using MFs, while their combination

provides 27 per cent (5 per cent) tighter

error ellipse in the Ωc–h plane under the

ΛCDM scenario (CPL parametrization)

compared to the individual use of the APS.

Their combination allows predicting Ωc and

h with 4.9 and 1.6 per cent fractional errors,

respectively, which increases to 6.4 and 3.7

per cent under CPL parametrization.

Although we �nd large bias on wa
estimates, we still predict w0 with 24.3 per 

cent error. We also con�rm our results to be

robust to foreground contamination,

besides �nding the instrumental noise to

cause the greater impact on the predictions.

Still, our results illustrate the capability of

future low-redshift 21 cm observations in

providing competitive cosmological

constraints using NNs, showing the ease of

combining di�erent summary statistics.
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1 INTRODUCTION

The production of catalogues of

galaxies and clusters of galaxies

through large redshift surveys is

of fundamental importance to

cosmology, in particular for

robust measurements of the large

scale density �uctuations of the

Universe. In fact, the galaxy

distribution is mainly driven by

the dark matter distribution, and

their evolution since the initial

gravitational collapse is

in�uenced by the amount of dark

matter and dark energy in the

Universe, making the

measurements of the clustering of

galaxies one of the main

observational probes in

cosmology.

As an alternative to the detection

of individual galaxies, the low-

resolution measurements of the

redshifted 21 cm line emission of

the neutral hydrogen (H I), using
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intensity mapping (IM; see e.g.

Pritchard & Loeb 2012),

con�gures a new observational

technique for tracing the large

scale structure of the Universe and

constraining cosmological

parameters (Padmanabhan,

Refregier & Amara 2019; Camera &

Padmanabhan 2020). Most of the

H I in the late Universe is located

inside the galaxies, and, as

opposed to using the 21 cm radio

emission to resolve the galaxies,

the IM allows measuring its

overall brightness temperature

�uctuations, similar to cosmic

microwave background (CMB)

observations, but as a function of

the redshift. The low resolution of

such technique makes it relatively

cheap and allows a quick survey of

large volumes of the Universe

(Battye et al. 2013). Aiming to

explore this new observable,

several radio instruments, in

operation and under construction,

are expected to map the large
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scale Universe using the H I IM.

Among them are the Square

Kilometre Array.  (SKA; SKA

Cosmology SWG et al. 2020), the

Canadian Hydrogen Intensity

Mapping Experiment  (CHIME;

Bandura et al. 2014), Five-

Hundred-Meter Aperture

Spherical Radio Telescope (FAST;

Nan et al. 2011), and the Baryon

Acoustic Oscillations from

Integrated Neutral Gas

Observations  (BINGO; Battye

et al. 2013; Bigot-Sazy et al. 2015;

Abdalla et al. 2022a). In this

paper, exploring the BINGO

telescope as a case study, we

assess the constraining power of

future H I IM measurements at

low redshifts (0.13 < z < 0.45),

evaluating the performance of the

joint use of summary statistics

and neural networks for this task.

Inspired by the human brain,

made up of connected networks of

neurons, a neural network (NN)

1

2

3
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processes the information

through a set of algorithms so

that it can learn from examples

and observation, mimicking the

human learning process. These

neurons are distributed into

layers; an NN is classi�ed as a

deep learning algorithm

according to the number of layers

(or how dense it is), usually more

than three (for a review on deep

learning, see Schmidhuber 2015).

A sub-�eld of machine learning,

the NNs are pattern recognition

algorithms and have been widely

employed for cosmological

analyses over the last years

following diverse approaches.

Commonly employed are the

convolutional neural networks

(CNNs), able to extract

information directly from the

cosmological �eld, e.g. as done by

Gupta et al. (2018), Fluri et al.

(2019), Ribli et al. (2019), Matilla

et al. (2020), Lu, Haiman &

Zorrilla Matilla (2022) using weak
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lensing maps, and by Lazanu

(2021) and Villaescusa-Navarro

et al. (2022) using density �elds.

The NNs are also commonly used

taking summary statistics as

input data, as done, e.g. by Novaes

et al. (2014, 2015) using

Minkowski functionals from CMB

maps, by Jennings, Watkinson &

Abdalla (2020) using the three-

point correlation function from 21 

cm signal distribution, and by

Perez et al. (2022) using three

di�erent estimators, the two-

point correlation function, the

count-in-cells, and void

probability function; a hybrid

approach combining this simple

NN and a CNN is employed by

Ntampaka et al. (2020) using the

power spectrum. In addition, deep

learning has been employed for

data compression, aiming to

extract optimal summary

statistics, showing to be an

e�cient way for cosmological

parameters inference (Alsing,
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Wandelt & Feeney 2018; Alsing &

Wandelt 2019; Je�rey, Alsing &

Lanusse 2021). We note that these

are only few examples, among

several other machine learning

and deep learning applications for

cosmological analyses (for an

example of a recent usage of

machine learning algorithms, see

von Marttens et al. 2022).

Moreover, NNs can be an

alternative to likelihood based

analyses, performing

cosmological parameter inference

directly from simulations. The

motivation for such approach is

the di�culty in theoretically

modelling physical aspects, such

as the signature of non-linear

evolution of the structures on

small scales, as well as

instrumental characteristics, as

noise and systematic errors,

which are more easily reproduced

by simulations. Another

advantage of such approach is
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that one can avoid making

assumptions, commonly required

and sometimes not completely

correct, for an analytical

expression for the likelihood,

such as Gaussianity (Je�rey et al.

2021). In fact, the highly non-

Gaussian distribution of the

structures, a result of the non-

linear evolution of the Universe,

requires the usage of higher order

statistics, which, in general, has

no analytical expression and,

consequently, no likelihood

function. On this context,

parameter inference from

simulations, or their summary

statistics, through NNs

algorithms, without an explicit

likelihood, seems to be very

advantageous for cosmological

constraints.

Indeed, machine learning

techniques, or in particular NNs,

are very versatile tools and can be

employed in uncountable ways
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and purposes. Among the several

possibilities of usage, we chose to

explore how much cosmological

information one can extract from

using a simple fully connected NN

trained over two summary

statistics. Our summary statistics

consist of the angular power

spectrum (APS), commonly used

to extract cosmological

information from di�erent data

sets, and the Minkowski

functionals (MFs; Minkowski

1903; Novikov, Feldman &

Shandarin 1999; Komatsu et al.

2003), sensitive to higher order

correlations (for an example the

MFs used as input to NNs, see

Novaes et al. 2014, 2015). The MFs

are widely used to explore

statistical properties of the two-

dimensional CMB temperature

�eld (Komatsu et al. 2003; Modest

et al. 2013; Novaes et al. 2015,

2016; Akrami et al. 2020) and the

two- and three-dimensional

distribution of galaxies in the
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Universe (Saar et al. 2007;

Kerscher & Tikhonov 2010; Choi

et al. 2013; Novaes et al. 2018).

Beyond the cosmological

information contained in the

power spectrum, non-gaussian

information extracted through

MFs can provide additional tools

to di�erentiate between

cosmological models,

constraining cosmological

parameters (Shirasaki & Yoshida

2014; Petri et al. 2015; Marques

et al. 2019) and probing

modi�cations of the gravity

(Fang, Li & Zhao 2017; Shirasaki

et al. 2017). Di�erently from APS

and bispectrum calculations, the

MFs have the advantage of the

additive property (Novikov et al.

1999), allowing them to be

e�ciently applied to small

regions of the sphere, particularly

useful for partial sky surveys.

Given that the MFs have no

analytical expression, modelling

them and their correlation with
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the APS e�ciently is not an easy

task, in particular at low redshifts,

where matter distribution is

highly non-linear. Then, the

complexity in constructing a

likelihood of the data also

motivates our usage of NNs in

constraining cosmological

parameters from APS and MFs.

In this work, we generate a large

set of lognormal simulations of

the 21 cm signal spanning a wide

grid of cosmologies under two

scenarios, namely, the Λ Cold

Dark Matter (ΛCDM) and an

extension including dark energy

(DE) equation of state (EoS)

parameters. We also account for

foreground contamination and

instrumental e�ects, such as

noise and beam size, considering

the speci�cations for the BINGO

telescope. We train the NN

algorithm over the APS and MFs

calculated from these

simulations, in such a way to map
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these summary statistics in terms

of the input cosmological

parameters. Using each summary

statistic individually and their

combination, we evaluate the

performance of our method in

constraining cosmological

parameters from each model and

how the contaminant signals

a�ect these results. We also

investigate the sensitivity of each

summary statistic with the sky

coverage, evaluating our results

over a larger �eld of view,

coverage similar to what the SKA

instrument will survey.

This paper is organized as follows:

In Section 2, we describe the 21 cm

mocks and the parameter space

over which they are generated and

how the simulations are

constructed, accounting for the

instrumental noise, the

foreground components, and the

foreground cleaning process. The

summary statistics and the
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procedure used to obtain an

optimized NN algorithm to each

case investigated here, as well as

the metrics used to evaluate the

accuracy of our predictions, are

presented in Section 3. We discuss

our results in Section 4 and

summarize the main conclusions

in Section 5.

2 SIMULATIONS

In this section, we describe the

simulated sky maps used in our

analyses to produce the training

and test data sets. All the

simulations are produced in the

HEALPIX pixelization scheme

(Gorski et al. 2005) with Nside =

256. Jointly to the cosmological 21 

cm signal, we account for the

expected foreground

contamination, thermal noise,

and sky coverage, produced

according to the prescriptions

provided by Fornazier et al.
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(2022), Abdalla et al. (2022b), and

de Mericia et al. (2023), which we

brie�y describe below. We note

that these e�ects are accounted in

our simulations following the

procedure described in Novaes

et al. (2022), to which we refer the

reader for detailed information.

2.1 Cosmological signal

We use the publicly available Full-

sky Lognormal Astro-�elds

Simulation Kit (FLASK; Xavier,

Abdalla & Joachimi 2016) code to

generate all the 21 cm IM

simulations employed here. As

input to the FLASK code, we used

the angular auto- and cross-

power spectrum  , for i and j

redshift bins (z-bins), calculated

using the Uni�ed Cosmological

Library for Cℓ’s (UCLCL) code

(McLeod, Balan & Abdalla 2017;

Loureiro et al. 2019), taking into

account the redshift space

distortion e�ect. A brief

C
ij
ℓ
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discussion about the theoretical

 can be found in Novaes et al.

(2022), while a detailed

description on how they are

calculated appears in Loureiro

et al. (2019).

The input  are calculated for a

grid of cosmological parameters

under two scenarios:

i. the standard �at ΛCDM model,

varying the parameters {Ωc, h,

Ωb, ns, As}, and

ii. the extension given by the

Chevallier–Polarski–Linder

(CPL) parametrization

(Chevallier & Polarski 2001;

Linder 2003), wcpl(z) = w0 +

wa(z/(1 + z)), where the ΛCDM

model is recovered for w0 = −1

and wa = 0, for which we vary

two more parameters, {Ωc, h,

Ωb, ns, As, w0, wa}.

In each of the cases, we calculate

the  for 800 di�erent

C
ij

ℓ

C
ij

ℓ

C
ij
ℓ
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combinations of cosmological

parameters. For an e�cient

sampling of the parameters space,

we employ the Latin Hypercube

approach (McKay, Beckman &

Conover 1979).

Although we vary all the

parameters in each case, we keep

Ωb, ns, and As values within the 1σ

error bars given by Planck 2018

(Aghanim et al. 2020), while the

other parameters are sampled in a

broader range of values. This

choice is because we are

interested in constraining only

{Ωc, h} and {Ωc, h, w0, wa}

parameters in cases (i) and (ii),

respectively. We consider the

interval of values for these

parameters and their �ducial

values as given in Table 1; the

parameter space of interest is also

shown in Fig. 1 (hereafter, a given

combination of parameters, i.e. a

point in the grid, is simply

referred to as a cosmology). For
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each cosmology, we calculate 

and from them generate 12

realizations of 21 cm mocks. Here,

one mock refers to 30

tomographic maps, one for each

z-bin in the total range of 0.127 <

z < 0.449.

Figure 1. Latin Hypercube sampling of

the parameter space (Table 1). Each

panel shows a grid of the 800 simulated

cosmologies as grey dots. The red stars

show the fiducial cosmology, {Ωc, h, w0,

wa}  = {0.265, 0.6727, −1, 0}.

C
ij

ℓ
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Table 1.

Interval for sampling the cosmological
parameters. Last column show their
fiducial values (Planck Collaboration VI
2018).

It is worth mentioning that the

FLASK code, by construction,

follows prede�ned statistical

properties, such as the power

spectrum and multivariate

lognormal model, as stated by

Parameter Interval Fiducial

Ωb [0.0487,
0.0493]

0.049

Ωc [0.21, 0.31] 0.265

h [0.64, 0.76] 0.6727

ns [0.9605,
0.9693]

0.9649

ln (10 As) [3.029,
3.061]

3.045

w0 [−2.0, 0.0] −1

wa [−3.0, 2.5] 0

10

21/08/2024, 18:22 Cosmological constraints from low redshift 21 cm intensity mapping with machine learning | Monthly Notices of the Royal Astr…

https://academic.oup.com/mnras/article/528/2/2078/7283179 19/126

javascript:;


Xavier et al. (2016). That is to say

that although it has the great

advantage of allowing the

production of a large set of mocks

in a short time, these simulations

may not reproduce realistically

the three-point information from

the 21 cm cosmological signal. In

this sense, the FLASK mocks are

likely enough to evaluate our

methodology using the APS, but

may prevent us from exploring

the full potential of the MFs, as

will be pointed out in Section 4.

2.2 Observational characteristics

i. Foreground contamination: As

in Fornazier et al. (2022) and

Mericia et al. (2023), the

foreground components

contributing in the BINGO

frequency range, 980–

1260 MHz, are generated by the

Planck Sky Model software

(PSM; Delabrouille et al. 2013).

These include the Galactic
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synchrotron  and free–free

emissions, the main

contaminants in this frequency

band, as well as, the thermal

dust and anomalous microwave

emission, besides the

extragalactic contribution from

thermal and kinetic Sunyaev–

Zel’dovich e�ects, and

unresolved point sources. We

refer the reader to Novaes et al.

(2022, section 4.1.2) and

Mericia et al. (2023), as well as

references therein, for

information on the speci�c

con�guration of the PSM code

for simulating each foreground

component.

ii. Sky coverage BINGO will

survey a sky area of 5324 deg ,

corresponding to the sky

fraction of fsky ∼ 0.14, covering

a 14.75° stripe centred at the

declination δ = −15°. The

speci�c footprint is reproduced

in our simulations using an

4

2
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appropriate mask of the sky

coverage (Mericia et al. 2023).

This mask is updated to cut out

a region with strong Galactic

foreground emission. Using the

NaMaster code  (Alonso,

Sanchez & Slosar 2019, see also

Section 3.1), the mask is

apodized with a cosine

transition of 5 deg, in order to

avoid the impact of sharp

edges. The �nal mask, after

apodization and Galactic cut,

has an e�ective sky fraction of

fsky ∼ 0.09.

iii. Instrument: In its Phase 1,

BINGO is expected to operate

with 28 horns and a system

temperature of 70 K (Wuensche

et al. 2022). With 5 yr of

observation, the horns

positions are slightly shifted

each year in order to perform a

more homogeneous scan of the

innermost BINGO area (Abdalla

et al. 2022b). As detailed in

5
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Fornazier et al. (2022), such

speci�cations allow estimating

the amplitude (root-mean-

square; RMS) by pixel of the

BINGO thermal (white) noise,

the same for all the frequency

bins. Then, multiplying the

RMS map by Gaussian

distributions of zero mean and

unitary variance, we generate

as many realizations of noise

maps as the number of

simulations employed here.

Before adding the thermal

noise, we account for the

instrumental beam, assumed to

be approximately Gaussian

with same full width half

maximum θFWHM = 40 arcmin

for all frequency bins.

2.3 Foreground cleaning process

An essential procedure before

using the 21 cm observations for

cosmological analyses is the

removal of the foreground
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contamination, with amplitude of

∼10  larger than the 21 cm signal

in BINGO frequencies (and even

larger at lower frequencies, such

as those of SKA). For this, we

employ the generalized needlet

internal linear combination

(GNILC) method (Remazeilles,

Delabrouille & Cardoso 2011), a

non-parametric component

separation technique, which has

been shown to be e�cient when

applied to 21 cm IM simulations

(Olivari, Remazeilles & Dickinson

2016; Fornazier et al. 2022;

Liccardo et al. 2022; Mericia et al.

2023). We note that GNILC

recovers the cosmological signal

plus noise maps in each

frequency. For detailed

explanation about GNILC, we refer

the reader to Remazeilles et al.

(2011) and Olivari et al. (2016).

Technical details about this

foreground cleaning procedure

implemented on BINGO

simulations, similar to those

4
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employed here, are provided by

Fornazier et al. (2022), Liccardo

et al. (2022), and Mericia et al.

(2023).

As in Novaes et al. (2022), the

large amount of simulations

required here makes unfeasible

the application of GNILC over each

of them. For this reason, we

estimate the residual foreground

signal expected to remain after

the component separation process

and add it to our simulations. We

apply GNILC to 10 complete

simulations, including all

observational characteristics as

discussed in the previous

subsections, and from each of

them, we estimate the foreground

residual maps. This way, our �nal

simulations are constructed by

adding the realistic foreground

residual contribution to each of

the 21 cm mocks (with the beam

e�ect already accounted for),

along with the thermal noise. The
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foreground residual maps are

repeated every 10 mock

realizations. Unless stated

otherwise, our analyses are

applied to these simulations.

3 METHODS

3.1 Summary statistics

3.1.1 Angular power
spectrum

Recognized as a powerful statistic

commonly used to constrain

cosmology, the APS is calculated

as the average of the aℓm

coe�cients of the decomposition

of a temperature �uctuation (or

projected density �uctuation)

�eld into spherical harmonics

 . Here, we employ

the pseudo-Cℓ method as

implemented in the NaMaster code

(Alonso et al. 2019) to estimate

the APS. This formalism relates

Ĉℓ = ⟨aℓma∗ℓm⟩
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the observed APS,  , to the true

spectrum Cℓ as

where the mode-coupling matrix

 is determined by the mask

geometry (Hivon et al. 2002;

Brown, Castro & Taylor 2005).

This matrix is analytically

calculated, and the APS is

estimated by inverting equation

(1). Given the sky fraction

assumed here (fsky = 0.13), we

calculate the Cℓ at bins with width

Δℓ = 10 (Novaes et al. 2022),

which makes the mode-coupling

matrix invertible. It means that

we use a total of 76 data points

(multipole bands) linearly spaced

in ℓ, with 2 ≤ ℓ ≤ 761 (with

maximum multipole as given by

the pixelization of the

simulations, Nside = 256, and the

multipole binning, Δℓ = 10). Here,

Ĉℓ

(1)Ĉℓ =∑
ℓ′
Mℓℓ′Cℓ′ ,

Mℓℓ′
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we consider only the auto-APS;

the constraining power of the

cross-APS between di�erent z-

bins will be assessed in future

work.

3.1.2 Minkowski functionals

Unlike the APS, besides informing

about spatial correlation of a

random �eld, the MFs can also

provide morphological

information and map the shape of

structures. The morphological

properties of a given �eld in a N-

dimensional space can be

completely described using N + 1

MFs (Minkowski 1903). Then, a

two-dimensional 21 cm

temperature �uctuations �eld, δT,

with variance  , would be

completely described by three

MFs, namely, the Area (V0),

Perimeter (V1), and Genus (V2),

given by (Novikov et al. 1999;

Komatsu et al. 2003; Ducout et al.

2013; Novaes et al. 2018)

σ20
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where dΩ and dl are the elements

of solid angle and line,

respectively, and κ is the geodesic

curvature (for details see, e.g.

Ducout et al. 2013). These MFs are

calculated for an excursion set

de�ned as Σ ≡ {δT > νσ0}, i.e. the

set of connected pixels exceeding

a given ν threshold, whose

boundary is  .

The �rst two MFs measure the

area and the contour length of the

excursion set, and the last one

gives the di�erence between

connected areas above the

(2)V0(ν) =
1
4π

∫
Σ
dΩ ,

(3)V1(ν) =
1
4π

1
4
∫
∂Σ
dl ,

(4)V2(ν) =
1
4π

1
2π

∫
∂Σ

κ dl ,

∂Σ ≡ {δT = νσ0}
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threshold ν and below it in the

excursion.

It is worth to mention that

analytical expressions for the MFs

are known only for Gaussian and

weakly non-Gaussian cases. They

can be written as Vk = Akvk, where,

for Gaussian �elds,

 ; Hk(ν) is the

kth Hermite polynomial. The

amplitude Ak depends on the

shape of the APS. For non-

Gaussian �elds, vk can be

expanded in a Taylor series,

 , where the non-

Gaussian correction terms,

represented by  , depend on

the higher order moments of the

�eld (Matsubara 2010; Ducout

et al. 2013; Petri et al. 2015).

Although the �rst order

corrections to the MFs can be

analytically obtained, the

perturbative solution is not

enough for large non-

Gaussianity, as is the case of the

vk = vGk = Hk−1(ν)

vk = vGk + vNG
k

vNG
k
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21 cm signal at low redshifts, and

the series does not converge.

Here, we numerically calculate the

MFs using the code provided by

Ducout et al. (2013) and Gay,

Pichon & Pogosyan (2012). The

number of ν thresholds is �xed at

31, de�ned dividing the range

[νmin, νmax] = [ − 2.5, 6.0] in equal

parts.

As illustration, Fig. 2 shows, for

the �ducial cosmology, the

average MFs from 1000

realizations of clean 21 cm

simulations, as well as the

theoretical APS, showing their

dependence with the redshift.
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Figure 2. Average MFs (the three upper

panels, from top to bottom, are the Area,

Perimeter, and Genus) from 1000 clean

21 cm mocks, accounting for the BINGO

sky fraction and beam, and theoretical

APS (bottom panel), for the fiducial

cosmology (Table 1). The lines

correspond to the 30 tomographic bins,

coloured according to the average

redshi� of each z-bin.
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3.2 Neural network

Working as a regression

technique, an NN is composed by

processing units, the neurons,

organized in layers: one input

layer, fed by the input (features)

and target information, one or

more hidden layers, and the

output layers. In a fully connected

NN, each neuron in a layer is

connected to those in the next

layer, allowing the information to

be processed and to propagate

until the output layer. Following a

supervised learning, the outputs

of this process are compared to

the target values (true

information) estimating an error

(or loss) function to measure the

performance. The errors are

propagated to the input layer to

adjust the parameters of the NN

algorithm, so that the error

function is minimized,

performing an iterative process

until the error achieves a given

threshold, following a
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backpropagation training process.

A detailed description about the

NNs is provided by, e.g.

Choudhury, Datta & Chakraborty

(2020) and Jennings et al. (2020).

Next subsections describe how the

summary statistics are organized

to feed the NN, as well as the

architecture and how the

hyperparameters (number of

layers, number of neurons, among

others) are chosen. We also

present the accuracy metrics used

to evaluate the performance of the

NNs in constraining the

cosmological parameters.

3.2.1 Training and test data
sets

For each of the scenarios we

investigate here, cases (i) {Ωc, h}

and (ii) {Ωc, h, w0, wa}, we

generate 12 realizations of 21 cm

mocks for each of the 800

cosmologies. We �nd that a set of
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n = 12 maps for each cosmology

seems to be enough for the NN to

account for the cosmic variance

(CV; tests have shown that for n ≥

4, the accuracy of the NN plateaus

oscillates around an average

value). We calculate the APS and

the MFs statistics for each of the

simulations, at each z-bin. The

summary statistics are the

features feeding our NNs

algorithms and the corresponding

cosmological parameters values

are the targets, or outputs, of the

NNs, i.e. the quantities we want to

predict using the trained NN.

These data are split so that 64, 16,

and 20  per cent of the 800

cosmologies are used for training,

validation, and testing of the NN,

respectively. It means that APS

and the MFs calculated over

mocks from a given cosmology

used for training or validation are

not employed for testing the

performance of the NN. To

guarantee that our results do not
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depend on a particular (random)

choice of train and validation sets,

we use the cross-validation

procedure. For this, we split the

train + validation data set into 5

smaller data sets, training the NN

in 4 of them and validating on the

remaining set. These training and

validation steps are repeated

5 times, each of them excluding

one of the 5 smaller sets, and the

performance value is given by the

average of the values measured at

each of the 5 training processes.

We note that, before feeding the

NN, the features are rescaled in

such a way that all the values lie in

the range [0,1], a procedure

commonly employed to improve

the e�ciency during the training

process (Jennings et al. 2020).

The training + validation set is

de�ned as T{X, y} = T{Xj, yj},

allowing to map the features, i.e.

the summary statistics, X, in

terms of the targets, given by the
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corresponding cosmological

parameters, y. For the jth

realization, the features appear as

where Vk(ν) ≡ (V0(ν), V1(ν), V2(ν)),

representing the Area, Perimeter,

and Genus estimators,

respectively, and the index i = 1,

2,..., m runs over the m = 30 z-

bins. This means that, for each

realization, Xj is a vector with m ×

[76 multipolebands + 3MFs ×

31 ν thresholds] elements.

Hereafter, we refer to the three

MFs combined as Vk. The features

are associated to the targets,

where, for case (i), p = 0, 1 with

{θp} = {Ωc, h} and, for case (ii), p =

0 with the target given by one of

(5)
Xj = {(C i

ℓ), (V
i
k )}|j,

= {(C 1
ℓ ,C

2
ℓ , . . . ,C

m
ℓ ), (V

1
k ,V

(6)yj = {θp}|j,
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the parameters at a time , {θp} =

{Ωc}, {h}, {w0}, or{wa}, i.e. the NN

algorithm is trained over

individual cosmological

parameters. We test the e�ciency

of each estimator, Cℓ and Vk,

individually,  and

 , as well as their

combination,  ,

changing equation (5)

accordingly.

Our main analysis considers a

compression of all the 30 z-bins

into �ve redshift ranges, given by

a simple average of the summary

statistics over every six

consecutive z-bins (the

motivation for this choice is

discussed in Section 4.6).

Therefore, the i index runs over

m = 5 redshift intervals, or subsets

of the z-bins.

6

X = {(C i
ℓ)}

X = {(V i
k )}

X = {(C i
ℓ), (V

i
k )}
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3.2.2 Architecture

For each of the tests reported

here, we de�ne a particular

architecture by searching for an

optimized set of hyperparameters.

For this, we use the OPTUNA

package (Akiba et al. 2019), able to

automatically search the values of

the hyperparameters, from a

prede�ned search space, by

minimising/maximizing a given

objective function. Here we use a

loss function, chosen to be the

commonly used mean square

error (MSE), given by

for a total of N simulations in the

validation data set, with the

‘True’ and ‘Pred’ superscripts

referring to the real (input) values

of the cosmological parameters,

used for generating the

(7)L =
1
N

N

∑
j=1

(yPred − yTrue)2,
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simulations, and the predicted

values by the NN, respectively.

Then, at each trial, i.e. after

training the NN with a given set of

values for the hyperparameters, a

validation loss (a score)  is

returned, a procedure repeated in

order to search for the set of

hyperparameters minimizing it.

For all our tests, the number of

trials is limited to 500, since cases

(i) and (ii) usually does not need

more than 300 and 400 trials,

respectively.

Our NN algorithms are

constructed optimizing the

following main hyperparameters,

considering the searching spaces

as de�ned below:

i. number of neurons in the

hidden layers: [1,500];

ii. number of layers: [1,3];

iii. activation function: ReLu,

tanh;

L
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iv. optimizer: Adam, SGD;

v. learning rate: [10 , 10 ] and

[10 , 10 ] for Adam and SGD

optimizers, respectively;

vi. momentum (only for SGD):

[10 , 10 ];

vii. batch size: [50, 500];

viii. number of epochs: [50, 500];

ix. weight decay: [10 , 10 ].

In the case of Adam optimizer, the

beta parameters are �xed to the

default values β1, β2 = 0.9, 0.999.

The optimization processes

usually �nd 1 to 4 hidden layers

with no more than 300 neurons,

taking nine to �fteen hours to

perform the 500 trials on 56 cores

of a processor Intel Xeon Gold

5120 2.20 GHz and 512 GB of RAM.

−4 −2

−5 −1

−4 −2

−4 −2
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3.2.3 Accuracy metrics

To evaluate the performance of

the NNs constructed from the

training process, we quantify how

accurate are the predicted values,

y , with respect to the true, or

input, values, y , from the test

set, t{X}. For this, we used four

di�erent metrics to characterize

the accuracy of the predictions,

for each cosmological parameter,

evaluating di�erent aspects of the

results.

The �rst metric is the root-mean-

squared error, de�ned by the

square root of equation (7), RMSE

 , for the N simulations in

the test set. It quanti�es the

overall accuracy (total error) of

the predictions, regardless of the

origin, i.e. whether it is inherent

to the NN algorithm or it is

introduced by the CV of the

cosmological signal. The second

metric is the standard deviation of

the predicted values averaged for

Pred

True

= √L
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all the nc = 160 di�erent

cosmologies,

for a total of n simulations from

each c cosmology; this metric

quanti�es the uncertainty

associated to the CV. The third

metric is the slope of the straight

line �tted over the data points,

relating predictions and real

values, y  × y . It measures

the bias appearing in the

predictions when the NN is not

able to e�ectively learn the

relation between the summary

statistics and the cosmological

parameters. A slope near to 1

indicates a small bias and accurate

predictions, while a slope near to

0 re�ects a large bias and

indicates that the NN is predicting

values close to the mean of the

(8)⟨σ⟩ =
1
nc

nc

∑
c=1

[ 1
n

n

∑
i=1

(yci − ⟨y
⎷Pred True
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parameters ranges. Such large

bias is a common behaviour of the

NN when it is not able to

e�ciently map the features in

terms of the targets (see e.g. Lu

et al. 2022); the NN predicts

values near to the mean of the

parameter range because, in doing

so, it arti�cially reduces the loss

function.

The last metric quanti�es also the

overall accuracy of our results, but

considering the relationship

between pairs of cosmological

parameters. This metric is the

area of the 1σ error ellipses

obtained from the distribution of

Δy = y  − y , the di�erence

between true and predicted

values, in the  plane,

where p and p′ indicate two

di�erent cosmological

parameters.

True Pred

Δyp −Δyp′
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4 RESULTS AND DISCUSSIONS

Here, we present the results

obtained evaluating the

performance of the method in

constraining {Ωc, h} and {Ωc, h,

w0, wa} sets of parameters using

the respective NNs trained over

our simulations (cosmological 21 

cm signal + thermal noise

 + foreground residual). We

evaluate the performance of the

method using di�erent features,

the summary statistic, Vk and Cℓ,

individually and their

combination, Vk + Cℓ. We also

investigate how our results are

a�ected by each contaminant

signal, thermal noise and

foregrounds, and their robustness

to the foreground characteristics.

For the clean 21 cm simulations,

we investigate the sensitivity of

the results to the sky coverage and

to speci�c redshift ranges. We

employ an optimized set of
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hyperparameters for each of these

tests.

4.1 Parameters prediction under the
ΛCDM model

For each of the 800 cosmologies

sampling the two-parameter

space, case (i) {Ωc, h}, we generate

12 realizations of the cosmological

21 cm signal, then include the

e�ect of the instrumental beam

and add the contribution of

thermal noise and foreground

residual. We use the APS and MFs

calculated from these simulations

to train and validate the NN.

Applying the trained NNs to the

respective test data sets, we

obtain the predicted values of the

{Ωc, h} cosmological parameters.

These predictions are compared to

the true values in Fig. 3, for each

summary statistic individually

and combined, showing also the

best linear �t over the data points,

whose slope values are

summarized in Table 2. The
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standard deviation over the n = 12

predicted values within each

cosmology, represented by the

error bars in Fig. 3, averaged over

the cosmologies from the test

sets, 〈σ〉, are also presented in

Table 2, as well as the RMSE

values. The RMSE, a measurement

of the overall error, is also

calculated for the training data set

(appearing in parentheses in the

tables) so that we can assess

over�tting. A signi�cantly larger

RMSE value from test data

compared to that from training

data would indicate over�tting.

For all our analyses, these values

seem to be in reasonable

concordance, then we consider

that no over�tting occurs.

Although omitted here, the other

metrics obtained from training

data sets also lead to the same

conclusion.
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Figure 3. Predicted versus the true

cosmological parameters values,

showing results from case (i), for {Ωc, h}

parameters. Each point and error bar

correspond to the average and standard

deviation of the n = 12 predictions within

the same cosmology. The di�erent

colours, as labelled in the first panel of

each row, represent a type of simulation,

the clean 21 cm mocks, these mocks

contaminated by thermal noise (+WN),

and contaminated by foreground

residual, along with the noise
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(+WN + FG). The dot–dashed, dotted, and

dashed lines are the linear fitting of the

corresponding coloured data points.

From top to bottom, each row shows

results using the MFs, the Cℓ, and their

combination, Vk + Cℓ.
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Table 2.

Results of the accuracy metrics
evaluating the performance of the NNs
trained over the MFs, the APS, and their
combination, Vk + Cℓ, in predicting {Ωc, h}
parameters. All the metrics are
calculated from the test data sets; the
RMSE is also estimated from the training
data sets, appearing in parentheses.
Given the sampling interval of the
parameters (Table 1), we remember that
RMSE values around 0.025 and 0.030 for
Ωc and h, respectively, indicate
inaccuracy of the predictions. The first
three parts of the table show the
resulting metrics from analysing the
clean cosmological signal (with the
beam e�ect; 21 cm), these same mocks
contaminated with thermal noise (21 cm
+ WN), and the BINGO simulations (21 cm
+ WN + FG). The last part of the table
corresponds to analyses of the same
clean 21 cm realizations, but considering
a larger sky coverage, fsky = 0.52. See the
text for details.

Parameter Vk

〈σ〉 slope RMSE
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21 cm

Ωc 0.007 0.874 0.014
(0.009)

h 0.006 0.964 0.010
(0.008)

21 cm  + WN

Ωc 0.010 0.524 0.020
(0.019)

h 0.007 0.833 0.014
(0.013)

21 cm +WN  +FG (BINGO s

Ωc 0.010 0.533 0.020
(0.019)

h 0.008 0.854 0.015
(0.014)

21 cm @ fsky = 0.52

Ωc 0.003 0.967 0.004
(0.004)

h 0.003 0.968 0.004
(0.004)
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From the third part of Table 2, one

can see that, regardless of the

features, h is always better

estimated than the Ωc parameter.

For both parameters, Fig. 3 shows

that, given the error bars, the

predictions are consistent with

the true values, showing that the

NNs are able to learn the relations

between the summary statistics

and cosmological parameters,

specially when using Cℓ or Vk + Cℓ.

The results from the accuracy

metrics 〈σ〉, slope, and RMSE show

that the APS outperforms the MFs

in estimating both Ωc and h

parameters. Their combination,

however, does not seem to

provide a signi�cant

improvement on the results,

showing slightly smaller (larger)

RMSE values for h (Ωc) parameter

with respect to that from Cℓ, while

the slope values are slightly

smaller for both cosmological

parameters. Still, for Vk + Cℓ, the
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RMSE for Ωc and h parameter are

0.013 and 0.011, respectively,

representing 4.9 and 1.6 per cent

fractional errors about the �ducial

values Ωc = 0.265 and h = 0.6727.

As pointed by Perez et al. (2022),

for Ωc and h, a RMSE value close to

0.025 and 0.030, respectively,

would indicate inaccuracy of the

method in predicting these

parameters, since the error would

amount to half of the sampling

interval (Table 1). In Costa et al.

(2022), the BINGO collaboration

employs the Fisher matrix

formalism in a cosmological

forecast using the APS and �nd a

1σ constraint of 19 per cent

fractional error for h, under the

ΛCDM scenario, which is reduced

to 0.9 per cent when adding

Planck measurements. Although

the authors explore a di�erent set

of cosmological parameters and

prior ranges, so the comparison

with our results is not

straightforward , the signi�cantly7
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smaller error found here for the

Hubble parameter indicates how

competitive our constraints can

be and suggests that the error

bars can be reduced by combining

di�erent data sets to feed NN

algorithms. Also, although one

can say that our analyses combine

BINGO and Planck results, given

that we use Planck constraints to

de�ne the sampling interval for

Ωb, ns, and As, the parameters of

interest in case (i) are sampled in

a signi�cantly broader range.

To help understand our results, in

Appendix  A, we investigate how

each of the summary statistics is

modi�ed by varying each

cosmological parameter. Fig. A1,

illustrating the e�ect of changing

the cosmological parameters

amplitude in 1 per cent, show that

all three MFs and APS seem to be

more sensitive to the Hubble

parameter h than to the dark

matter density parameter Ωc,
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given the amplitude of the curves.

This explains the better accuracy

metric for h compared to Ωc. Also,

the higher sensitivity of the MFs

to the Hubble parameter help

explaining why the combination

Vk + Cℓ improves, even if just

slightly, only the h parameter

predictions. However, it remains

to be better understood the reason

why the combinations of the

summary statistics does not

provide more signi�cant

improvements with respect to

their individual usage.

In order to enlighten such �nding,

one should remember the

dependency among the two

summary statistics (see

Subsection 3.1). This relationship

is given by an integration over

several scales of the Cℓ (Novikov

et al. 1999), possibly losing

information, in such a way that,

even when applied to Gaussian

�elds, the two statistics may not
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carry the same information. For

the case of the non-Gaussian 21 

cm �eld, although our

simulations may not reproduce a

realistic three-point information

(see discussion in Subsection 2.1),

the MFs still describe their

lognormal characteristic, unlike

the APS. In this sense, even if the

lognormal information is not

enough to signi�cantly improve

the cosmological predictions from

MFs with respect to APS, one

cannot guarantee that the two

summary statistics would have

similar performances or that their

combination would lead to

expressive improvements.

In terms of the ΔΩc–Δh plane (or

just Ωc–h plane, for simplicity),

presented in Fig. 4, where Δ

represents the di�erence between

true and predicted parameters,

the error ellipses for the Vk, Cℓ,

and Vk + Cℓ statistics show that

the last one seems to provide the
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smallest contour area. This is

con�rmed by the results

summarized in Table 3, showing

that the area of the error ellipse

obtained using the Cℓ is reduced

by  when using the

combination Vk + Cℓ, while Vk is

again the least restrictive statistic.

However, Table 3 also shows that,

di�erently from the BINGO

simulations, when analysing the

(unrealistic) clean 21 cm

realizations, the MFs provide

better constraints than the APS;

their combination provides

reduction of  in the

contour area with respect to MFs

only. Such result has two main

indicatives. First, the combination

of the summary statistics seems

to be even more advantageous in

the presence of contaminant

signals. Second, a possible

imprecision of three-point

information of our 21 cm

lognormal realizations is not the

only explanation for the best

∼ 27  per cent

∼ 19  per cent
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performance of the Cℓ over BINGO

simulations, since the constraints

from clean 21 cm simulations rely

on the same lognormal

realizations. This second point

suggests that the better

constraining power of the APS for

BINGO simulations could also be a

consequence of a more severe

impact of the contaminants over

the MFs predictions compared to

the APS. The impact of each

contaminant to the summary

statistics is assessed later in this

section, where we get back to this

discussion.
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Figure 4. Error ellipses for the {Ωc, h}

parameter space predictions, showing

the distribution of the di�erence

between true and predicted

cosmological parameter,

 and

 . In all cases, the

solid and dashed lines represent the 1σ

and 2σ contours, respectively. The

corresponding projected 1D

distributions are also shown. The

di�erent colours show results from

di�erent summary statistic and their

combination.

Δh = hTrue − hPred

ΔΩc = ΩTrue
c −ΩPred

c
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Table 3.

Area of the 1σ error ellipse for each
summary statistic relative to that from
the combination Vk + Cℓ, considering the
di�erent parameters planes for {Ωc, h}
and {Ωc, h, w0, wa} constraints. The
columns 2 to 4 show results from
analysing the clean 21 cm realizations,
and columns 5 to 7 are obtained from
BINGO simulations.

Parameter
space

21 cm

Vk + Cℓ Cℓ Vk

2 parameters constraint

Ωc–h 1 1.194 1.188

4 parameters constraint

Ωc–h 1. 1.337 1.137

Ωc–w0 1. 1.224 1.329

h–w0 1. 1.016 1.315

Ωc–wa 1. 1.084 1.138

h–wa 1. 0.970 1.052
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4.2 Parameters prediction under the
CPL parametrization

Reproducing the same analyses as

discussed in the previous

subsection (same number of

cosmologies and realizations),

now considering the four-

parameter space, case (ii) {Ωc, h,

w0, wa}, we �nd the predicted

values as shown in Fig. 5. These

results show a greater di�culty of

the NN in mapping the summary

statistics into the cosmological

parameters, which is expected

given the larger parameter space.

Also, we can see that the

constraining power of the method

in estimating h parameter is the

most a�ected by the inclusion of

the CPL parameters, w0 and wa,

likely due to the degeneracy

among them. Still, from the 1σ

error bars, we still see a

w0–wa 1. 0.978 1.300
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reasonable concordance of the

predictions with the true values,

apart from wa parameter. In fact,

from Fig. A1 in the appendix, we

can see that wa is the parameter

whose variation least modi�es the

summary statistics. The

predictions for this parameter

from both APS and MFs are clearly

shifted to the mean of the

respective sampling interval,

arti�cially reducing the loss

function. This behaviour is

quanti�ed by the slope values

presented in the third part of

Table 4. The same table also

summarizes 〈σ〉 and RMSE metrics

resulting from the four-

parameter constraints. Similarly

to the two-parameter constraints,

the metrics show that the APS

outperforms the MFs in predicting

all four parameters, while their

combination allows only slight

improvements of the metrics

from using the APS alone. The

RMSE values for Ωc, h, and wa
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obtained using Vk + Cℓ decrease

with respect to those obtained

using only Cℓ, but slightly

increase for w0. The slope values

indicate a smaller (larger) bias for

Ωc and h (w0 and wa) parameters

for Vk + Cℓ statistics. Again, these

results can be interpreted taking

into account the relationship

between the two summary

statistics, as we discussed in the

previous section. Still, we should

also account for the fact that the

NN training and the

hyperparameter optimization are

stochastic processes. This means

that, training an NN will lead to

di�erent outputs for multiple

evaluations, even �xing the set of

hyperparameters, because of the

random choice of some

parameters of the NN algorithm

and the random split of the

training and validation sets. Also,

the hyperparameter selection can

lead to better optimized

architectures for speci�c cases.
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For such reasons, a slight change

in the accuracy metrics may

simply indicate that there has

been neither improvement nor

degradation of the predictions,

which would explain the few cases

with slightly worse metrics from

the combination Vk + Cℓ.

Figure 5. Same as Fig. 3, but for case

(ii), showing predicted values for {Ωc, h,

w0, wa} parameters.
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Table 4.

Same as Table 2, but for {Ωc, h, w0, wa}
parameters predictions. We recall that
RMSE values around 0.025, 0.030, 0.5,
and 1.375 for Ωc, h, w0, and wa,
respectively, indicate inaccuracy of the
predictions, since the 1σ error would
amount to half of the sampling interval
(Table 1).

Parameter Vk

〈σ〉 slope RMSE

21 cm

Ωc 0.006 0.692 0.015
(0.016)

h 0.004 0.528 0.024
(0.024)

w0 0.125 0.872 0.214
(0.210)

wa 0.337 0.303 1.023
(1.036)

21 cm  + WN

Ωc 0.010 0.464 0.021
(0.021)

21/08/2024, 18:22 Cosmological constraints from low redshift 21 cm intensity mapping with machine learning | Monthly Notices of the Royal Astr…

https://academic.oup.com/mnras/article/528/2/2078/7283179 65/126

javascript:;
javascript:;


h 0.005 0.412 0.026
(0.026)

w0 0.153 0.679 0.328
(0.341)

wa 0.159 0.142 1.138
(1.168)

21 cm + WN  + FG (BINGO s

Ωc 0.010 0.444 0.022
(0.021)

h 0.002 0.419 0.026
(0.027)

w0 0.155 0.656 0.329
(0.339)

wa 0.167 0.143 1.134
(1.163)

21 cm @ fsky = 0.52

Ωc 0.005 0.805 0.012
(0.013)

h 0.003 0.494 0.022
(0.023)

w0 0.087 0.935 0.145
(0.140)
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The NN fed with the combination

of the summary statistics provide

predictions for Ωc, h, w0, and wa

parameters with accuracy of

RMSE ∼0.017, 0.025, 0.243, and

1.096, respectively, which gives,

for the �rst three, 6.4, 3.7, and

24.3 per cent fractional error

about their �ducial values

(Table 1). We note that an RMSE

value close to half of the sampling

interval, namely, 0.5 and 1.375, for

w0 and wa parameters,

respectively, would indicate

inaccuracy of the method in

predicting these parameters; wa

predictions have the higher RMSE

value relative to the sampling

interval. In fact, under the CPL

parametrization, the Fisher

matrix analysis by Costa et al.

(2022) also �nds wa parameter to

be the most di�cult to constrain,

obtaining an error amplitude of

wa 0.264 0.458 0.893
(0.917)
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2.8 (1.2), for BINGO

(BINGO + Planck). For h and w0

parameters , they �nd fractional

errors of 20 per cent (2.9 per cent)

and 55 per cent (30 per cent),

respectively. Again, although a

comparison between these results

and ours is not straightforward,

the signi�cantly lower error

estimates found here still

indicates our methodology as very

promising, in particular to

improve Planck constraint on w0.

From the error ellipses shown in

Fig. 6, we �nd that, for the Ωc–h

plane, the area of the 1σ contour

from the predictions obtained

using the APS is reduced by

 when the summary

statistics are combined, Vk + Cℓ, as

shown in Table 3. For Ωc–w0 and

h–w0 planes, the 1σ error

contours shrank by

 and  ,

respectively. The combination

Vk + Cℓ shrank the error contours

8

∼ 5  per cent

∼ 0.1  per cent ∼ 2  per cent
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on the Ωc–wa, h–wa, and w0–wa

planes, obtained using the APS

alone, by ∼10, ∼12, and ∼15 per

cent, respectively.

Figure 6. Same as Fig. 4, but for case

(ii) {Ωc, h, w0, wa} parameters.

Moreover, similarly to the

�ndings from the ΛCDM scenario,

when analysing the clean 21 cm

simulations the individual results

from the two summary statistics

(Table 4) are quite consistent for h

and Ωb parameters, while their

ellipse error shows the MFs with
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better constraining power than

the APS. For the other parameters

and ellipse errors, the APS seems

to outperform the MFs also when

no contaminant signal is

accounted for.

4.3 Impact of individual systematic
e�ects

Here, we evaluate how {Ωc, h} and

{Ωc, h, w0, wa} parameters

predictions are impacted by the

presence of noise and foreground

residual individually by adding

one at a time to the cosmological

signal. The di�erent colours

appearing in each panel of Figs 3

and 5 represent a type of

simulation, namely, the 21 cm

only (with BINGO beam),

including the thermal noise, and,

along with it, adding the

foreground residual. The metrics

obtained from all these type of

simulations and summary

statistic are summarized in

Tables 2 and 4. These results
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indicate that the thermal noise

causes the greatest impact on the

prediction, while the presence of

foreground residual, although not

negligible, leads to a much less

degradation of the predictions.

For the RMSE metric, for example,

considering results for Vk + Cℓ, in

case (i) we �nd 0.009 error for

both Ωc and h parameters for clean

21 cm mocks, which increases by

30 and 18 per cent, respectively,

when adding noise and another 8

and 4 per cent when including also

the foreground residual. For case

(ii), the presence of thermal noise

leads to RMSE values 21, 9, 44,

and 9 per cent greater, for Ωc, h,

w0, and wa parameters, with

respect to that obtained from

predictions over clean 21 cm

mocks, while including the

foreground residual has negligible

impact (less than 1 per cent). As

can be seen from these values, the

w0 parameter is the most a�ected

by the noise contamination.
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The comparison of the error

ellipses from each type of

simulation, using Vk + Cℓ
statistics, is shown in Figs 7, for

case (i) {Ωc, h}, and 8, for case (ii)

{Ωc, h, w0, wa}. Table 5 shows the

impact on the 1σ area when

accounting for the thermal noise

and, along with it, the foreground

residual (BINGO simulations). For

all planes of parameters pairs, it is

evident the signi�cant impact of

the thermal noise, while the e�ect

introduced by the foreground

residual is almost negligible.
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Figure 7. Same as Fig. 4, but showing

results from using di�erent simulations:

the clean 21 cm simulations (21 cm),

a�er including thermal noise to them

(21 cm + WN), and adding foreground

residual along with the noise (21 cm +

WN  + FG). All predictions shown here

result from the combination Vk + Cℓ.
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Figure 8. Same as Fig. 7, but for case

(ii), showing predicted values for {Ωc, h,

w0, wa} parameters.

Table 5.

Same as Table 3 but using only the
combination Vk + Cℓ and showing the
area of the error ellipses obtained
analysing noisy 21 cm simulation (+WN)
and BINGO simulations (+WN  +FG)
relative to those from clean 21 cm
simulations.

Parameter
space

21 
cm

 +WN +WN  +FG
(BINGO
simulation
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Evaluating the summary statistics

individually, we also observe the

thermal noise as the most

important contaminant, while the

MFs seem to be the most impacted

by it. All metrics from predictions

for case (i) show this same

behaviour for both cosmological

parameters. In this case, the

RMSE calculated for the MFs

increases by 42 and 40 per cent for

2 parameters constraint

Ωc–h 1 1.522 1.702

4 parameters constraint

Ωc–h 1. 1.625 1.648

Ωc–w0 1. 1.999 2.053

h–w0 1. 1.560 1.610

Ωc–wa 1. 1.400 1.402

h–wa 1. 1.195 1.234

w0–wa 1. 1.547 1.574
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Ωc and h parameters, respectively,

due to the inclusion of thermal

noise, while these percentages are

20 and 10 per cent using the Cℓ.

For case (ii), the increase in the

RMSE due to thermal noise are 40,

8, 53, and 11 per cent for Ωc, h, w0,

and wa, respectively, using MFs,

which, using Cℓ, are 46 per cent

for w0 and 13 per cent for the other

three parameters. Therefore,

regardless of the summary

statistic or their combination, w0

is the parameter most a�ected

when taking the thermal noise

into account.

As pointed out earlier in this

section, the more severe impact of

the contaminants over the MFs

predictions compared to the APS

may be one of the reasons why the

constraints on h–Ωc plane by the

APS are more restrictive than

those by the MFs when analysing

the BINGO simulations and the

opposite is observed for clean 21 
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cm simulations. It is also worth

reminding that both foregrounds

and thermal noise have a non-

Gaussian distribution over the

sky, which could also contribute

for the MFs to have a less

constraining power than the APS

for BINGO simulations. Also, the

distinct angular scales (or

multipoles) at which the APS is

calculated could also be helping

the NN to discriminate among

cosmological signal, foreground

residual,and thermal noise, since

each of them has a characteristic

dependence with the angular

scale.

4.4 Robustness to foregrounds

We also evaluate the robustness of

our results from case (ii) {Ωc, h,

w0, wa} to the foreground

contamination. For this, we test

the previously trained NNs over

three di�erent test data sets,

namely the summary statistics
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obtained from simulations

accounting for: (1) 50 per cent and

(2) 100 per cent higher amplitude

foreground contamination, by

multiplying the same foreground

residual maps by the factors of 1.5

and 2.0 before adding them to the

cosmological signal (mimicking a

non-optimal usage of GNILC), and

(3) using the foreground residual

obtained as explained in Section

2.3, but using a di�erent

synchrotron emission model. In

this last case, the synchrotron

component is produced

considering a power law with a

non-uniform spectral index over

the sky as given by the Miville-

Deschênes et al. (2008) model

(indicated by MD in Fig. 9),

replacing the Giardino et al.

(2002) model (GD in Fig. 9)

considered for the training data

set (see Mericia et al. 2023, for

details). We emphasize that to

obtain the last test data set, we

again apply GNILC over ten
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complete simulations, now

accounting for the synchrotron

MD model, so that the foreground

residual maps are di�erent from

those used to produce the training

data set.

Figure 9. Same as the last row of Fig. 5,

but comparing results obtained using

di�erent training data sets. The red line

and dots repeat +WN + FG results from

Fig. 5, indicated here by GD (synchrotron

model from Giardino et al. 2002). The

lines and dots in orange and pink

correspond to the cases using 50 and

100 per cent higher residual foreground,

respectively. The violet line and dots

correspond to the results using a

di�erent synchrotron model (Miville-

Deschênes et al. 2008, MD model). The

error bars are not shown to help

visualize the results. See the text for

details.

21/08/2024, 18:22 Cosmological constraints from low redshift 21 cm intensity mapping with machine learning | Monthly Notices of the Royal Astr…

https://academic.oup.com/mnras/article/528/2/2078/7283179 79/126

javascript:;
javascript:;
javascript:;
javascript:;


The results for parameters

constraints using each of these

three test data sets are shown in

Fig. 9, along with the previous

results (indicated by +WN +FG in

the last row of Fig. 5). Comparing

them, we �nd no signi�cant

degradation of the results. From

all three test data sets, the 〈σ〉 and

slope metrics are highly

consistent with previous

predictions, presented in Table 4

(21 cm +WN  +FG), regardless of

the cosmological parameter.

Similarly, the RMSE increases

only up to 2 per cent for Ωc, h, and

wa. The larger impact is observed

for w0, with RMSE increasing by 11

and 19 per cent for test data sets

(2) and (3), respectively, which

corresponds to a fractional error

increasing from 24.3 to 27.1 and

29.1 per cent. For test data set (1),

no degradation is observed from

any metric or cosmological

parameter. Therefore, even with a

larger impact on w0 when using a
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di�erent synchrotron model, our

results still corroborate the

applicability of the NNs outside

the training data set, showing no

signi�cant additional bias on the

cosmological parameters

constraints. This suggests our

predictions to be robust against

foreground contamination and

our method promising to be

applied to future data.

4.5 Sensitivity to survey area

In order to evaluate how the sky

coverage in�uences our results,

we tested our methodology over a

larger sky fraction, fsky = 0.52. We

chose to assume approximately

the same region that SKA is

intended to observe. We

emphasize that we are not

reproducing the SKA

observational speci�cations, but

only increasing the sky fraction to

that expected to be covered by it,

i.e. still using the same 21 cm
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mocks generated in BINGO

frequency range. The cut sky mask

in this case is constructed

assuming the observed region in

the declination range (−75°, 28°).

In addition to this cut, we remove

the region where Galactic

foreground emission would

contribute and apodize the mask,

following the same procedure

described in Subsection 2.2.

Although we apply a Galactic cut,

this test is performed only over

the clean 21 cm simulations,

including the 40 arcmin beam

e�ect.

The last part of Tables 2 and 4

show the accuracy metrics, for

cases (i) {Ωc, h} and (ii) {Ωc, h, w0,

wa} parameters predictions,

respectively, evaluating the

performance of the method over a

larger sky area. Compared to the

results shown in the �rst part of

these tables, one can clearly see

the improvement in all the
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metrics when using a larger area,

as expected. Increasing the fsky

from 0.09 to 0.52, the RMSE from

case (i) can decrease by a factor

2.25, for both parameters, when

using Vk + Cℓ, with an even more

signi�cant improvement when

using only the MFs. When

constraining two cosmological

parameters, the improvement on

predictions from MFs are high

enough to make them outperform

the Cℓ. In fact, this is an

advantageous aspect, since the

MFs are the summary statistic

most a�ected by thermal noise,

and indicates that using a larger

fraction of the sky may allow the

combination Vk + Cℓ to provide

better results compared to

individual statistics when

accounting for the contaminant

signals. Similarly, although the

improvements are not so

expressive for case (ii), all the

metrics improve when using a

larger fraction of the sky (for both
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summary statistics and their

combination), with smaller RMSE

values by a fact at most 1.3 for Ωc

and w0 using Vk + Cℓ.

The error ellipses for fsky  = 0.09

(BINGO coverage) and 0.52 are

compared in Figs 10 and 11 for

cases (i) and (ii), respectively. The

e�ect of the sky fraction over the

area of the 1σ regions are

summarized in Table 6, showing a

signi�cant reduction of this area

from all planes when using the

combination Vk + Cℓ over a larger

fsky, mainly favouring Ωc–h plane

from case (i) and Ωc–w0 from case

(ii). Besides, the results con�rm

the MFs outperforming the Cℓ for

Ωc–h plane in clean 21 cm maps,

for both sky fractions (see

columns 2 to 4 in Table 3) and

cases (i) and (ii). For case (ii), the

larger sky fraction allows the 1σ

area for Ωc–h plane obtained

using the MFs to be reduced in

∼22 per cent when combing the
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summary statistics, Vk + Cℓ. A

similar reduction is also found in

Ωc–w0 plane. Also, using fsky

 = 0.52 leads to almost 5 per cent

reduction of the 1σ area from both

Ωc–wa and h–wa planes using

Vk + Cℓ with respect to their

individual usage, while w0–wa

plane is slightly better

constrained by the Cℓ alone. For

fsky  = 0.09, as shown in Table 3,

only Ωc–wa has the ellipse area

reduced by the combination

Vk + Cℓ. Such results show that

increasing the sky coverage

improves the predictions of all

cosmological parameters, as

expected, as well as allows the

combination of summary

statistics to provide more

expressive amelioration of the

predictions compared to their

individual usage.
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Figure 10. Error ellipses for the {Ωc, h}

parameter space, showing the

distribution of the di�erence of

predicted and true values, as in Fig. 4,

but comparing two di�erent sky

coverages, fsky = 0.09 (BINGO coverage)

and 0.52. Both analyses use clean 21 cm

simulations and the combination of the

summary statistics, Vk + Cℓ.
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Figure 11. Same as Fig. 10, but for case

(ii), showing predicted values for {Ωc, h,

w0, wa} parameters.
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Table 6.

Area of the 1σ error ellipse for individual
summary statistics relative to that from
the combination Vk + Cℓ, but analysing a
larger fraction of the sky, fsky = 0.52
(columns 2 and 3). The last column
shows the relative area of the ellipse
when analysing BINGO coverage (fsky =
0.09) using Vk + Cℓ. These results
correspond to clean 21 cm simulations.

Parameter
space

fsky = 0.52

Vk + Cℓ Cℓ Vk

2 parameters constraint

Ωc–h 1 2.902 1.010

4 parameters constraint

Ωc–h 1. 1.605 1.223

Ωc–w0 1. 1.218 1.254

h–w0 1. 1.012 1.233

Ωc–wa 1. 1.048 1.101

h–wa 1. 1.046 1.084
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4.6 Sensitivity to redshi� ranges

We also investigate the sensitivity

of each cosmological parameter to

the redshift. For this, we perform

the same training procedure

described before, using as

features the summary statistics

from a given range of redshift. In

addition to the whole set of 30

redshift bins, we also test using

three subsets, the lowest,

intermediate, and highest ten

redshift bins, which correspond to

z1–10 ∈ [0.127, 0.234], z11–20 ∈

[0.234, 0.342], and z21–30 ∈ [0.342,

0.449], respectively. The RMSE

metric for each of these tests, for

cases (i) and (ii), are presented in

Fig. 12 showing results for each

cosmological parameter and

summary statistic. Since using

two di�erent summary statistics

(or 5, given that the MFs include

w0–wa 1. 0.831 1.132
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the Area, Perimeter, and Genus)

from 30 redshift bins constitute a

very large set of features, we also

evaluate the e�ect of compressing

the summary statistics. This

compression corresponds to a

simple average of the statistics

from each 6 consecutive bins, so

that we have, e�ectively, �ve

redshift bins instead of 30  The

RMSE values resulting from

employing this compression is

also included in Fig. 12.

9
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Figure 12. Sensitivity of the

parameters predictions with the redshi�.

The upper and lower panels show the

RMSE metric obtained from cases (i) and

(ii), respectively, as a function of the

range of redshi� bins from which the

summary statistics are calculated and

used to feed the NNs. The RMSE values

for wa parameter are rescaled by a factor

of 0.5. In both panels, the right most

data points show the RMSE resulting

from predictions performed using the
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summary statistics from all the 30

redshi� bins averaged into 5. These

results are obtained using BINGO

simulations. See the text for details.

Comparing the results, we can see

that, for both cases (i) and (ii), the

Ωc parameter is better predicted at

lower (higher) redshifts when

using the Vk (Cℓ), with the RMSE

increasing (decreasing) with

redshift. For the h parameter, we

�nd that, for both Vk and Cℓ in

case (i), the higher the redshift

the better the predictions. In case

(ii), however, the predictions do

not have a clear dependence with

redshift, regardless of the

summary statistic. Also, in this

particular case, the combination

of all redshift bins or their

compression into 5 bins does not

allow a very expressive

improvement of the predictions.

This behaviour con�rms that

when sampling also the CPL

parameters, although still able to
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reasonably predict the h, as we

show before, the mapping

between the summary statistics

and cosmological parameters is

not able to keep the same

e�ciency as in case (i).

Finally, for w0 parameter, we �nd

a similar behaviour for both

summary statistics, with

increasing RMSE metric with

redshift. For wa, in contrast, we

see no clear dependence with the

redshift range. In fact, apart from

h and wa parameters in case (ii),

all other results shown in Fig. 12

show that the better predictions

are obtained using all the 30

redshift bins, or their

compression. This motivated us to

employ the compressed summary

statistics in the analyses

presented in previous sections.

In addition, we can again use Fig.

A1 to interpret these results. This

�gure shows that, although the

di�erences observed in the MFs
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due to the 1 per cent variation of

the cosmological parameter have

large amplitudes at smaller

redshifts, the 1σ regions

signi�cantly decrease at higher

redshifts, no longer overlapping,

for the �rst two MFs, Area, and

Perimeter, and the APS. This

means that, at higher redshifts,

the cosmic variance would have a

smaller impact on the predictions.

This can help explain the

improvements of h parameter

predictions with redshift,

regardless of the summary

statistic, and of Ωc for the Cℓ. The

opposite is observed from Ωc

predictions using the MFs, as well

as for w0 with both statistics,

whose RMSE metrics increase

with redshift, which indicate that

the prediction of these two

parameters may rely more

signi�cantly on other aspect of

the summary statistics.
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5 CONCLUSIONS

We evaluate the performance of

NNs in learning the relationship

among summary statistics (APS

and MFs) from the redshifted H I

emission line and cosmological

parameters, preventing the use of

analytical likelihoods and

assumptions for their

constructions. For this, we employ

a large set of 21 cm signal

simulations, spanning a grid of

800 cosmologies, generated using

the FLASK code, largely sampling

the parameter space, using as a

case study the BINGO telescope;

our BINGO simulations account

for the sky coverage and

instrumental beam, besides the

contamination by thermal noise

and foreground residual. Such

data set is split so that 64, 16, and

20 per cent of the cosmologies are

used for training, validation, and

test, respectively. We evaluate the

constraining power of our method
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under two scenarios, the ΛCDM

model, predicting the dark matter

and Hubble parameters {Ωc, h}

(case i), and the CPL

parametrization, accounting also

for the DE EoS parameters, i.e.

predicting {Ωc, h, w0, wa} (case ii).

Although we are interested in

predicting, in each scenario, the

aforementioned parameters, our

grid of cosmologies is de�ned

varying also Ωb, ns, and As

parameters in a more restrictive

range of values, given by the 1σ

con�dence region from Planck

2018. As far as we know, no other

work from the literature accounts

for the uncertainty of parameters

other than those of interest. In

fact, since the exact values of the

cosmological parameters are not

known, but only their most likely

values and respective error bars,

sampling other parameters of the

cosmological model seems more

appropriate, avoiding

underestimating errors. The

21/08/2024, 18:22 Cosmological constraints from low redshift 21 cm intensity mapping with machine learning | Monthly Notices of the Royal Astr…

https://academic.oup.com/mnras/article/528/2/2078/7283179 96/126



relatively fast production of our

lognormal simulations allows us

to better explore the parameter

space.

We �nd that, under the ΛCDM

scenario, both Ωc and h

parameters can be quite well

predicted by the trained NN,

obtaining 4.9 and 1.6 per cent

fractional errors, respectively,

using the combination of APS and

MFs statistics. Such constrains, in

particular for h, are signi�cantly

impacted by the inclusion of the

CPL parameters; we �nd

predictions for Ωc, h, and w0 with

6.4, 3.7, and 24.3 per cent errors.

The Hubble parameter is still

reasonably well constrained by

our method. Predictions of wa, in

contrast, have a large bias, being

poorly constrained.

Investigating the constraining

power of each summary statistic

individually, we �nd the APS

outperforming the MFs in most of
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our tests over BINGO simulations,

which can be partially explained

by a possible imprecision of the

three-point information of our

lognormal simulations.

Comparing such results to those

obtained analysing clean 21 cm

simulation, we �nd that the MFs

are the most impacted by the

presence of these contaminants,

which may help explain the less

e�ective constraining power of

the MFs. We note that the greater

impact of the presence of

contaminants over the MFs

predictions could possibly be

associated to their non-Gaussian

characteristic or even because the

cosmological signal, foregrounds

and thermal noise are more easily

distinguishable in terms of

angular scales, as given by the

APS, than ν thresholds.

We assess the contribution of each

contaminant signal individually to

the results and �nd that the
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accuracy of the predictions is

mainly a�ected by thermal noise,

while foreground residual has a

minor impact. The robustness of

our methodology and results to

the foreground contamination is

also evaluated by applying the

trained NNs to test data sets

accounting for di�erent

contributions of foreground

residual, con�rming that our NNs

can be e�ciently applied outside

the training data. Furthermore,

we �nd that the accuracy of the

cosmological parameters

predictions is sensitive to the

redshift range, which is also

determined by the summary

statistic feeding the NN. The

usage of the full range of redshift

is con�rmed to provide the better

predictions.

Using clean 21 cm simulations, we

also investigate how a four times

large sky coverage than BINGO’s,

e.g. as the SKA footprint, can
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improve cosmological constrains.

We �nd that, under the ΛCDM

scenario, the Ωc–h plane has its 1σ

error ellipse reduced by a factor of

3. Also, increasing the sky fraction

seems to allow the combination of

the summary statistics to provide

a tighter 1σ contour compared to

their individual usage, as

observed for most of the

parameters planes evaluated here,

in particular for Ωc–h predictions.

Moreover, although the

suboptimal cosmological

simulations employed here may

also have contributed to the less

e�ective constraining power of

the MFs compared to the APS, or

their very similar performance in

some cases, the FLASK mocks have

proved to be enough for our

purpose. They allowed us to

assess the cosmological

constraining power of our

method, showing the usage of NN

fed by summary statistics from 21 
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cm simulations to be a very

promising alternative to

likelihood based analysis. In

addition, they have also allowed

to demonstrate how simple can be

the combination of summary

statistics to feed the NN and

predict cosmological parameters,

preventing technical problems

commonly faced by standard

analysis, as e.g. when calculating

covariance matrices. In fact, such

simulations, although enough to

evaluate the role and e�ciency of

the APS as features, are

suboptimal and may be

preventing us from exploring the

full potential of the MFs, expected

to carry a larger amount of

information with respect to the

APS due to their sensitivity to

higher order information. Fore

this reason, we believe to be able

to improve our results by using,

for example, N-body or

hydrodynamic simulations, which

we leave for future work. More
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suitable simulations are expected

to allow for better predictions

using the MFs and more

expressive improvements from

the combination with the APS and

other summary statistics.

It is worth emphasizing that, in

addition to the 21 cm simulations,

some aspects of our analyses also

deserve improvements, left for a

future extension of this work. In

particular, the improvement of

BINGO simulations, making them

more realistic by accounting for

possible signal remaining after

cleaning the 1/f noise (Bigot-Sazy

et al. 2015) and the contamination

by polarization leakage

(Cunnington et al. 2021).

Even using suboptimal

simulations, our results report the

success of the NNs in mapping the

summary statistics into the

cosmological parameters. In

particular, they indicate that

future low redshift 21 cm data
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should be able to provide

important contributions, in

special to help investigate the

Hubble tension and to study the

dark sector. Finally, we emphasize

that the methodology described

here is not restricted to the BINGO

case, but can be explored and

optimized to use di�erent data

sets, such as from other 21 cm

experiments, galaxy surveys,

CMB, or even a given combination

of them.
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Footnotes

1 https://www.skatelescope.org/

2 https://chime-experiment.ca/

3 https://www.bingotelescope.org/e

n/

4 Here, produced by a power law

with non-uniform spectral index

as given by Giardino et al. (2002)

model. In Section 4.4, we consider

an alternative model to evaluate

the robustness of our results to

foreground contamination.

5 https://namaster.readthedocs.io/e

n/latest/

6 When a parameter is not well

determined, as is the case, in

particular, for wa (see Section 4),

the improvement from the other

parameter has no impact on the

loss function. We find more

accurate predictions for case (ii)

when training NN algorithms
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individually for each cosmological

parameter.

7 For examples comparing the two

type of analyses and error

estimates, see Villaescusa-Navarro

et al. (2022).

8 The fiducial values employed in

Costa et al. (2022) are h = 0.6732,

w0 = −1, and wa = 0.

9 We also evaluate the Principal

Components Analysis (PCA)

technique for such dimensionality

reduction, i.e. to select only the

relevant features for the training

process. The results do not show

improvements with respect to

using the 5 compressed redshi�

bins.
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APPENDIX A: MFS DEPENDENCE WITH
COSMOLOGICAL PARAMETERS

To evaluate the sensitivity of the

MFs with the four cosmological

parameters predicted here, we

generate a set of 1000 clean 21 cm

mocks, with the BINGO beam and

sky coverage, for the �ducial

Planck 2018 cosmology (Aghanim

et al. 2020). Changing each of the

four cosmological parameters one

at a time, increasing it by 1 per 

cent from its �ducial value, we

generate the other four sets of

1000 mocks each. These sets are

generated using the same random

seed used when generating the

1000 mocks for the �ducial

cosmology. Then, we obtain the

MFs and APS from each of the 30

redshift bins composing each

mock, compress them into �ve

bins (see discussion in

Section 4.6) and calculate the

di�erence between the Area (V0),

Perimeter (V1), Genus (V2), and Cℓ
from the four sets of simulations
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and those from the �ducial

cosmology,  . The average

di�erence 

from the 1000 mocks, scaled by

the di�erence between the

cosmological parameter θ and its

�ducial value θ , as well as the

respective 1σ regions, for each

cosmological parameter are

shown in Fig. A1. There we present

the results for the �rst, middle,

and last compressed (e�ective)

redshift ranges.

Vk−V
fid
k

ΔVk = ⟨Vk − V
fid
k ⟩/Δθ

fid
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Figure A1. Average di�erences in the

compressed summary statistics

introduced by changing one

cosmological parameter at a time with

respect to the Planck 2018 cosmology

(Aghanim et al. 2020). From top to

bottom, we show the curves for the

three MFs, Area (V0), Perimeter (V1), and

Genus (V2), and for the Cℓ, respectively.

The di�erences are calculated as

 , for X = V0, V1, V2,

and Cℓ, where Δθ = θ − θ  is the

variation in the cosmological parameter

value with respect to the fiducial value (1

 per cent; see the text for details). The

coloured regions show the respective 1σ

from 1000 clean 21 cm simulations

ΔX ≡ ⟨X −X fid⟩/Δθ
fid
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(accounting for the 40 arcmin beam and

the BINGO sky coverage). From le� to

right, the columns show results from the

first, middle, and last compressed

redshi� ranges, as indicated in each plot

of the first row.

© The Author(s) 2023. Published by Oxford University Press
on behalf of Royal Astronomical Society.

This is an Open Access article distributed under the terms of
the Creative Commons Attribution License (https://creativeco
mmons.org/licenses/by/4.0/), which permits unrestricted
reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

21/08/2024, 18:22 Cosmological constraints from low redshift 21 cm intensity mapping with machine learning | Monthly Notices of the Royal Astr…

https://academic.oup.com/mnras/article/528/2/2078/7283179 126/126

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

