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Abstract We review the theoretical and the experi-
mental researches aimed at quantifying or identifying
quantum correlations in liquid-state nuclear magnetic
resonance (NMR) systems at room temperature. We
first overview, at the formal level, a method to deter-
mine the quantum discord and its classical counterpart
in systems described by a deviation matrix. Next, we de-
scribe an experimental implementation of that method.
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Previous theoretical analysis of quantum discord deco-
herence had predicted the time dependence of the dis-
cord to change suddenly under the influence of phase
noise. The experiment attests to the robustness of the
effect, sufficient to confirm the theoretical prediction
even under the additional influence of a thermal envi-
ronment. Finally, we discuss an observable witness for
the quantumness of correlations in two-qubit systems
and its first NMR implementation. Should the nature,
not the amount, of the correlation be under scrutiny,
the witness offers the most attractive alternative.
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1 Introduction

1.1 Bell’s Inequalities, Entanglement, and the
No-Local-Broadcasting Theorem

The study of quantum correlations is among the most
active research branches of quantum information sci-
ence (QIS). The seminal works of Einstein et al. [1] and
Schrödinger [2] first drew attention to the subject, in
1935, and placed the nonlocal nature of the correlations
at the focus of initial research. The name entanglement
was coined by Schrödinger [2]. In 1964, rigorous rela-
tions among the average values of composite-system
observables were presented by Bell [3]. The Bell in-
equalities, derived under the assumptions of realism
and locality, are violated by quantum systems in certain
entangled states, which are said to possess nonlocal
quantum correlations [4–6].
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In 1989, Werner reported a result that unveiled new
perspectives in the study of nonclassical correlations
in multipartite systems [7]. By defining entanglement
operationally as those correlations that cannot be gen-
erated via local quantum operations assisted by classi-
cal communication, Werner identified entangled states
satisfying all Bell inequalities. Another surprise came
with the work of Popescu, who showed that with certain
nonseparable local states, quantum states allow tele-
portation with more fidelity than the classical alterna-
tives [8].

The most general quantum operation describing
changes of quantum states has the following form, in
the operator-sum representation [9]:

E(ρ) =
∑

j

K jρK†
j , (1)

where K j is the Kraus operator acting on the system
state space H, which satisfies the inequality
∑

j

K†
j K j ≤ I, (2)

where I is the identity operator in H.
The equality on the right-hand side of (2) is a

sufficient condition for the map E : H → H to be trace
preserving, that is, to insure that Tr [E(ρ)] = 1.

The most general bipartite state that can be created
via local quantum operations (EA and EB) and classical
communication has the form

ρ
sep
AB =

∑

j

p jρ
A
j ⊗ ρB

j , (3)

where {pj} is a probability distribution (i.e., pj ≥ 0 and∑
j p j = 1) and ρ

A(B)

j ∈ HA(B) is the reduced density
operator of subsystem A (B). States that can be written
in the form of (3) are said to be separable. All other
states are said to be entangled (or nonseparable).

The above-discussed nonlocal and nonseparable as-
pects of the correlations in a composite system are
distinctive features of the quantum realm. It is tempting
to believe that they thoroughly describe the quantum
nature of the multipartite state, but a characterization
attentive only to entanglement would be incomplete.
To construct a more encompassing description, we have
to examine the possibility of locally redistributing the
correlations. In 2008, Piani and coauthors proved the
so-called no-local-broadcasting theorem [10], showing
that local operations can redistribute the correlations
in a bipartite state ρAB if and only if the latter can be
cast in the following form:

ρcc
AB =

∑

j,k

p jk|ψ A
j 〉〈ψ A

j | ⊗ |φB
k 〉〈φB

k |, (4)

where {pjk} is a probability distribution and the {|ψ A
j 〉}

({|φB
k 〉}) defines an orthonormal basis for subsystem

A (B).
Comparison of (4) with (3) shows that ρcc

AB forms a
non convex set that is a subset of the separable states.
It follows that quantum correlations, i.e., correlations
that cannot be locally broadcast, can be found even in
separable states. Nonclassical correlations of this kind
can be identified and quantified by the measure we
discuss next.

1.2 Quantum Discord

Our review is focused on quantum discord (QD). This
quantity stands out among the measures of quantum
correlations because it was proposed first and has
been most widely studied. Detailed discussions of other
quantum correlation measures and their properties
have been presented in two recent reviews [16, 17].

Before turning to QD, we find it instructive to briefly
review certain aspects of classical information theory,
to set the notation and define relevant quantities.

1.2.1 Concepts from Classical Information Theory

In classical information theory, the uncertainty of a
random variable A is quantified by its Shannon en-
tropy [11]

H(A) := −
∑

a

pa log2 pa, (5)

where pa := Pr(A = a) stands for the probability that
A takes the value a. The binary logarithm expresses
information in bits.

Two random variables are said to be correlated if
they share information. Knowledge about one of them,
say B, yields information about the other, A. The
difference in the uncertainties of A before and after we
know B,

J(A:B) := H(A) − H(A|B), (6)

a quantity named mutual information, is a measure
of the correlation between the two random variables
(A and B).

In (6), the conditional entropy reads

H(A|B) := −
∑

a,b

pa,b log2 pa|b , (7)

where pa,b := Pr(A = a, B = b).
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Given the definition for the conditional probability
for A to take the value a when B is equal to b , namely
pa|b := pa,b /pb , we have that

H(A|B) = H(A,B) − H(B), (8)

with H(A, B) = −∑a,b pa,b log2 pa,b .
Hence, the following equivalent expression for the

mutual information between A and B can be written:

I(A:B) = H(A) + H(B) − H(A,B). (9)

In classical information theory, the relation

J(A:B) = I(A:B) (10)

is always valid; the two expressions for the mutual
information are equivalent. The same is not true, in
general, of the extensions of J(A:B) and I(A:B) to
quantum states. This nonequivalence is at the heart
of the definition of quantum discord, which therefore
measures the quantum aspects of correlation.

1.2.2 Original Def inition of Quantum Discord

The uncertainty about a system S, described by a den-
sity operator ρS, is quantified in quantum information
theory by the von Neumann entropy [12]:

S(ρS) := −Tr(ρS log2 ρS). (11)

A direct extension of the mutual information in (9)
is therefore given by the equality

I(ρAB) := S(ρA) + S(ρB) − S(ρAB). (12)

I(ρAB), named quantum mutual information, can be
regarded as a measure of the total correlations between
subsystems A and B when the joint system is in the
state ρAB [13, 14].

To extend to the quantum realm, the mutual in-
formation in (6), consider the measurement of an
observable represented by the following Hermitian
operator:

OB =
∑

j

o j|�B
j 〉〈�B

j |, (13)

defined on the state space of subsystem B, HB.
If the system is initially in the state ρAB, the value o j

is obtained with probability

pj = Tr
(
IA ⊗ �B

j ρAB

)
(14)

and the state of subsystem A, immediately after the
measurement, reads

ρ A
j = 1

pj
TrB

(
IA ⊗ �B

j ρABIA ⊗ �B
j

)
. (15)

In (14) and (15),
{
�B

j

}
is a complete set of von Neu-

mann’s measurements on subsystem B satisfying the
relations

∑
j �

B
j = IB and �B

j �B
k = δ jk�

B
j .

The average quantum conditional entropy of subsys-
tem A, given the measurement of the observable OB

on subsystem B, is determined by the expression

S(ρA|B) =
∑

j

p jS
(
ρ A

j

)
. (16)

A quantum extension of J(A:B) can therefore be
defined as follows:

J (ρAB) := S(ρA) − S(ρA|B). (17)

The two expressions for the quantum mutual infor-
mation, (12) and (17), are in general inequivalent. The
difference

DB(ρAB) := I(ρAB) − max
OB

J (ρAB), (18)

a measure of quantum correlation in bipartite systems,
was named quantum discord [15].

The maximum on the right-hand side of (18) is ob-
tained from the measurements (on subsystem B) pro-
viding maximal information about A. An alternative
version of QD, DA, can be obtained from measure-
ments of an observable OA on subsystem A. In general,
DA 	= DB, an asymmetry of QD with several inter-
esting physical interpretations as well as information-
theoretical implications [16, 17].

If the mutual information is taken as a measure of
total correlations, one can verify that QD may be writ-
ten as the difference between the mutual informations
of the subsystems before and after a complete map of
von Neumann’s measurements is applied to one of the
subsystems:

DB(ρAB) = I(ρAB) − max
�B

I
(
�B(ρAB)

)
, (19)

where �B(ρAB) =∑ j(IA ⊗ �B
j )ρAB(IA ⊗ �B

j ).
In this alternative definition, QD can be interpreted

as a measure of those correlations that are inevitably
destroyed by the measurement.

1.3 Nuclear Magnetic Resonance Systems in Quantum
Information Science

We expect the relation between nonclassical correla-
tions and the advantages offered by quantum informa-
tion science over classical protocols to play an impor-
tant role in the quest for quantum speedup. Nuclear
magnetic resonance (NMR) has been one of the lead-
ing experimental platforms for the implementation of
protocols and algorithms in QIS [18] and simulation of
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quantum systems [19]. NMR implementations encode
the qubits in nuclear spins that are manipulated by
carefully designed sequences of radio-frequency (rf)
pulses. The information about the system state is ob-
tained directly from the transverse magnetizations, the
natural NMR observables [37]. The NMR density op-
erator is typically highly mixed. In fact, Braunstein and
coauthors showed that no entanglement was generated
in most NMR implementations of QIS protocols [20].
In another line of work, Vidal proved that a large
amount of entanglement must be generated if a pure-
state quantum computation is to provide exponential
speedup of information processing [21]. The conjunc-
tion of these results led to doubts contrasting the pos-
sible classical nature of NMR with the envisioned QIS
implementations.

Around the same time, however, it was realized
that, while necessary, entanglement generation was not
sufficient for gain, even in pure-state quantum compu-
tation [22]. In the last decade, it has become progres-
sively clearer that the quantum speedup in the mixed-
state quantum computation scenario depends on more
subtle components [23–26]. In particular, although a
definitive proof is still lacking, QD has been identified
as the figure of merit for quantum advantage [27, 28].

Important as this issue is, to settle it is not the goal
of this review. We deal only with the theoretical and
experimental quantification or identification of quan-
tum correlations in NMR systems at room tempera-
ture. We discuss the signatures of quantumness in the
correlations of highly mixed NMR states and study the
dynamics of the correlations under decoherence.

2 Quantification and Identification of Quantum
Correlations

2.1 Symmetric Quantum Discord

As mentioned in Section 1.2.2, the original definition
of QD is asymmetric with respect to the subsystem we
choose to measure. As an illustration, let us consider
the following bipartite state:

ρ
cq
AB =

∑

i

pi|ψ A
i 〉〈ψ A

i | ⊗ ρB
i , (20)

where {pi} is a probability distribution, {|ψ A
i 〉} ∈ HA is

an orthonormal basis for subsystem A, and ρB
i ∈ HB is

the reduced density operator of subsystem B.
In this case, DA(ρ

cq
AB) vanishes, while the alternative

definition of QD, DB(ρ
cq
AB), is null if and only if all

ρB
i commutes, that is, if [ρB

i , ρB
j ] = 0 for all i and j.

Moreover, numerical calculations indicate that if ρAB is

asymmetric with respect to subsystem interchange or,
more specifically, if S(ρA) 	= S(ρB), then DA(ρAB) 	=
DB(ρAB) [29]. At first glance, given that the cor-
relations are associated with the information shared
between subsystems, this asymmetry may seem surpris-
ing. The asymmetry is nonetheless compatible with the
sharing, because the quantumness limits differently the
amount of information available to observers via local
measurements in each subsystem.

Only for the class of states in (4) do we have that
DA(ρcc

AB) = DB(ρcc
AB) = 0. A quantity that identifies

and, to some extent, quantifies the quantumness of
correlations in states that cannot be cast in the form of
(4) can be defined by the equality [29]

D(ρAB) := I(ρAB) − max
�AB

I
(
�AB(ρAB)

)
, (21)

where the complete map of local von Neumann mea-
surements reads

�AB(ρAB) :=
∑

j,k

(
�A

j ⊗ �B
k

)
ρAB

(
�A

j ⊗ �B
k

)
, (22)

with
∑

j �
s
j = Is and �s

j�
s
k = δ jk�

s
j for s = A, B.

This quantum correlation quantifier can be re-
garded as a symmetric version of QD. Since the state
�AB(ρAB) is classical, we define the classical counter-
part of D,

C(ρAB) := max
�AB

I
(
�AB(ρAB)

)
, (23)

as a measure of the classical correlations in ρAB.

2.2 Symmetric Quantum Discord for the Deviation
Matrix

We now show how to obtain the classical correlation
(23) and the symmetric quantum discord (21) for sys-
tems described by density matrices of the form [33]

ρAB = IAB

4
+ ε�ρAB, (24)

where ε 
 1 and �ρAB is a traceless deviation matrix,
Tr(�ρAB) = 0.1

In order to calculate the quantum mutual informa-
tion, we need to compute the von Neumann entropy.
To that end, we take advantage of the eigen decompo-
sition of ρAB to write that

ln(ρAB) =
∑

j

ln(1/4 + ελ j)|λ j〉〈λ j|. (25)

1Equation (24) contains the typical density operator describing
the state of NMR systems.
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The Taylor expansion of ln(1/4 + ελ j) then yields

S(ρAB) = − 1

ln 2
Tr(ρAB ln ρAB)

=Tr
(

IAB

2
+ ε(2 ln 2−1)

ln 2
�ρAB− 2ε2

ln 2
�ρ2

AB+· · ·
)

= 2 − 2ε2

ln 2
Tr(�ρ2

AB) + · · · . (26)

Since the reduced density matrices have the form

ρs = Is

2
+ ε�ρs, (27)

with s = A, B, the same procedure can be used to
compute

S(ρs) = 1 − ε2

ln 2
Tr
(
�ρ2

s

)+ · · · . (28)

In view of (26) and (28), we can express the quantum
mutual information in terms of the deviation matrix.
Up to second order in ε, we have that

I(ρAB) ≈ ε2

ln 2

[
2Tr

(
�ρ2

AB

)− Tr
(
�ρ2

A

)− Tr
(
�ρ2

B

)]
.

(29)

The measured state obtained from ρAB through a
complete set of local projective measurements reads

�AB(ρAB) = IAB

4
+ ε�ηAB, (30)

with the measured deviation matrix given by the
equality

�ηAB := �AB(�ρAB)

=
∑

j,k

(
�A

j ⊗ �B
k

)
�ρAB

(
�A

j ⊗ �B
k

)

and Tr
[
�AB(�ρAB)

] = 0.
The procedure leading to (29) now yields the fol-

lowing expression for the mutual information of the
measured state:

I
(
�AB(ρAB)

) ≈ ε2

ln 2
× [2Tr

(
�η2

AB

)− Tr
(
�η2

A

)

−Tr
(
�η2

B

)]
, (31)

where �ηA(B) = TrB(A)(�ηAB). The symmetric QD
and the classical correlation are then computed from
(21) and (23), respectively.

2.3 Symmetric Quantum Discord for Two-Qubit States

Any two-qubit state can be brought, through local uni-
tary transformations, to the following form:

ρAB = 1

4

⎡

⎣IAB +
3∑

j=1

(
a jσ

A
j ⊗ IB + b jIA ⊗ σ B

j

)

+
3∑

j=1

c jσ
A
j ⊗ σ B

j

⎤

⎦ , (32)

where {σ s
j } is the Pauli operator acting on Hs and

a j, b j, c j ∈ R. The measured state, modulo local unitary
transformations, can be written in the form

�AB(ρAB) = 1

4

(
IAB + ασ A

3 ⊗ IB + βIA ⊗ σ B
3

+ γ σ A
3 ⊗ σ B

3

)
, (33)

with

α :=
∑

j

a jzA
j , β :=

∑

j

b jzB
j , γ :=

∑

j

c jzA
j zB

j . (34)

The parameters

zs
1 = 2 sin θs cos θs cos φs,

zs
2 = 2 sin θs cos θs sin φs,

zs
3 = 2 cos2 θs − 1,

with

θs ∈ [0, π/2] and φs ∈ [0, 2π ], (35)

determine the measurement direction for subsystem
s = A, B.

One might fear that the maximization problem on
the right-hand side of (23), associated with the compu-
tation of the classical correlation, cannot be solved in
general. Nevertheless, for Bell-diagonal states,

ρbd
AB = 1

4

⎛

⎝IAB +
3∑

j=1

c jσ
A
j ⊗ σ B

j

⎞

⎠ , (36)

the correlations can be obtained analytically. In this
case, we have that S(ρbd

A ) = S(ρbd
B ) = 1, and (23) be-

comes

C
(
ρbd

AB

) = 2 − min
γ

S
[
�AB (ρbd

AB

)]
, (37)

with

S
(
�AB (ρbd

AB

)) = −
4∑

j=1

1 + (−1) jγ

4
log2

1 + (−1) jγ

4
.

(38)
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The minimum of the measured state entropy is ob-
tained by maximizing |γ |. It results that

|γ | ≤ κ := max(|c1|, |c2|, |c3|). (39)

An analytical expression for the symmetric QD for
Bell-diagonal states is then obtained [29]:

D(ρbd
AB) =

1∑

j,k=0

λbd
jk log2 4λbd

jk − C
(
ρbd

AB

)
, (40)

with

C
(
ρbd

AB

) = 1

2

1∑

j=0

[
1 + (−1) jκ

]
log2

[
1 + (−1) jκ

]
(41)

and λbd
jk = [1 + (−1) jc1 − (−1) j+kc2 + (−1) jc3]/4.

2.4 Dynamics of Correlations under Decoherence

We shall use the analytical expressions for the sym-
metric QD (40) and its classical counterpart (41) in
Bell-diagonal states to study the dynamics of these
correlations under the influence of a local, independent
Markovian environments that inject phase noise into
the system, as schematically depicted in Fig. 1 [30].
Under such conditions, the two subsystems A and B,
initially prepared in a Bell-diagonal state (36), evolve
via the following quantum operation [9]:

ρbd
AB(p) = EPD

(
ρbd

AB

)

=
∑

j,k

(
KA

j ⊗ KB
k

)
ρbd

AB

(
KA

j ⊗ KB
k

)†
(42)

= 1

4

⎡

⎢⎢⎣

1 + γ 0 0 α − β

0 1 − γ α + β 0
0 α + β 1 − γ 0

α − β 0 0 1 + γ

⎤

⎥⎥⎦ . (43)

Fig. 1 (Color online) Schematic representation of the two sys-
tems A and B, initially prepared in a state ρAB, evolving under
the action of local, independent phase channels

All matrices in this article are represented in
the standard computational basis {|00〉, |01〉, |10〉, |11〉},
where |ij〉 := |i〉 ⊗ | j〉 and {|0〉, |1〉} are the eigenstates
of the Pauli matrix σz. The Kraus operators in
the operator-sum representation (42) for the phase-
damping channel are

Ks
0 =

√
1 − ps

2

[
1 0
0 1

]
,

Ks
1 =

√
ps

2

[
1 0
0 −1

]
, (44)

where s = A, B and pA = pB := p is the parametrized
time.

We have chosen identical environments for the two
subsystems and use the shorthands

α := (1 − p)2c1,

β := (1 − p)2c2,

γ := c3.

We can see that the time-evolved density matrix (43)
has the Bell-diagonal form (36). Thus, the symmetric
QD D

[
ρbd

AB(p)
]

and the classical correlation C
[
ρbd

AB(p)
]

are given by (40) and (41), respectively, with

κ = max(|α|, |β|, |γ |) (45)

and

λbd
jk = [1 + (−1) jα − (−1) j+kβ + (−1) jγ ]/4. (46)

The analytical results define three classes of behavior
for the correlations under decoherence, according to
the coefficients c j ( j = 1, 2, 3) in the sum within paren-
theses on the right-hand side of (36):

(i) If |c3| ≥ |c1|, |c2|, we have that κ = |c3|, which
makes the classical correlation independent of
the parametrized time p. Since the quantum
correlation decays monotonically to zero in the
asymptotic-state limit, the classical correlation is
equal to the mutual information, i.e.,

C
[
ρbd

AB(p)
] = C

[
ρbd

AB(p = 0)
] = I

[
ρbd

AB(p = 1)
]
.

(47)

Figure 2 shows the evolution of the correlations
for an initial state ρbd

AB defined by the parameters
c1 = 0.06, c2 = 0.3, and c3 = 0.33, which belong
to this class.
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Fig. 2 (Color online) Total correlation (dotted line, blue online),
classical correlation (dashed line, red online), and quantum dis-
cord (black solid line) for the Bell-diagonal initial state in (36)
with the parameters c1 = 0.06, c2 = 0.3, and c3 = 0.33 evolving
under local, independent phase-damping channels. Since |c3| >

|c1|, |c2|, the parametrical set belongs to class (i), defined in the
text. The classical correlation is not affected by the environment,
while the quantum correlation decays monotonically

(ii) If |c1| ≥ |c2|, |c3| or |c2| ≥ |c1|, |c3|, and |c3| 	= 0
the dynamics of the correlations under decoher-
ence exhibits a sudden change at the parame-
trized time

psc = 1 −
√

|c3|
max(|c1|, |c2|) . (48)

For p < psc, we have that κ = (1 − p)2 max(|c1|,
|c2|), so that the classical correlation C decays
monotonically. By contrast, for p ≥ psc, we have
that κ = |c3| and C is constant:

C
[
ρbd

AB(p > psc)
] = I

[
ρbd

AB(p = 1)
]
, (49)

while the decay rate of D changes abruptly at p =
psc.
Figure 3 shows an example. The initial state
ρbd

AB is now defined by c1 = 1, c2 = −0.6, and
c3 = 0.6. In this example, not only does the clas-
sical correlation remain constant in a certain
time interval, but also the quantum correlation
in unaffected by decoherence in another inter-
val. The regimes in which D = constant and C =
constant were named classical and quantum de-
coherence regimes, respectively, in [31].

(iii) Finally, if c3 = 0, both correlations C and D decay
monotonically. Figure 4 shows an example of this
kind of behavior, for a Bell-diagonal initial state
with c1 = c2 = 0.25 and c3 = 0.0.

2.5 Witness of Classicality

The set composed by separable states of the form (3)
is convex. There is hence a linear Hermitian operator,
known as the entanglement witness, that distinguishes
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Fig. 3 (Color online) Total correlation (dotted line, blue online),
classical correlation (dashed line, red online), and quantum dis-
cord (black solid line) for a Bell-diagonal initial state evolving
under local, independent phase-damping channels. Analogous
to Fig. 2. Here, the initial-state parameters are c1 = 1, c2 =
−0.6, and c3 = 0.6, within class (ii). The behaviors of the partial
correlations change suddenly at p = psc ≈ 0.22. While constant
(monotonically decaying) for p < psc, the quantum discord (clas-
sical correlation) decays monotonically (remains constant) for
p > psc

separable from entangled states. It is natural to ask
whether the same approach can be used to identify
classical states. It turns out that the set formed by states
with null QD is not convex. As a consequence, linear
witnesses can no longer be defined.

To verify this assertion, consider a linear Hermitian
operator Wl whose mean value is nonnegative for clas-
sical states, i.e.,

〈Wl〉ρcc
AB

= Tr(Wlρ
cc
AB) ≥ 0, (50)

while 〈Wl〉ρAB < 0 for quantum-correlated states. Since
the separable states in (3) satisfy the inequality

〈Wl〉ρsep
AB

=
∑

j

p j〈Wl〉ρ A
j ⊗ρB

j
≥ 0, (51)
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Fig. 4 (Color online) Total correlation (dotted line, blue online),
classical correlation (dashed line, red online), and quantum dis-
cord (black continuous line) for a Bell-diagonal initial state evolv-
ing under local independent phase-damping channels. Analogous
to Fig. 2. The initial-state parameters are now c1 = c2 = 0.25 and
c3 = 0.0, within class (iii). All correlations decay monotonously
with time
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the linear operator Wij cannot identify separable dis-
cordant states.

To overcome this difficulty, one introduces a nonlin-
ear classicality witness providing a sufficient condition
for the absence of quantumness in the correlations of
two-qubit states of the form (32) [32]. To this end,
consider the following set of Hermitian operators

O j = σ A
j ⊗ σ B

j ,

O4 = �z · �σA ⊗ IB + IA ⊗ �w · �σB,

where j = 1, 2, 3, and the �z, �w ∈ R
3 (|�z| = | �w| = 1)

should be randomly chosen. Consider next the follow-
ing relation among the averages of these operators:

WρAB =
3∑

i=1

4∑

j=1+1

|〈Oi〉ρAB〈O j〉ρAB |, (52)

where |x| is the absolute value of x.
We can see that WρAB = 0 if and only if the mean

values of at least three of the above-defined four ob-
servables are zero. Since

〈Oi〉ρAB = ci for i = 1, 2, 3,

〈O4〉ρAB = �z · �a + �w · �b ,

with �a = (a1, a2, a3) and �b = (b 1, b 2, b 3), the only way
to insure that WρAB = 0 is to impose that ρAB be of
the type

χi = 1

4

(
IAB + ciσ

A
i ⊗ σ B

i

)
for i = 1 or i = 2 or i = 3,

χ4 = 1

4

⎡

⎣IAB +
3∑

j=1

(
a jσ

A
j ⊗ IB + b jIA ⊗ σ B

j

)
⎤

⎦ .

All theses states can be cast in the form of (4)
and hence possess no quantum correlations. It follows
that WρAB = 0 is a sufficient condition for ρAB to be
classically correlated or to have no correlations at all.

For Bell-diagonal states, WρAB = 0 is also a necessary
condition for the absence of quantum discord. To show
this, we note that the classically correlated state ρbd

AB
must have the form (IAB + ciσ

A
i ⊗ σ B

i )/4 with i = 1, i =
2, or i = 3, which implies that WρAB = 0.

For the experimental implementation of the classi-
cality witness (52) in the NMR context2 that will be
presented below, it proves useful to rewrite the witness
WρAB in terms of the qubits magnetizations, which are

2A modified version of this classicality witness was implemented
in the optical context [36].

the natural observables accessed in NMR experiments.
We therefore note that

〈Oi〉ρAB = 〈σ A
1 ⊗ IB

〉
ξi

(53)

with

ξi = U A→B
[
Rni(θi)ρAB R†

ni
(θi)
]

U A→B, (54)

where

U A→B = |0〉〈0| ⊗ IB + |1〉〈1| ⊗ σ B
1 (55)

is the controlled-NOT gate with qubit A as control
and Rni(θi) = RA

ni
(θi) ⊗ RB

ni
(θi), where Rs

ni
(θi) is a local

rotation of qubit s = A, B by an angle θi (θ1 = 0, θ2 =
θ3 = π/2) in the direction n̂i (n̂2 = ŷ, n̂3 = ẑ).

3 Quantum Discord in NMR Systems

3.1 Physical System

In order to experimentally follow the dynamics of
correlations under decoherence and to implement the
classicality witness discussed in Section 2.5, we have to
prepare, manipulate, and measure the state of a two-
qubit system in the laboratory. In the NMR picture,
two-qubit systems can be achieved using samples pre-
senting either two J-coupled nuclear spins-1/2, where J
denotes the scalar spin–spin coupling, or one quadrupo-
lar spin-3/2 system, called quadrupolar spin system, for
brevity, in a local electric field gradient. Many examples
of two dipolar J-coupled spins-1/2 are available: 1H
and 13C nuclei in chloroform (CHCl3) or 1H and 31P nu-
clei in phosphoric acid (H3PO4) [18], for instance. The
two-qubit quadrupolar systems used so far in quantum
information processing (QIP) usually comprise spin-
3/2 nuclei in single crystals [38] or in lyotropic liquid
crystals [37, 39]. Examples are 23Na and 7Li nuclei in
lyotropic liquid crystals based on sodium dodecyl sul-
fate (SDS) [37] and lithium tetrafluoroborate (LiBF4)
[39], as well as 23Na in sodium nitrate (NaNO3) single
crystals [38].

All of these are equally good representations of two-
qubit systems. The nuclear spin interactions driving
their quantum evolution being nonetheless distinct,
different state preparation, manipulation, and readout
techniques are required. Besides, the characteristics of
each spin interaction lead to unique features in the
decoherence behavior. For these reasons, each system
deserves separate discussion.
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3.1.1 Two-Dipolar J-Coupled Nuclear Spin-1/2
System—Liquid Sample

Figure 5 schematically depicts a 13C-enriched chloro-
form molecule (CHCl3). As already mentioned, the two
qubits are constituted by the nuclear 1H −13 C spin pair
in the molecule. To generate adequate signal strength,
many replicas of the two-qubit unit are needed, i.e., an
ensemble of spin pairs is required, each spin interacting
only with its counterpart in the pair. This is achieved
by diluting the 13C-enriched CHCl3 molecules in a
deuterated solvent. Since the deuteration and the low
natural abundance of 13C make the solvent molecules
magnetically inert, from the NMR viewpoint, the sys-
tem is well described as an ensemble of isolated spin
pairs, i.e., numerous replicas of the two-qubit unit.

The results discussed in this section were obtained
from a sample prepared by dissolving 100 mg of 99 %
13C-labeled CHCl3 in 0.2 ml of 99.8 % acetone-d6

and placing this in a 5-mm Wildmad LabGlass tube.
Both samples were provided by the Cambridge Isotope
Laboratories, Inc. NMR experiments were performed
at 25 ◦C using a 500-MHz Varian Spectrometer and a
5-mm double-resonance probe tuned to the 1H and 13C
nuclei.
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Fig. 5 (Color online) Top panel: Schematic representation of
chloroform molecule (HCCl3). The halo around the central (left-
hand) sphere depicts perturbation and response of the carbon
(hydrogen) nucleus at its respective resonance frequency. Bot-
tom: Normalized equilibrium spectra of carbon (left) and hydro-
gen (right) nuclei

In NMR experiments, the nuclear spins are placed
in a strong static magnetic field �B0, whose direction
defines the positive z-axis. The spins are manipulated
by time-dependent rf fields applied to both spins, which
interact with each other and their local environments.
In a doubly rotating frame with rf frequencies ωH

rf and
ωC

rf, the Hamiltonian of the two coupled spins reads

H = − (ωH − ωH
rf

)
IH

z − (ωC − ωC
rf

)
IC

z + 2π JIH
z IC

z

+ ωH
1

(
IH

x cos ϕH + IH
y sin ϕH

)

+ ωC
1

(
IC

x cos ϕC + IC
y sin ϕC

)
+ HEnv(t), (56)

where IH
u

(
IC
v

)
is the spin angular momentum operator

in the u, v = x, y, z direction for 1H (13C) and the angle
ϕH
(
ϕC
)

and frequency ωH
1

(
ωC

1

)
define the phase and

power, respectively, of the rf field driving the 1H (13C)
nuclei.

The first two terms on the right-hand side describe
the free precession of 1H and 13C nuclei around �B0,
with Larmor frequencies

ωH

2π
≈ 500 MHz and

ωC

2π
≈ 125 MHz. (57)

The third term describes the scalar spin–spin cou-
pling (also referred to as J coupling in the NMR lit-
erature), converted to the frequency unit:

J ≈ 215.1 Hz. (58)

The fourth and fifth terms are the external rf fields
applied to manipulate the 1H and 13C nuclear spins, re-
spectively. Finally, HEnv(t) represents time-dependent
fields resulting from the random fluctuating in the in-
teractions between the spins and their environment.
This term, which includes interactions with the chlorine
nuclei and higher order spin–spin couplings, leads to
spin relaxation and decoherence.

The density operator for any quantum system in
contact with a thermal bath can be written in the form

ρ = exp(−βH)

Tr exp(−βH)
, (59)

where β = 1/kBT.
For two-qubit NMR systems at room temperature,

the thermal energy dwarves the magnetic energy:

ε = �γ B0

4kBT
≈ 10−5, (60)

where γ is the gyromagnetic ratio.
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We can therefore write the density operator in the
so-called high-temperature expansion

ρ ≈ I
ab

4
+ ε�ρ, (61)

where �ρ is the deviation matrix, the part of the system
density matrix that can be manipulated (via rf pulses)
and accessed in NMR experiments.

Two unitary transformations are common in NMR
experiments: rf pulses and free evolutions of the spin
systems under the coupling and static fields. The rf
pulses are characterized by intrinsic parameters: ampli-
tude (power), duration, frequency, and phase. Proper
setting of these parameters induces nuclear spin rota-
tions about any axis by any rotation angle. For example,
a nonselective 1H spin rotation (a hard pulse, in NMR
jargon) of π/2 is the result of a 7.4-μs rf pulse, from
which we acquire the 1H equilibrium spectrum (i.e., the
NMR spectrum resulting from rf pulses applied to the
thermal equilibrium state) shown by the bottom-right
panel in Fig. 5. Another simple example is the preces-
sion of the nuclear spins around �B0 in free evolution.

3.1.2 Nuclear Quadrupolar System—Liquid Crystal
Sample

We have already mentioned that 23Na (I = 3/2) in a
SDS molecule of a lyotropic liquid crystal represents
a two-qubit quadrupolar spin system well. As depicted
in Fig. 6, the 23Na nucleus in this molecule is far from
other NMR-active highly abundant nuclei, which are
mostly 1H. The magnetic dipolar interaction between
23Na and the other nuclei in the SDS molecule can
therefore be neglected. The liquid crystal is moreover
prepared with heavy water (D2O), to weaken the dipo-
lar interaction with the 1H nuclear spins of water, since
deuterium has a small gyromagnetic ratio. Therefore,
to a good approximation, in the SDS D2O-based liq-
uid crystal, the interaction between the 23Na quadru-
pole moment and the electric field gradient produced
by the electrical charges in its vicinity (usually called
quadrupolar coupling) is the only internal spin interac-
tion affecting the evolution of the quantum system.

The local electric field gradient is defined by the
charge configuration in the vicinity of the 23Na nu-
cleus. It follows that, to replicate the 23Na environ-
ment throughout the sample, all SDS molecules must
have the same orientation. Fortunately, the strong sta-
tic magnetic field in NMR experiments induces the
alignment of the SDS molecules in the lyotropic liquid
crystal, naturally leading to the same local electric field
gradient at each 23Na site. Furthermore, the anisotropic
internal motions of the SDS molecules reduces the
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Fig. 6 (Color online) Top left: Labels of the atomic components
of the molecules. Bottom left: Normalized equilibrium spectrum
of the sodium nucleus. Right: Cartoon representing the sodium
dodecyl sulfate molecule (SDS). The elliptical halo around the
top atom represents the perturbation and response of sodium
nucleus at its resonance frequencies

strength of the quadrupolar coupling, facilitating the
manipulation of the spin system by rf pulses. Under
these conditions, in a rotating frame with frequency ωrf,
the 23Na nuclear spin Hamiltonian can be described by
the expression

H=−(ωL−ωrf) Iz+ ωQ

6

(
3I2

z−I2
)+ω1

(
Ix cos ϕ+Iy sin ϕ

)

+HQ
Env(t), (62)

where ωQ is the strength of the quadrupolar coupling
expressed in the frequency unit and ωL is the Larmor
frequency (|ωL| � |ωQ|). The spin angular momentum
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operator is represented by its u-component Iu (u =
x, y, z) and square modulus I2. The first term on the
right-hand side of (62) describes the Zeeman interac-
tion between the static magnetic field and nuclear spin,
while the second term accounts for the static first-order
quadrupolar interaction. As in (56), the next-to-last and
last terms correspond to an externally applied rf field
and the time-dependent coupling of the 23Na nuclear
spin with its environment, respectively. The latter is
mainly due to the motion-induced fluctuations in the
local electric field gradients, with smaller contributions
from the weak dipolar interactions between the 23Na
nucleus and other nearby NMR-active spins [40, 42].

The following experimental results were obtained
from a liquid crystal sample prepared with 20.9 % of
SDS (95 % of purity), 3.7 % of decanol, and 75.4 %
deuterium oxide, following the procedure described in
[43]. The 23Na NMR experiments were performed in a
400-MHz Varian Inova spectrometer with a 7 mm solid-
state NMR probe head at 26◦ C. The bottom-left panel
in Fig. 6 shows the 23Na equilibrium spectrum of our
SDS liquid-crystal sample. The quadrupole coupling
frequency is obtained directly from the separation be-
tween the central and the satellite lines [44, 45], which
yields

νQ = ωQ

2π
= 15 kHz. (63)

Having overviewed the general features of the two
main two-qubit NMR systems, we now to turn to their
applications in QIP and start out with descriptions of
the three central QIP steps, state preparation, ma-
nipulation, and readout, in Sections 3.2, 3.3, and 3.4,
respectively

3.2 State Preparation

Most of the NMR QIP implementations rely on
effectively pure states, usually referred to as pseudo-
pure states. Among other methods [46–48], the main
procedures for pseudo-pure state preparation are the
so-called spatial [47] and temporal averagings [46],
which we discuss in this section.

Spatial averaging starts with a system in thermal
equilibrium. A set of rf and magnetic field gradient
pulses are applied to manipulate the spin populations
and coherences (i.e., the diagonal and off-diagonal
elements of the density matrix in the computational
basis, respectively) and ultimately construct the desired
quantum state.

While the rf pulses impose specific spin rotations that
change the density matrix populations and coherences,

the field gradients eliminate undesired coherences. The
gradient pulses generate magnetic field distributions
that randomize the phases of the individual quantum
coherences and average out their contribution to the
final state.

As an example, consider the preparation of the
quantum state |11〉 in the computational basis, which is
accomplished by the following pulse sequence, applied
to the thermal equilibrium state:

(
π
2

)H,C
−x → (

1
4J

)→ (
π
2

)H,C
y → (

1
4J

)→ (
π
2

)H,C
−x →

{Gz} → (
π
4

)H,C
−y → (

1
2J

)→ (
π
6

)H,C
x → {Gz} ,

where (θ)
H,C
d denotes simultaneous rotations of the

1H and 13C nuclear spins by the angle θ around the
d-direction, while (1/nJ) indicates the duration of a
free evolution and {Gz} represents a magnetic field
gradient in the z-direction. In practice, each rotation
is implemented by a hard rf pulses with appropriate
phase (subindex) and amplitude (rotation angle be-
tween parentheses), applied to 1H and 13C (superindex)
nuclear spins.

Figure 7 compares a numerical simulation of the
pulse sequence (rf pulses, free evolutions, and mag-
netic field gradients) to prepare the state |11〉 with the
experimental procedure. The real and the imaginary
parts of the computed (measured) deviation matrix are
displayed in the bar plots on the left (right) panels.
The experimental deviation matrix was obtained by
the quantum state tomography procedure described in
Section 3.3.

State preparation by spatial averaging can equally
well be achieved by replacing the hard rf pulses and free
evolutions by numerically optimized low-power pulses
(soft pulses, in NMR terminology) followed by mag-
netic gradient pulses. Given the excellent experimental
control over the NMR variables, the system evolution
is accurately described by NMR Hamiltonians defined
by the parameters of the rf pulses (the power ω1, dura-
tion t, and phase ϕ). One can therefore let numerical
optimization routines seek the set of pulses that will
drive the system from thermal equilibrium to a state
such that the diagonal elements of its deviation matrix
coincide with those of the target-state deviation matrix.
Subsequently, the field-gradient pulse averages out the
off-diagonal deviation matrix elements and yields the
desired state. Two numerical procedures, named gra-
dient ascent pulse engineering (GRAPE) [49, 50] and
strongly modulated pulses (SMP) [51], are commonly
used for pulse optimization.
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Fig. 7 (Color online) Bar
representation of the
prepared deviation matrix.
The states were generated by
hard pulses, free evolutions,
and magnetic field gradients.
The top (bottom) part of the
figure corresponds to the real
(imaginary) part of the
deviation matrix. The left
(right) panels correspond to
the simulated (experimental)
results for the prepared initial
quantum state
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An example of a SMP pulse sequence implementing
a specific initial quantum state is presented in Table 1.
The first column indicates the order of application for
a certain set of parameters. The second (fifth) and
third (sixth) columns show the power and phase of the
rf pulses applied to the 1H (13C) nuclei. The fourth
column shows the duration of each rf pulse. As already
mentioned, a magnetic field gradient is applied after the

Table 1 Power, duration, and phase of the rf pulses imple-
menting the SMP technique for the preparation of a predefined
quantum state

SMP Parameters
pulse Hydrogen Time Carbon
step ωH

1 ϕH (ms) ωC
1 ϕC

1 1,092.6 5.94 0.518 1,962.9 1.88
2 1,679.8 5.73 1.546 1,276.7 5.26
3 112.0 1.64 0.226 619.3 2.55
4 1,998.0 2.63 1.130 868.9 3.91
5 211.3 4.84 1.996 835.8 5.46

As explained in the text, the SMP technique is one of the methods
that generates quantum states suitable for the NMR study of
quantum discord. Of particular interest is the generation of diag-
onal initial quantum states, as illustrated by the example in Fig.
11. The tabulated parameters define an rf pulse sequence that
yields a Bell-diagonal state satisfying the inequality |c1|, |c2| ≥
|c3|. Similar procedures were followed to obtain other states of
interest

rf pulses, to wash out the off-diagonal coherences in the
deviation matrix.

The application of the pulse sequence in Table 1 to
the thermal equilibrium state, followed by the gradient
pulse, was numerically simulated. The resulting real
and imaginary parts of the deviation matrix are shown
in the left part of Fig. 8. For comparison, the right-
hand panels show the deviation matrix measured by
quantum state tomography in an experiment using the
parameters in the table.

The main advantage of applying SMP or GRAPE
pulses followed by magnetic field gradient pulses for
state preparation via spatial averaging is versatility. The
two techniques yield pulses optimized to produce any
desired spin population and are hence more general
than the application of hard pulses, which calls for a
specific pulse sequence for each desired state.

The preparation of a quantum state via temporal av-
eraging requires a specific number of time-uncorrelated
experiments. Each experiment is designed so that the
desired state results from the sum of the outcomes
of all the experiments. As in spatial averaging, two
approaches have been developed: one based on hard
pulses [46] and the other based on soft pulses [38, 51].
Time averaging has advantages. In particular, it can
generate nondiagonal states, which can be prepared
directly from thermal equilibrium since no magnetic
gradient pulses are applied.
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Fig. 8 (Color online) Bar
representation of the
prepared deviation matrix,
obtained from states
produced by the SMP
technique with the
parameters in Table 1.
The panels are arranged
as in Fig. 7
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Figure 9 shows an example of a state prepared by
temporal averaging. This state was implemented using
23Na quadrupolar nuclei (spin 3/2) in a lyotropic liquid
crystal sample as described in Section 3.1.2. A SMP
pulse was also applied to prepare the state, but in this
case, the parameters were optimized on the basis of the
Hamiltonian (62). Different experiments are labeled by
the capital letters A, B, C, and D, each with the five sets
of rf pulse parameters (ω1, t and ϕ) in Table 2. Each
pulse was applied separately to the thermal equilib-
rium state, resulting in transformed deviation matrices
whose sum is the final �ρ. The simulated final �ρ is
shown by the bar plots in the left panels of Fig. 9. The
experimental �ρ is shown by plots in the right panels.

3.3 Quantum State Tomography

Quantum state tomography (QST) uses the observables
of a quantum system to measure each element of the
corresponding density matrix. In NMR, the observables
are the spin magnetizations, which depend on combina-
tions of the density matrix elements corresponding to
single quantum transitions (�m = ±1). Therefore, only
those elements located at certain reading positions in
the density matrix are readily accessible via experiment.

To determine the other elements, special sequences
of rotations must be applied to bring the desired ele-

ments to the reading positions in a controlled fashion.
After the rotations, the spin magnetizations become
dependent on these “nondirectly detectable” elements;
proper data processing is then sufficient to determine
the latter. The art of finding the minimum number of
rotations that allows mapping of the full system density
matrix, or the deviation matrix, in the context of NMR,
has led to a variety of QST procedures.

Among other sequences in the NMR QIP literature,
we find combined spin rotations [53, 54], global spin-
system rotations [52], and transition-selective excita-
tions [38, 41]. Generally speaking, each spin system is
best served by a specific QST method. For example,
while sets of single-spin rotations are more suitable for
spin-1/2 systems, transition-selective pulses or global
spin rotations are more appropriate for quadrupolar
nuclei.

As an illustration, we will briefly discuss the QST
technique introduced by Long et al. [53]. Widely used
for QST of two-coupled spin-1/2 systems, this method
has more recently been adapted to systems with more
spins [54, 55]. The original version is depicted in Fig. 10.
Two sequences of nine spectra running along the left
and the right borders of the figure represent the QST
procedure, a pair of horizontally aligned spectra cor-
responding to each of the nine steps in the procedure.
Before each step, the system has to be prepared in
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Fig. 9 (Color online) Bar
representation of the
prepared deviation matrix.
The panels are arranged as in
Fig. 7. The quantum states
were produced by hard
pulses, free evolutions, and
magnetic field gradients, with
the parameters in Table 2
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the same state, the deviation matrix of which must be
characterized.

In the first step, the NMR signal, i.e., the free in-
duction decay (FID), of both nuclei is acquired, in the
absence of rf pulses. The line intensities in the Fourier-
transformed FID are recorded, which are represented
by the top spectra (labeled II) in Fig. 10. In each of the
subsequent steps, rf pulses with the phases specified in
Table 3 are applied to each or to both nuclei, and the
same reading procedure is carried out.

Each plot along the sequence on the left-hand (right-
hand) side of Fig. 10 represents the carbon (hydrogen)
spectra resulting from each tomography step, carried
out after a Bell-diagonal state is prepared in the CHCl3
two-qubit spin system. The spectra are labeled II, XX,
IX, IY, XI, YI, XY, YX, YY, to indicate no pulse (I), a
π/2 pulse in the positive x-direction (X) or a π/2 pulse
in the positive y-direction (Y). In the case under study,
each spectrum has two spectral lines, each of which has
a real and an imaginary component. Altogether, 72 line
intensities are therefore recorded.

Each intensity is associated with one or more ele-
ments of the deviation matrix. Therefore, to obtain the
full deviation matrix, we have to relate the line inten-
sities, i.e., the NMR readouts, to the deviation matrix
elements. The rf pulse phases on Table 3 are designed
to give access to all elements, with some redundancy to
minimize the error.

To be more specific, let us consider the following
deviation matrix:

�ρ =

⎡

⎢⎢⎣

a1 a2 + ia11 a3 + ia12 a4 + ia13

a2 − ia11 a5 a6 + ia14 a7 + ia15

a3 − ia12 a6 − ia14 a8 a9 + ia16

a4 − ia13 a7 − ia15 a9 − ia16 a10

⎤

⎥⎥⎦ , (64)

containing 16 unknowns.
The rotation imposed on the spins by the rf pulses in

step n of the tomographic process can be represented
by the operator Un(X, Y). For specified pulse duration
and phase, the analytical form of Un(X, Y) is known.
Hence, after the nth rotation, the transformed devia-
tion matrix is determined by the expression

�ρn = Un (X, Y)�ρU†
n (X, Y) . (65)

After the nth transformation, the real (Mx) and
imaginary (My) parts of the NMR magnetization for
each nuclear spin {A, B} are therefore given by the
equalities

MA
x,y;n = Tr

[
�ρn

(
Ix,y ⊗ I

)] ; (66a)

MB
x,y;n = Tr

[
�ρn

(
I ⊗ Ix,y

)]
. (66b)
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Table 2 Power, duration, and phase of the rf pulses used to
prepare quantum states by the SMP technique and the time-
averaging procedure

Group SMP Parameters of sodium nuclei
set pulse ω1 ϕ Time (μs)

step

A 1 37,485.4 6.208 15.11
2 11,624.8 4.243 36.53
3 31,867.5 3.293 4.15
4 38,906.5 6.027 47.99
5 38,681.0 1.927 31.62

B 1 12,063.7 3.919 7.95
2 15,399.8 3.581 33.74
3 38,721.2 5.845 30.47
4 24,148.3 5.117 3.38
5 38,916.9 3.762 48.08

C 1 39,208.2 1.788 38.82
2 7,589.9 4.984 27.38
3 19,817.7 0.889 9.27
4 38,915.2 1.682 25.45
5 38,755.6 1.200 21.98

D 1 13,372.2 4.333 15.24
2 2,192.1 1.506 37.89
3 39,094.7 4.433 29.35
4 11,495.7 3.294 10.49
5 18,867.5 0.213 36.92

The pulse sequences generate the diagonal initial quantum state,
as illustrated by the example in Fig. 11. The quantum states
resulting from the listed parameters satisfy the inequality |c1| ≥
|c2|, |c3| 	= 0

Equation (66) linearly relate the magnetizations
to the elements of �ρ. In other words, for each n,
(66a) and (66b) yield two equations of a linear system
in which the elements of �ρ are the independent vari-
ables, the magnetizations MA,B

x,y;n are dependent vari-
ables, and the elements of the operators Un(X, Y) are
coefficients.

The magnetizations are directly related to the line
intensities and hence experimentally accessible, and the
Un(X, Y) elements are analytically determined by the rf
pulse parameters. Equation (66) is therefore equivalent
to the linear system

b k = Xkja j, (67)

where b k (k = 1, . . . , 73) is the kth recorded line inten-
sity, the a j ( j = 1, . . . , 16) are linearly related by (64)
to the �ρ elements before the transformation, and the
elements Xkj are obtained from the pulse parameters in
each QST step.

We solve (67) for a j to reconstruct the deviation
matrix �ρ. The bar plots in Fig. 10 show an example.
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Fig. 10 (Color online) Outer panels: NMR spectra of a two-
spin system encoded in the chloroform molecule. The spectra are
generated by the QST pulse sequence in Table 3. The spectra
in the sequence running along the left-hand (right-hand) bor-
der corresponds to the carbon (hydrogen) nuclear spin. Central
panels: Bar plots representing the real (top) and imaginary (bot-
tom) parts of the experimental deviation matrix resulting from
the QST

Table 3 Ordered pulse sequence applied simultaneously to two
nuclear species

Pulse order Carbon Hydrogen

1st I I
2nd X X
3rd I X
4th I Y
5th X I
6th Y I
7th X Y
8th Y X
9th Y Y

X ≡ ( π
2

)
+x represents an rf pulse of π/2 in the positive x-

direction. Y ≡ ( π
2

)
+y represents an rf pulse of π/2 in the positive

y-direction. I indicates the absence of rf pulses
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The QST methods for quadrupolar nuclei are
analogous. Sequences of readouts are obtained after
specifically designed rf pulses are applied, the line in-
tensities are recorded, and a linear system is solved to
yield the deviation matrix elements. For details, which
will not be presented here because they are somewhat
more intricate see [52].

3.4 Measurements of Quantum Correlations in NMR
Systems

We now discuss the experimental efforts to quantify
and identify quantum correlations in NMR systems at
room temperature. First, we verify that the peculiar
dynamics of quantum discord under decoherence, the-
oretically predicted for phase-noise channels [30], can
occur even under the additional influence of a thermal
source [34]. Next, we review the first experimental im-
plementation of a classicality witness [32], which iden-
tifies the nature of the correlations in NMR systems
even without full QST [35].

3.4.1 Experimental Dynamics of Correlations

Here, we discuss an experimental verification of the
sudden change in the quantum discord under decoher-
ence theoretically discussed in Section 2.4. While that
effect can in principle be observed in the quadrupo-
lar system described in Section 3.1.2 [33], in practice,
serious difficulties arise. In the quadrupolar system,
the phase-noise environment is global [56], and the
transversal relaxation time, very short.

The transverse relaxation times in the system dis-
cussed in Section 3.1.1 are much longer. For this reason,
to experimentally demonstrate the peculiar behavior of
correlations under decoherence, the two-qubit system
encoded in the 1H and 13C nuclear spins of a CHCl3
molecule was used. As already mentioned, relaxation
process causing phase decoherence and energy dissipa-
tion in this system is mainly due to internal molecular or
atomic motions. As a result, the electromagnetic field
in which the qubits are immersed fluctuates randomly.
To model the resulting decoherence, we combine a
phase-damping channel with a generalized amplitude-
damping channel, i.e., describe the quantum state by
the expression

ρAB(t) = Ep ◦ Ea(ρAB), (68)

where the quantum operations En (n = p, a) are writ-
ten in the operator-sum representation as discussed in
Section 1, i.e.,

En(ρ) =
∑

j

Kn
j (t)ρ

[
Kn

j (t)
]†

. (69)

where Kn
j (t) is the Kraus operator.

For the generalized amplitude-damping channel, the
Kraus operators take the form

Ka
0 = √

γ

(
1 0
0

√
1 − p

)
, Ka

1 = √
γ

(
0

√
p

0 0

)
,

Ka
2 = √1 − γ

(√
1 − p 0

0 1

)
, Ka

3 = √1−γ

(
0 0√
p 0

)
,

(70)

where, in the NMR context,

γ ≈ 1 − ε

2
(71)

and

p = 1 − exp (−t/T1) . (72)

Here, T1 is the longitudinal relaxation time of the
qubit under consideration.

In our case, each qubit has a distinct Larmor fre-
quency and distinct relaxation times. The measured
spin–lattice relaxation times are

T1
(

1H
) = 2.5 s and T1

(
13C
) = 7 s. (73)

The Kraus operators for the phase-damping channel
are given by (44) with p = 1 − exp (−t/T2), where the
measured transverse relaxation times associated with
the two qubits are

T2
(

1H
) = 1.8 s and T2

(
13C
) = 0.29 s. (74)

Since no refocusing pulse was used, the effective
transverse relaxation times are

T∗
2

(
1H
) = 0.31 s and T∗

2

(
13C
) = 0.12 s. (75)

To attest to the sudden change in the decay rate and
robustness of correlations under phase-noise environ-
ments, a suitable initial state was prepared by mapping
the NMR deviation matrix �ρ onto a Bell-diagonal
state with |c1|, |c2| > |c3| on the right-hand side of (36).
Figure 11 depicts the pulse sequence applied to monitor
the correlation dynamics. With help of the deviation
matrices obtained from quantum state tomography, the
correlations were numerically computed at each time
step tm = m/4J (m = 0, 1, . . . , 250).

The results in Fig. 12 clearly show the sudden change
in the correlation decay rates, visible even under the
strong influence of the thermal noise of the fluctuating
fields in the nuclear spin environments. As pointed out
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Fig. 11 (Color online) Pulse sequence implementing the dynam-
ics of quantum and classical correlations under decoherence.
The bottom (top) sequence corresponds to the representation
of pulses applied to the 1H (13C) nuclei. First, the SMP tech-
nique and a z-gradient pulse implement a diagonal state. Next,
a pseudo-EPR gate is performed. In the third step, the nuclear
system and environment interact, resulting in decoherence of the
quantum states. Finally, the quantum state is read out at equally
spaced times tm = m/4J (m = 0, 1, . . . , 250) with QST

in Section 2.4, the classical correlation should remain
constant under phase damping. The weak decay in
Fig. 12 is due to the thermal environment. Overall, the
theoretical predictions agree well with the experiment.

The figure defines two decoherence regimes [31]. In
the first regime, the decoherence affects more strongly
the classical correlation; the quantum correlations
decay, insignificantly. After the sudden change, the
classical correlation becomes more robust against de-
coherence, while the quantum discord is progressively
reduced by the noise. The experimental deviation ma-
trices have small coherences, which introduce small os-
cillations in the recorded spectral line intensities. Small
perturbations are consequently introduced in the linear
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Fig. 12 (Color online) Sudden change in behavior and robust-
ness of classical and quantum correlations under decoherence.
The f illed triangles (green online) depict the measured quan-
tum mutual information. The f illed circles (blue online) and
diamonds (orange online) represent the classical and quantum
correlations, respectively. The solid lines are the theoretical pre-
dictions. The initial state is analogous to the state defined by (36),
with |c1|, |c2| > |c3|. The correlations are displayed in units of
(ε2/ ln 2)bit

Fig. 13 Pulse sequence implementing the classicality witness.
The bottom (top) sequence corresponds to the pulses applied
to the 1H (13C) nucleus. In the first step, the SMP technique
and a z-gradient pulse implement a diagonal state. In the second
step, a pseudo-EPR gate is implemented. In the third step, the
system interacts with the environment, which leads to decoher-
ence of the quantum states. Finally, tomography reads out the
quantum state at the uniformly distributed time intervals m/4J
(m = 0, 1, . . . , 11)

system (67), which give rise to the oscillations in the
experimental curves in Fig. 12.

3.4.2 Experimental Implementation of a Classicality
Witness

Sections 3.3 and 3.4.1 dealt with QST measurements of
quantum correlations. In certain situations, however,
it suffices to identify the nature of correlations. For
this purpose, correlations witnesses are convenient. As
explained in Section 2.5, the space of classical states
not being convex, linear witnesses are inadequate to
identify the quantumness of correlations in separable
states, and one must look for nonlinear witnesses. Here,
we discuss an experimental implementation of the non-
linear classicality witness introduced in Section 2.5 [32].
The experiment used the same NMR apparatus that
evidenced the sudden change of quantum discord under
decoherence [35].

The pulse sequence implementing the classicality
witness protocol is sketched in Fig. 13. Three states
were prepared: a thermal equilibrium state ρT, a
quantum-correlated state ρQC, and a classically correlated

Table 4 Witness, quantum discord, and classical correlation mea-
sured in three different initial states: the quantum correlated
state ρQC, the classically correlated state ρCC, and the thermal
equilibrium state ρT

ρQC ρCC ρT

Witness 3.13 0.04 0.05
Quantum discord 4.02 0.00 0.00
Classical correlation 2.09 7.15 0.00

The witness was directly measured with the sequence of pulses
in Fig. 13. The classical correlation and the symmetric quantum
discord were computed by means of QST followed by numer-
ical extremization. The correlations are displayed in units of
(ε2/ ln 2)bit
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Fig. 14 (Color online) Measured witness and computed corre-
lations for ρQC as a function of free-evolution time. Each open
circle (red online) was obtained from a witness protocol carried
out after the state had freely evolved for a time tn = nδt since ini-
tial preparation, where δt = 55.7 ms, and n is an integer (0 ≤ n ≤
11). The downward triangles (gray online) indicate the amount
of classical correlation, and the upward triangles (blue online)
represent the symmetric quantum discord. The correlations are
in units of (ε2/ ln 2)bit

state ρCC. The measured values of the witness for the
three different states are listed in Table 4. It is assumed
that the classicality cutoff limit is WρT = 0.05, i.e., the
equilibrium-state witness value. For the classical state,
the witness value WρCC = 0.04 lies below the classical-
ity cutoff. By contrast, the quantum-correlated state
yielded WρQC = 3.13, which is far above the classicality
bound 0.05. As this example shows, the classicality wit-
ness reliably sorts out quantum correlated states from
classically correlated ones. For comparison, Table 4
also shows the quantum discord computed from the
experimentally reconstructed deviation matrices, the
result of QST followed by numerical extremization.
As one would expect, while vanishing in the last two
columns, which contain the witnesses within the classi-
cal bound, the QD is nonzero in the first column.

Finally, we discuss the decoherent dynamics of the
witness. Following initial preparation in the state ρQC,
we let the system evolve freely in the NRM environ-
ment during a time interval tn = nδt, where δt = 55.7 ms
and n is an integer, and then implement the witness
protocol. The experimental results for n = 0, 1, . . . , 11
are shown in Fig. 14, along with the correlations. The
identification of classical states on the basis of the
witness values agrees fairly well with the identification
provided by the correlation quantifiers.

4 Concluding Remarks

Quantum information processing has the potential
to promote advances not only in the foundations of

physics, specially quantum mechanics and thermody-
namics, but also in technology. Basic studies of quan-
tum information therefore have great importance.

Quantum correlations are currently associated with
the gain offered by quantum mechanics in comparison
with classical protocols. Our understanding of the dis-
tinction between the quantum and the classical aspects
of correlated system has dramatically changed since the
seminal EPR paper in 1935 [1]. Initially, quantum cor-
relations were identified with nonlocal aspects of quan-
tum systems. After that, entanglement was raised to the
status of quantum correlations. In the last decade, it
was realized that even separable, nonentangled states
can entail quantum correlations and hence carry an ad-
vantage in quantum information protocols that classical
systems cannot match. The most popular quantifier of
this kind of correlation is called quantum discord [15].

We have discussed the theoretical and the experi-
mental aspects of quantum discord in NMR at room
temperature. After dwelling on the dynamics of quan-
tum discord under decoherence, we presented a wit-
ness for quantum correlation. The experimental inves-
tigations of both the QD and the witness were then
surveyed, with a brief review of control techniques
in NMR as well as of quantum state interrogation, a
procedure known as quantum state tomography.
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