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Abstract
Seismic imaging is a major challenge in geophysics with broad applications. It involves solving wave propagation equations
with absorbing boundary conditions (ABC) multiple times. This drives the need for accurate and efficient numerical methods.
This study examines a collection of exponential integration methods, known for their good numerical properties on wave
representation, to investigate their efficacy in solving the wave equation with ABC. The purpose of this research is to assess
the performance of these methods. We compare a recently proposed Exponential Integration based on Faber polynomials with
well-established Krylov exponential methods alongside a high-order Runge-Kutta scheme and low-order classical methods.
Through our analysis, we found that the exponential integrator based on the Krylov subspace exhibits the best convergence
results among the high-order methods. We also discovered that high-order methods can achieve computational efficiency
similar to low-ordermethodswhile allowing for considerably larger time steps.Most importantly, the possibility of undertaking
large time steps could be used for important memory savings in full waveform inversion imaging problems.

Keywords Exponential integrators · Wave equation · Seismic imaging · Acoustic waves

1 Introduction

The resolution of wave propagation equations is a widely
researched topic due to its broad range of applications in
various fields. One particularly prominent application is seis-
mic imaging, where material parameters of underground
regions are estimated based on seismic data. This technique
is extensively utilized in the industry for the exploration and
extraction of fossil fuels [27].

The numerical approximation of propagating wave equa-
tions is a critical stage in this procedure. Consequently, the
complexity of the problem impels the development of novel
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techniques competitive to the efficiency and accuracy of
existing schemes [5, 33, 35].

The propagation of elastic waves can be described as a
linear hyperbolic system of PDEs. Nonetheless, the addi-
tion of absorbing boundary conditions to replicate an infinite
domain modifies the eigenvalues, and they are no longer
purely imaginary. In this context, low-order classical explicit
schemes such as the Leap-Frog [49] approximation, fourth-
order Runge-Kutta [58], and similar methods [29, 36] have
proven effective. Nevertheless, despite their computational
speed, these algorithms require very small time steps to
approximate the solution accurately. Consequently, this leads
to high memory requirements, which can be a significant
challenge in solving inverse problems, which is another cru-
cial step in seismic imaging.

In recent decades, a class of numerical algorithms known
as exponential integrators have emerged and demonstrated
successful applications in various fields. These algorithms
have been effectively utilized in areas such as photonics [46],
the development of numerical methods for weather predic-
tion [45], and the modeling of diverse physical phenomena
[38], often surpassing the performance of classical schemes.
Another example of successful applications of exponential
integrators is provided by Brachet et al. [11], where clas-
sical explicit and implicit schemes were compared with
exponential integrators, revealing that exponential integra-
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tors exhibit superior dissipation and dispersion properties.
In Cohen and Dujardin [17], exponential integrators were
compared with explicit and implicit schemes for solving
the non-linear Schrödinger equation, demonstrating accu-
racy comparable to the best performance of classicalmethods
and surpassing other schemes such as the Crank-Nicholson
method. In Iyiola and Wade [28], an exponential integra-
tor was compared with an Implicit-Explicit (IMEX) scheme
and a second-order backward difference scheme for solving
non-linear space-fractional equations, concluding that it offers a
significantly larger stability region. In general, this class ofmeth-
ods enables the use of larger time steps, with the potential for
parallel implementation to enhance efficiency. Exponential
integrators are typically employed to preserve favorable dis-
persion properties while allowing for larger time steps [51].

Exponential integrators can be categorized into two types:
one primarily concernedwithapproximating theexponential (or
related ϕ-functions) of a large matrix resulting from the spa-
tial discretization of the linear term of a system of PDE, and
the other focused on different schemes to approximate the
non-linear term [25, 43]. In the context of wave propagation
equations with absorbing boundary conditions, these equa-
tions are primarily governed by the linear term, and a source
function replaces the non-linear term with a well-defined
analytic representation. This leads to a transformation of
the problem, as demonstrated by Al-Mohy and Higham [3],
which is a generalization of the work of Sidje [52], where
the problem transforms into calculating the exponential of a
slightly enlarged matrix.

The approximation of a matrix exponential has received
significant attention [1, 6, 42]. Numerous exponential inte-
grators have been developed to address this matrix function
calculation [3, 25, 39]. One notable exponential integrator is
based on the Krylov subspace, with several schemes utiliz-
ing this approach and demonstrating good performance [22,
44, 52]. Another method relies on rational approximations
[2], which are generally implicit and less suitable for large
operators. However, they can be combined with the Krylov
method to reduce matrix dimensions [3]. Another approach
utilizes Chebyshev polynomials, an explicit method that can
be formulated as a three-term recurrence relation [9, 30].
Additionally, there are other methodologies, such as Leja
points interpolation [10, 19], optimized Taylor approxima-
tions [8], and contour integrals [50], among others.

When applied to solve hyperbolic systems, such as the
wave equations in heterogeneous media, their performance
is poorly understood. To the best of our knowledge, only a
limited number of literature publications have focused on
methods of practical relevance for this specific problem [30,
31, 47, 55, 56, 61].

In Zhang et al. [61], an implicit exponential integrator
method is developed, and a comparison with other meth-
ods is presented, demonstrating superior results in terms of

accuracy and dispersion. However, a notable drawback of the
implicit method is its high computational cost for each time
step, making it primarily suitable for very stiff problems.

Kole [30] proposes an explicit exponential integrator
based on Chebyshev polynomial approximations, which
achieves high solution accuracy and permits large time steps.
Nevertheless, the applicability ofChebyshev polynomials for
approximating the solution is limited to cases where the sys-
tem matrix is symmetric or antisymmetric, preventing the
modeling of absorbing boundary conditions. As a result, its
usage in seismic applications is constrained.

Chebyshev expansions have been proposed [31, 55, 56] to
approximate the matrix exponential, with the use of absorb-
ing boundary conditions. Nonetheless, the numerical results
are primarily validated using simplistic ABCs, and there is a
lack of proof demonstrating convergence for these boundary
conditions.

In a previous work [47], we explored a generalization of
the exponential integrator using Faber polynomials, a variant
ofChebyshevpolynomials. This approach enabledus to solve
the wave equations with absorbing boundary conditions.
We found that employing higher approximation degrees in
the Faber polynomial-based method allows for increased
time step sizes without incurring additional computational
costs. Furthermore, the augmented time step approximations
exhibit favorable accuracy and dispersion properties.

A notable gap in theexisting literature is the absenceof exper-
iments comparing high-order methods with classical low-
order schemes for solving the wave equations with absorbing
boundary conditions. Our work fills in this gap by comparing
exponential integrators based on Faber polynomials, Krylov
subspace projection, and High-order Runge-Kutta with var-
ious classical methods. Specifically, we consider classical
low-order methods such as Leap-frog, fourth-order and four-
stage Runge-Kutta (RK4-4), second-order and three-stage
Runge-Kutta (RK3-2), and seventh-order and nine-stage
Runge-Kutta (RK9-7). Detailed descriptions of these meth-
ods can be found in Section 3. The comparison between
these algorithms focuses on several key characteristics,
including numerical dispersion, dissipation, convergence,
and computational cost, which are thoroughly discussed in
Sections 4 and 5. By investigating these aspects, we aim
to comprehensively evaluate the different methods and their
suitability for solving wave equations with absorbing bound-
ary conditions. Finally, in Section 6, we summarize the
main findings and draw conclusive remarks based on our
research.

2 The wave equation

The execution of finite difference methods when solving a
systemof partial differential equations depends on the contin-
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uum formulation and the approximation of the spatial deriva-
tives [57]. These factors directly impact the discrete operator
used in the computations. This section lays the groundwork
for the entire analysis presented in the manuscript. We dis-
cuss the fundamental elements defining the discrete spatial
operator present in seismic imaging applications. These ele-
ments include formulating wave propagation equations with
absorbing boundary conditions (ABC), spatial discretization
using derivative approximations, and free surface treatment.

We employ Perfectly Matching Layers (PML) as the
absorbing boundary condition [7] to simulate an infinite
domain. Despite the significant computational cost associ-
ated with PML absorbing boundaries, they remain widely
used in numerous numerical studies within the field of seis-
mic imaging [16, 29, 54]. For computational efficiency, we
implement the PML for the two-dimensional acoustic wave
propagation equations. While we can extend our analysis
to propagating waves in three dimensions, the complexity
of the equations substantially increases, resulting in a sig-
nificant rise in computational requirements. Thus, for our
purposes, we define the system of equations within a rectan-
gular domain Ω = [0, a] × [0,−b] for t > 0, as follows:
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where, u = u(t, x, y) is the displacement, c= c(x, y) is the
given velocity distribution in the medium, v =v(t, x, y) is the
wave velocity, and f = f (x, y, t) is the source term. The w-
functions, (wx , wy) = (wx (t, x, y), wy(t, x, y)), are the
auxiliary variables of the PML approach and the β-functions are
known and control the damping factor in the absorbing layer.

βz(z) =
{
0, if d(z, ∂Ω) > δ

β0

(
1 − d(z,Ω)

δ

)2
, if d(z, ∂Ω) ≤ δ

, z ∈ {x, y}

where d(z, ∂Ω) is the distance from z to the boundary ofΩ , δ
is the thickness of the PML domain, and β0 is the magnitude
of the absorption factor. Thus, the domain Ω comprises a
physical domain, where the wave propagates normally, and
an outer layer of thickness δ (the domain of the PML), where
the waves dampen.

Due to the attenuation of displacement within the PML
domain, we opt for a Dirichlet boundary condition (null dis-
placement) along three sides of the rectangular domain Ω .
However, this boundary condition does not apply to the top
side, as a free-surface boundary condition is more suitable
for seismic-imaging simulations. Therefore, on the upper
side of Ω , we exclude the PML domain (βy(y) = 0, for

all y ∈ [0, δ]), and determine the solution approximation at
the upper boundary based on the chosen spatial discretization

2.1 Spatial discretization

Several finite difference discretization schemes have been pro-
posed for thewave propagation equations [29, 40, 41, 48, 62].
While determining the optimal approach remains an open
problem, staggered grids have gained significant popularity
for these equations, as noted in Moczo et al. [41]. Staggered
grids have good numerical stability properties and usually
allow better wave representation for high wave numbers.
Additionally, in the study of Moczo et al. [41], the effec-
tiveness of second and fourth order staggered grid spatial
discretizations was compared for solving the wave equation,
with the fourth-order discretization demonstrating superior
accuracy and stability over the second-order counterpart. As
ourmain interest is the time integrationmethods, tominimize
spatial numerical errors we adopted an eighth-order stag-
gered grid spatial discretization.

The spatial discretization consists of a uniform staggered
grid (Δx = Δy) of 8th-order. The positions of the discrete
points are depicted in Fig. 1.

For the inner discrete points, the 8th-order approximation
of the derivatives is given by

∂ui+ 1
2

∂x
≈ 1225

1024Δx

(
ui+1 − ui − ui+2 − ui−1

15

+ui+3 − ui−2

125
− ui+4 − ui−3

1715

)
(2)

∂2ui
∂x2

≈ −205

72
ui + 8

5
(ui+1 − ui−1) − 1

5
(ui+2 − ui−2)

+ 8

315
(ui+3 − ui−3)

− 1

560
(ui+4 − ui−4) (3)

with analogous expressions for the y-coordinate in the 2D
discretization.

The approximation of derivatives near the sides and bot-
tom boundaries, where Dirichlet boundary conditions within
a PML domain are applied, is performed using the for-
mulas Eqs. 2 and 3. In these cases, the function values
required outside the domain Ω are set to zero. However, this
does not impact the accuracy of the numerical approxima-
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Fig. 1 Uniform staggered grid
in 2D with the relative positions
of the acoustic wave equations’
variables and parameters. u, v

and c are collocated. The shaded
region represents the PML
domain

tions because, within the PML domain, the wave amplitudes
decrease to zero.

A different strategy is necessary to approximate deriva-
tives at points near the upper boundary. Since there is no
PML domain, and the boundary condition corresponds to a
free surface.

2.2 Free surface

From the free-surface condition ∇u · (0, 1) = 0, we deduce
the Neumann boundary condition ∂u

∂ y = 0. Additionally, by
substituting βy = 0 at the free surface in the third equation
of Eq. 1, we obtainwy = 0 at the free surface. Utilizing these
values, we can approximate the required spatial derivatives
of the functions in Eq. 1 concerning the variable y.

There are twomain approaches for approximating the spa-
tial derivatives concerning y. The first approach introduces
artificial points outside Ω , assigning function values at these
points to satisfy the conditions at the free surface. The second
procedure involves approximating the derivatives at the free
surface and its nearest points using only the function values
within the domainΩ , without artificially extending the func-
tions. According to Kristek et al. [32], the latter alternative
brings greater accuracy to the numerical solution and is the
approach employed throughout this work.

Next, assuming that the grid points lying on the free sur-
face correspond to the evaluation of the displacement u (i.e.,
the free surface is at y = 0), we need 8th-order approxima-
tions for

1. the second derivative ∂2u
∂ y2

at the points with y =
{0,−Δx,−2Δx,−3Δx}.

2. the first derivative ∂u
∂ y at the points with y = {− 1

2Δx,

− 3
2Δx,− 5

2Δx}.
3. the first derivative ∂wy

∂ y at the points with y = {0,−Δx,
−2Δx,−3Δx}.

The referred approximations for the derivatives ∂2u
∂ y2

and ∂u
∂ y ,

using Taylor expansions, can be found in the Appendix A.1.
As for the derivative ∂wy

∂ y , we apply the algorithm outlined in
Fornberg [20]. This algorithm computes the derivative with

any approximation order and utilizes an arbitrary points dis-
tribution where the values of the derived function are known.

3 Time integrationmethods

After characterizing the spatial discretization and the approx-
imation of the spatial derivatives, we obtain the following
linear system of equations:

d

dt
U(t) = HU(t) + f (t), U(t0) = U0. (4)

Here, U(t) is a vector comprising the discretized func-
tions u, v, wx , and wy , while the matrix H represents the
discretized spatial operator of the system Eq. 1. The vector
f consists of the source function evaluated at each grid point.
Most of the numerical methods described in this section

solve the first-order system of ordinary differential equa-
tions Eq. 4. Our primary focus lies in approximating the time
dimension, leading to the classification of methods as either
low or high order concerning time. The following subsec-
tions present the numerical schemes employed in the former
classifications.

3.1 Low order methods

We consider four low-order methods that offer attractive
features for approximating the solution of wave equations.
Three of these methods are based on the Runge-Kutta (RK)
approach, while the fourth is the Leap-frog scheme.

– 2nd order Runge-Kutta (RK3-2): The RK3-2 method
is a second-order RK scheme with three stages. It is a
modification of the classical RK2-2 method designed to
increase its stability region [18], enabling its application
to hyperbolic problems. The scheme can be expressed as
follows:

k1 = Hun + f (tn),

k2 = H(un + (Δt/2)k1) + f (tn + Δt/2),

k3 = H(un + (Δt/2)k2) + f (tn + Δt/2),

un+1 = un + Δtk3.
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– 4th order Runge-Kutta (RK4-4): The classical RK4-
4 scheme balances stability region and computational
requirements [12].

– 7th order Runge-Kutta of nine stages (RK9-7): This
scheme has been specifically constructed for hyperbolic
equations and exhibits favorable dispersion properties
[15].

– Two stepmethod (Leap-frog):The Leap-frogmethod is
highly efficient for solvingwave equations. It utilizes two
time steps to approximate the second-order time deriva-
tive. The equations solved by the Leap-frog method are

∂2u

∂t2
= −βxβyu − (βx + βy)

∂u

∂t

+ c2
(

∂2u

∂x2
+ ∂2u

∂ y2
+ ∂ωx

∂x
+ ∂ωy

∂ y

)
+ f

∂wx

∂t
= −βxwx + (βy − βx )

∂u

∂x
∂wy

∂t
= −βywy + (βx − βy)

∂u

∂ y

with the discrete approximations in time

∂2uni
∂t2

≈ un+1
i − 2uni + un−1

i

Δt2
,

∂wn
zi+1/2

∂t
≈ wn+1

zi+1/2
− wn−1

zi+1/2

2Δt
, with z ∈ {x, y}.

3.2 High order methods

Themethods presented in this section are of arbitrary orde4r and
utilize exponential integrators based on Faber polynomials,
Krylov subspaces, and a high-order Runge-Kutta method.

According to Hochbruck and Ostermann [25], an expo-
nential integrator approximates the semi-analytic solution of
Eq. 4 using the formula of constant variation

U(t) = e(t−t0)HU0 +
t∫

t0

e(t−τ)H f (τ )dτ.

Expanding the function f in a Taylor series, the solution
of (3.2) can be expressed as the matrix exponential [3]

u(t) = [
In×n 0

]
e(t−t0)H̃

[
u0
ep

]
, (5)

where ep ∈ R
p is a vector with zeros in its first p − 1

elements and one in its last element, In×n is the identity
matrix of dimension n, and

H̃ =
(
H W
0 J p−1

)
,

where the columns of the matrix W consist of the values
of the function f and the approximations of the first p − 1
derivatives of f , and J p−1 is a square matrix of dimensions
p × p with ones in the upper diagonal and zeros elsewhere.

Equation 5 forms the basis for the exponential integrator
methods implemented in this research, and the approach used
to compute the matrix exponential in Eq. 5 determines each
of the following exponential integrators.

– Faber approximation (FA):Thismethod is an exponen-
tial integrator based on Faber polynomials. As presented
in Ravelo et al. [47], the exponential approximation is
carried on with the three-term recurrence Faber series

F0(H) = In×n, F1(H) = H/γ − c0 In×n,

F2(H) = F1(H)F1(H) − 2c1 In×n,

F j (H) = F1(H)F j−1(H) − c1F j−2(H), j ≥ 3,

where the parameters c0 and c1 depend on the eigenvalues
distribution of the operator H . Then, the solution in the
next time instant is expressed as

un+1 =
m∑
j=0

a j F j (H)un,

where a j are the Faber coefficients.
– Krylov subspace projection (KRY): This method is
an exponential integrator utilizing operator projections
within theKrylov subspace.Various proposed algorithms
involve adaptive time steps and different strategies for
generating the subspace basis [22]. However, to ensure
an impartial comparison among all the schemes, we opt
for the traditional Arnoldi algorithm to establish the vec-
tor basis and perform the projection of H [21].

u1 = u0/‖u0‖2
Do j from 1 to m :

w = Hu j

Do k from 1 to j :
Ai, j = w · uk
w = w − Ai, juk

A j+1, j = ‖w‖2
u j+1 = w/A j+1, j

Then, eHu0 ≈ ‖u0‖2[u1| . . . |um]eAe1
Listing 1 Pseudocode of Arnoldi algorithm.

After constructing the matrix projection A, we compute
the reduced matrix’s exponential using the Padé polyno-
mial approximation method, as outlined in Al-Mohy and
Higham [3].
The Arnoldi algorithm to construct an orthonormal basis
is very computationally intensive, and the amount ofmatrix-
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vector operations does not represent its actual compu-
tational cost. Regarding this subject, the use of non-
orthonormal bases has been proposed to greatly reduce
this cost [22]. However, due to the non-orthogonality of
the Krylov basis, the reducedmatrix A does not represent
an orthogonal projection of the linear transformation H
onto theKrylov subspace [22]. This discrepancymay lead
to numerical errors that differ from those encountered in
the classical Arnoldi method. As we aim to use the clas-
sical Krylov method, we employ the Arnoldi algorithm
without considering the cost of constructing the Krylov
subspace, given the potential to significantly reduce the
computational cost.

– High-order Runge-Kutta (HORK): Runge-Kutta met-
hods are extensively used for solving differential equa-
tions [14], and also in combination with exponential
integrator schemes [18, 34] These methods are naturally
extended to high-order schemes. They can be explicit
and are easy to implement. For this research, we adopt
the Runge-Kutta algorithm of arbitrary order proposed
by Gottlieb [23], defined by the relation

k0 = un

ki = (In×n + ΔtH) ki−1, i = 1 . . .m − 1

km =
m−2∑
i=0

λi ki + λm−1 (In×n + ΔtH) km−1

un+1 = km,

where λi are the coefficients of the Runge-Kutta and
have a straightforward computation. According to Got-
tlieb and Gottlieb [23], the Runge-Kutta method exhibits
strong stability-preserving properties if the coefficients
λi are non-negative.

3.3 Computational cost andmemory usage

In addition to the accuracy of the numerical solution when
discussing the different approaches, we are also interested in
their resource consumption. Specifically, we focus on the
computational operations required by each algorithm and
their utilization of computational memory. Determining the
exact number of computations performed by these methods
is a complex task, further complicated by the fact that sparse
matrix-vector multiplications are known to be bandwidth-
limited in terms of performance [4, 26]. Therefore, we adopt
a simplified model that focuses exclusively on counting the
loading and storing of elements.We consider only thematrix-
vector operations, as the other vector operations introduce,
at most, small variations in the number of operations. Con-
sequently, the cost of each method by time step will be
its number of stages or matrix-vector operations (MVOs).

Therefore, the overall number ofMVOs of amethod for com-
puting the solution up to a fixed time T and using a time step
size Δt can be expressed as:

Nop = #MVOs
T

Δt
= #MOVs

Δt
T ,

where the value of T can be disregarded when comparing
the methods since it remains constant within a numerical
experiment.

Memory consumption becomes a critical factor when
solving the three-dimensional wave equation for seismic
imaging applications. The primary concern is for the inverse
problem, where the solution for each time stepmust be stored
to be accessed later. Therefore, the number of time steps
required for each method

Nmem = T

Δt
,

is also an important variable that we will take into account
afterward.

4 Analysis on homogeneous media

A common challenge arises when utilizing finite difference
methods to solve wave equations due to numerical dispersion
and dissipation. Numerical dispersion occurs when phase
velocities depend on the frequency, leading to distortions
in wave signals. On the other hand, numerical dissipation is
associated with wave amplitude and is responsible for the
emergence of high-frequency waves with small amplitudes
in finite difference methods (Section 5.1 of Strikwerda [53]).

Since the continuous wave equation is non-dispersive and
non-dissipative, it is essential to ensure that the numerical
methods used to solve it do not introduce excessive dispersion
and dissipation. In seismic imaging problems, these issues
can lead to significant inaccuracies in estimating the velocity
field. Therefore, special attentionmust be given to identifying
and mitigating these errors.

In this section, we conduct a comparative analysis of the
methods introduced in Section 3 within the context of a
homogeneous velocity field and a single wave signal. We
focus on evaluating their dispersion and dissipation errors
and examining how these errors depend on the choice of
time-step size.

4.1 Numerical dispersion and dissipation by Fourier
transform

Our analysis investigates numerical dispersion and dis-
sipation by quantifying variations in phase velocities of
numerical approximations concerning a reference solution.
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Fig. 2 Snapshots of the
reference solution at times
t = 0.6s and T = 1.3s within
the homogeneous medium
Ω = [0km, 6km]× [0km, 5km].
The Ricker signal source
position (blue dot) and the
receiver location (black square)
are highlighted. During the time
interval t ∈ [0.6, 1.3]s, the front
wave propagates through the
receiver location

To achieve this, we conduct a comparison in the frequency
domain and estimate velocity changes for each frequency.
For this analysis, a Fourier transform is applied to the solu-
tion, consisting of a single signal of a Ricker wavelet [24].
Consequently, we consider a homogeneous medium with a
source point and a receiver (a spatial positionwhere the signal
is recorded over time).

Let Fappr(ω) and F ref(ω) denote the Fourier transforms
of the approximated and reference signals, respectively, with
ω representing the frequency. Thus, we establish the relation-
ship as follows:

F ref(ω) = ek(ω)+il(ω)Fappr(ω),

where the real functions k(ω) and l(ω) account for the numer-
ical dissipation and dispersion errors, respectively, present in
the approximated solution.

It is important to note that minimizing dissipation and dis-
persion errors hinges upon the extent to which the functions
k(ω) and l(ω) approaches zero. As the numerical solution is
computed at a finite number of time instants,ω is also limited
to a finite range. Then, we calculate the mean of the absolute
values of k(ω) and l(ω), which can be considered an approx-
imation of the integral of their absolute values. Hereafter, we
refer to these metrics as the dissipation and dispersion error.
Furthermore, to mitigate potential numerical errors arising
from divisions by small quantities during the computation
of dispersion and dissipation errors, we exclusively consider
frequencies where the amplitudes in the reference or approx-
imated solutions surpass 1% of the peak amplitude of the
reference solution.

In the next section, we will outline the numerical features
of the Ricker signal experiment. Following that, in the subse-
quent two sections, we will apply the criteria discussed here
to assess the numerical dissipation and dispersion errors.

4.2 Single signal experiment

The numerical solutions for wave propagation equations are
computed in the homogeneous medium Ω = [0km, 6km] ×
[0km, 5km], with a velocity c = 3km/s. A Ricker source

is placed at position (3km, 4.99km) (with a delay of t0 =
0.18s), and a receiver is positioned at (3km, 2.5km). The time
integration is carried out until T = 1.3s without applying
any absorbing boundary conditions, as the reflections at the
boundary have not yet reached the receiver by the final time.
The spatial discretization size used for numerical solutions
of the methods is Δx = 10m, while the reference solution
is computed with Δx = 2.5m and Δt = 0.104ms using the
RK9-7 scheme.

We are mainly interested in the largest time step allowed
such that the error of the methods is under a fixed threshold.
However, to ensure uniform wave sampling of the numerical
approximations at the receiver, we use larger time steps up
to the point when the wave closely approaches the receiver
(t = 0.6s). Then, a uniform Δt = 0.417ms is employed
until the final time T = 1.3s is reached. Figure 2 displays
the homogeneous medium with the source and the receiver
positions and the snapshots of the reference solution at times
t = 0.6s and T = 1.3s.

Although our primary focus lies in evaluating the time
error of the methods, it is essential to acknowledge the
influence of spatial discretization on numerical accuracy. To
account for this spatial effect, convergence, dispersion, and
dissipation are computed for all methods with a small time-
step, Δt = 0.417ms (see Fig. 10 in Appendix A.2). The

Fig. 3 Dependence ofΔtmax on the approximation degree of the numer-
ical scheme. A higher number of stages leads to an increase in the
maximum allowable time stepwithout significantly increasing the num-
ber of computations
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Fig. 4 Variation of Δtmax (left)
and Ndisp

op (right) concerning the
numerical scheme and the
number of stages utilized,
according to the numerical
dispersion error for a Ricker
source peak frequency of
fM = 15Hz. Generally, a higher
number of stages leads to an
increase in the maximum
allowable time step size without
significantly increasing the
number of computations. * Here
we neglect the computational
complexity of creating the
Krylov subspaces

minimum convergence, dispersion, and dissipation errors
obtained from this computation serve as an estimation of the
spatial effect. Then, we determine the maximum Δt allow-
able for the methods such that the time error remains less or
equal to 50% of the spatial error.

For this experiment, the approximation error due to the
spatial discretization is approximately 3.9 ·10−6 (see Fig. 10
in Section A.2). Based on this, we determine Δtmax as the
maximum Δt such that the approximation error is less or
equal to Err = 5.9 · 10−6. Then, the convergence can be
analyzedby investigating the signal error at a specific receiver
location (3km, 2.5km). It becomes clear that an increase in
the number of stages leads to an increase inΔtmax (see Fig. 3).

Referring to Fig. 3, it can be observed that the Krylov
method displays a highly oscillatory pattern concerning its
associated Δtmax. Intriguingly, this pattern reaches its local
peak values when the subspace dimension is an odd num-
ber. The general behavior of the methods convergence is not
sensible to the cutting point of the error threshold, and for
variations of Err = 5.9 · 10−6, they remain valid. So, we

expect a similar behavior when studying the dispersion and
dissipation.

4.3 Dispersion results

The dispersion error arising from spatial discretization is
estimated as 0.002. Consequently, we permit for the time
integrator methods an error threshold of 1.5× higher, equat-
ing to a maximum allowable dispersion error of 0.003. Then,
we search for Δtmax such that the dispersion error remains
below this limit.

In addition to Δtmax, we introduce a computational cost
measure denoted as Ndisp

op , similar to the ideas of Section 3.3,
defined as:

Ndisp
op = # MVOs

Δtmax
.

Based on Fig. 4, the Leap-frog algorithm is approximately
two times faster than the other schemes but requires small

Fig. 5 Variation of Δtmax (left)
and Ndisp

op (right) concerning the
numerical scheme and the
number of stages utilized,
according to the numerical
dissipation error for a Ricker
source peak frequency of
fM = 15Hz. Generally, a higher
number of stages leads to an
increase in the maximum
allowable time step size without
significantly increasing the
number of computations. * Here
we neglect the computational
complexity of creating the
Krylov subspaces
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time steps. On the other hand, the explicit exponential meth-
ods exhibit an increase in their maximum time step as the
number of stages used rises, without a significant increase
in the number of matrix-vector operations required. Interest-
ingly, the peak values of the Krylov methods for the largest
Δt and the lower Ndisp

op are consistently for the odd numbers
of the subspace dimension Fig. 4.

To ensure the robustness of our analysis, we reproduce
the previous results in Appendix A.2.1 using various peak
frequencies of the Ricker source since wave frequencies
influence dispersion.

4.4 Dissipation results

Similar to the previous section, we estimate the minimum
dispersion error, independent of the time integrator used. The
minimum dissipation error is approximately 2.4·10−7. Thus,
we once again compute the maximum time-step,Δtmax, such
that the dispersion error remains below 3.6 · 10−7. Besides
of Δtmax, we define the computational cost measure as

Ndiss
op = # MVOs

Δtmax
,

similar to convergence and dispersion.
In Fig. 5, a similar trend is observed with the dispersion

error, except that the performance of the exponential integra-
tor is better in relation to the Leap-frog when comparing the
dissipation error. Notably, the high-order methods display an
increase in the time-step size with the number of stages used
without significantly increasing the number of matrix-vector
operations required.

As with the numerical dispersion, we reproduce the
experiments for different Ricker source peak frequencies in
Appendix (Section A.2.2).

5 Analysis on realistic seismic models

In this section, we describe the numerical experiments we
will use to compare the accuracy of the approximations of
the different methods. For comparison, we generated a ref-
erence solution using the RK9-7 scheme with a finer grid
(Δx = 5m) and then estimated the error for each method
using various time step sizes. To ensure a robust accuracy
assessment, we employ two procedures. First, we compare
the approximated solution across the entire physical space
(excluding the PML domain) at a specific time instant. Sec-
ond, we compare the seismogram data of the solution values
at the upper boundary for all the simulation time. For each
error evaluation, we determine the maximum time step size,
Δtmax, that allows a scheme of a particular order to achieve a
solution accuracy below a predefined threshold with the least
number of MVOs. Additionally, we introduce an efficiency
measure and an indicator of memory utilization derived from
the number of MVOs andΔtmax, following the concepts out-
lined in Section 3.3.

5.1 Test cases

We consider four numerical scenarios with different velocity
fields (see Fig. 6). The first is a synthetic example of a het-
erogeneous mediumwith high contrast velocities and a sharp

Fig. 6 Velocity fields of the test
cases Corner Model, Santos
Basin, Marmousi, and
SEG/EAGE, used to study the
numerical convergence
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Table 1 Parameters of the four
numerical simulations
considered in this paper

Test cases Corner Model Santos Basin

Domain dimensions Ω = [0km, 4km] × [0km, 4km] Ω = [0km, 12km] × [2km, 6.4km]
Simulation time T = 1.1s T = 1.5s

Source position (2km, 0.02km) (6km, 2.02km)

PML thickness (δ) 1.0km 0.8km

Test cases Marmousi SEG/EAGE

Domain dimensions Ω = [2km, 8km] × [0km, 3.5km] Ω = [2km, 11km] × [0km, 3.5km]
Simulation time T = 1.5s T = 2s

Source position (5km, 0.02km) (6.5km, 0.02km)

PML thickness (δ) 0.8km 0.8km

corner. The second is a 2D slice of the velocity field of the
Santos Basin1 oil and gas exploration region. A 2D portion
of Marmousi velocity field is the third example, and the final
test is the 2D SEG/EAGE synthetic model.

In all the examples, we include a source and an arrange-
ment of receivers near the surface of the medium. The
specification of this construct and other parameters of the
numerical simulations are specified in Table 1.

We save the solution at the upper boundary at each simu-
lated time instant to construct the seismogram.We use a time
span twice as long as specified in each experiment outlined
in Table 1 to allow the reflected waves to reach the surface.

5.2 Maximum time-step

We need to calculate the maximum allowable time step,
denoted as Δtmax, for all time integration schemes. We ini-
tially consider the numerical error inherent to the spatial dis-
cretization in each numerical experiment (see Appendix A.3)
since this error is independent of the time integrationmethod.
Next, we employ a tolerance level equivalent to 150% of
the spatial discretization error in each experiment. Finally.
we use that tolerance to compute the value of Δtmax for the
numerical schemes described in Section 3.

We consider a spatial-step size of Δx = 10m to com-
pute the approximated solutions mentioned before. Figures 7
and 8 show the allowed Δtmax by all the methods for the
numerical tests Corner Model, Santos Basin, Marmousi, and
SEG/EAGE.

Figure 7 presents the maximum time step, Δtmax, con-
sidering the spatial error of the solution at a time instant.
Generally, when the approximation degree increases, we
observe an increment in the allowed Δtmax. Moreover, the
Krylov subspace approximation exhibits the largest time
steps among the studied methods, followed by the other
high-order methods. In contrast, low-order methods such as
Leap-frog and RK3-2 require smaller time steps.

1 A typical velocity field of Santos Basin region, in Brazil.

The determination of Δtmax based on the seismogram
data is illustrated in Fig. 8. Similar to Fig. 7, an increase in
the number of stages leads to a higher maximum time step.
Notably, the Krylov subspace method consistently demon-
strates the highestΔtmax values, followed by other high-order
methods.

Based on the insights gained from Figs. 7 and 8, we can
conclude that the choice between using the error of the solu-
tion at a particular time instant or the seismogram data leads
to similar values of Δtmax for the methods. Therefore, for
the sake of simplicity, we estimate Δtmax with the error of
the approximation in the physical domain at a specific time
instant (as illustrated in Fig. 7). Next, we estimate the compu-
tational efficiency and memory consumption of each method
using the concepts of Section 3.3.

5.3 Computational efficiency andmemory
consumption

From the previous section, we concluded that using amethod
with a large number of stages allows an increase in the max-
imum time step such that we have a solution with good
accuracy. However, it is unclear if increasing the number
of stages to use a largerΔt reduces the number of operations
or how it helps in utilizing the memory. To answer this ques-
tion, we apply the ideas discussed in Section 3.3 and define
the measure of computational efficiency

NΔt
op = # MVOs

Δtmax
,

and the indicator of memory consumption to store results for
a backward propagation

NΔt
mem = T

Δtmax
,

where T is the simulation time defined by Table 1, for each
numerical experiment.

123



Computational Geosciences (2024) 28:1349–1369 1359

Fig. 7 Snapshots of the
reference solution for Corner
Model, Santos Basin, Marmousi,
and SEG/EAGE numerical tests
(left column), and the Δtmax of
each method such that the error
with the reference solution is
under a fixed threshold (right
column). An increase in the
number of stages of the method
leads to a larger Δtmax
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Fig. 8 Seismogram of the
reference solution for Corner
Model, Santos Basin,
Marmousi, and SEG/EAGE
numerical tests (left column),
and the corresponding Δtmax of
each method, ensuring the error
remains below a fixed threshold
(right column). An increase in
the number of stages of the
method leads to a larger Δtmax
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Figure 9 illustrates the number of MVOs and the mem-
ory usage for all the methods when solving the Marmousi
numerical example. The Leap-frog algorithm proves the
most efficient among the tested methods. However, in terms
of memory utilization, this method requires a substantial
amount of memory. On the other hand, among the high-order
methods, the Krylov subspace approximations demonstrate
the best performance, even comparable to the Leap-Frog
scheme. However, we would like to point out that we are
using a simplified model that doesn’t consider the creation of
the Krylov subspaces. Nevertheless, we observe a significant
decrease in the number of stored vectors for high-ordermeth-
ods in general. Additionally, we notice that further increases
in the approximation degree have an attenuated effect in
reducing memory utilization, which is negligible for degrees
larger than 20.

We observed similar behavior in the other numerical
tests, and their corresponding graphs can be found in
Appendix A.3.1.

6 Discussion

In this paper, we have implemented seven time-integration
schemes, consisting of three arbitrary-order schemes based
on exponential integrators and four classical low-order
schemes. These algorithms have been compared through
various numerical accuracy metrics, including stability, dis-
persion, and convergence.We have also studied the computa-
tional cost and memory requirements for each method across
different approximation degrees.

The stability and dispersion analyses were conducted
within a homogeneous domain by analyzing the Fourier
transform of a singlewave generated by aRicker wavelet.We
observed that the high-order methods were capable of using
larger time steps as the polynomial degree increased. In gen-
eral, we found that the Leap-frog method, although requiring
smaller time steps, outperformed the high-order methods.

Yet, when considering the dissipation error, the high-order
methods displayed competitiveness and even surpassed all
the low-order methods.

We conducted extensive tests to evaluate convergence
using four distinct velocity fields: three realistic fields and
one with sharp interfaces. We assessed the approximation
error both in the physical space at a specific time instant and
using seismogram data. Remarkably, our results proved con-
sistent and robust across both types of errors and all four
numerical experiments. Moreover, the Krylov method pre-
sented the largest time step size in all the tests, resulting in
the least amount of solution vectors required to save for the
inverse problem. As a drawback, the Krylov method requires
at each time instant to access as many vectors (with the
dimensions of the solution of thewave equations) as stages of
the method are used. This greatly hinders using the method
to solve the direct problem. In general, high approximation
degrees allowed for larger time steps, a finding that sig-
nificantly impacts the number of saved vectors needed for
solving the inverse problem. These results provide a differ-
ent strategy to approach the memory challenges associated
with the inverse problem.

This research addresses a gap in the existing literature,
as most previous studies on high-order methods have pre-
dominantly focused on the spatial dimension [13, 37, 59,
60]. Additionally, no prior work has comprehensively exam-
ined high-order exponential integrators in the context of the
wave equation applied to seismic imaging, scrutinizing the
performance across a wide range of approximation degrees.
Nonetheless, we acknowledge that our implementation of
high-order approximations using exponential integrators is
naive. Substantial enhancements are possible, particularly in
terms of implementing adaptive time-stepping strategies to
mitigate the hump phenomena associated with the matrix
exponential [42]. Indeed, adaptive algorithms have been pro-
posed, such as the KIOPS algorithm for the Krylov subspace
projections, which significantly outperforms the classical
Krylov method used in our study.

Fig. 9 Dependence of the
number of MVOs and amount of
stored solution vectors on the
polynomial degree for the
Marmousi numerical test. As the
number of stages increases, the
number of computations
stabilizes, and memory usage
decreases. * Here we neglect the
computational complexity of
creating the Krylov subspaces
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A Appendix

A.1 Approximations at the free-surface

We present the finite difference approximations of 8th order
for the required derivatives of the functions at the points near
the free surface. To simplify the notation, we define ui =
u(x,−iΔx), and wi = wy

(
x,−(i + 1

2 )Δx
)
. Since we are

considering a uniform grid, we have that Δy = Δx , and so,
only Δx will be used.

∂2u

∂ y2
(x, 0) ≈

(
−3144919

352800
u0 + 16u1 − 14u2 + 112

9
u3 − 35

4
u4

+112

25
u5 − 14

9
u6 + 16

49
u7 − 1

32
u8

)
1

Δx2
,

∂2u

∂ y2
(x, −Δx) ≈

(
271343

156800
u0 − 1991

630
u1 + 57

40
u2 + 13

60
u3 − 109

288
u4

+ 6

25
u5 − 11

120
u6 + 179

8820
u7 − 9

4480
u8

)
1

Δx2
,

∂2u

∂ y2
(x, −2Δx) ≈

(
− 18519

78400
u0 + 58

35
u1 − 251

90
u2 + 22

15
u3 − 1

16
u4
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225
u5 + 1
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u6 − 2
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u7 + 17

20160
u8

)
1

Δx2
,

∂2u

∂ y2
(x,−3Δx) ≈

(
74801

1411200
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)
≈
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3763200
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15360
u1 + 4259

15360
u2 − 1103
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)
≈

(
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3763200
u0 + 6297
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u7

)
1

Δx
,

A.2 Homogeneousmedium
This section complements the results in Section 4. First,
we show the convergence, dispersion, and dissipation errors
associatedwith the eighth-order spatial discretization scheme
using Δx = 10m (Fig. 10). Additionally, we present how
varying the peak frequencies as fM = 10, 15, 20, 25,
impact the maximum allowable time-step Δtmax and the
number of matrix-vector operations (MVOs) for different
schemes and approximation degrees.

Fig. 10 Convergence,
dispersion, and dissipation
errors using the time-step
Δt = Δx

8c for different
numerical methods, with a peak
frequency of fM = 15Hz. The
approximation order does not
matter, since there is an error
associated to the spatial
discretization
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A.2.1 Dispersion results

From Fig. 11, we perceive that the general behavior is
maintained independent of the peak frequencies.With the dif-

ference that when the peak frequency increases, the results
for the Krylov method are more oscillatory, and the high-

Fig. 11 Maximum time step
(Δtmax) while controlling the
time dispersion error of each
method to be below 50% of the
spatial dispersion error
concerning different peak
frequencies of the Ricker
wavelet. A grater number of
stages generally allows larger
time steps

Fig. 12 Dependence of the
number of matrix-vector
operations and the maximum
time-step required to compute
the solution on the polynomial
degree, considering different
peak frequencies. While
increasing the number of stages
generally leads to a slight
increment in computations. *
Here we neglect the
computational complexity of
creating the Krylov subspaces
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degree approximations using Faber polynomials suffer from
more round-off errors.

In Fig. 12, we still observe that the Leap-frog algorithm
requires the least amount ofMVOs.TheFAandHORKmeth-
ods share a similar number of computations independent of
the peak frequency.

A.2.2 Dissipation results

A similar trend of Fig. 11 is observed in Fig. 13, as with
the dispersion error. The Krylov method still has the worst
performance for the different peak frequencies. However, it
is noteworthy that the RK9-7 method (red triangle) displays
an even better performance concerning the dissipation error.

Fig. 13 Maximum time step
such that the time dissipation
error of each method is less than
50% of the spatial dispersion
error for different peak
frequencies of the Ricker
wavelet. In general, more stages
allow larger time steps, except
for the Krylov method, where
Δtmax reach a limit

Fig. 14 Dependence on the
polynomial degree of the
number of matrix-vector
operations by maximum
time-step required to compute
the solution for different peak
frequencies. When the number
of stages increases, the number
of computations increases
slightly. * Here we neglect the
computational complexity of
creating the Krylov subspaces
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Regarding computational efficiency in the analysis of
the dispersion error, the RK9-7 scheme still maintains an
efficient computational performance. The FA and HORK
exhibit similar behavior among the high-order methods, with
a decline in efficiency for high-order Faber polynomials
as the peak frequency increases. Nonetheless, the Krylov
method exhibits the best performance in general, but with
a very marked oscillatory behavior (Fig. 14).

A.3 Convergence and computational efficiency

In this section, we complement the results of the numerical
experiments of Section 5. First, we show the error graphics

Table 2 Numerical error at a time instant in the physical domain pro-
duced by the spatial discretization

Numerical experiment Spatial error Error tolerance

Corner Model 2.02 · 10−7 3.03 · 10−7

Santos Basin 5.55 · 10−7 8.33 · 10−7

Marmousi 6.62 · 10−7 9.93 · 10−7

SEG/EAGE 8.65 · 10−7 1.3 · 10−6

using the minimum time-step of Δt = Δx
8cmax

, where cmax is
the mediummaximum velocity. These graphs account for all
the methods discussed in Section 3 and several approxima-
tion degrees for the high-order schemes. Following that, we
present the graphics of the estimation of Δtmax, the compu-
tational efficiency, and the memory utilization.

Based on Fig. 15, we observe an approximation error in all
the numerical examples that do not decrease with the order
of the method or with the selected method. This error is inde-
pendent of the time integration strategy and is produced by
the spatial discretization operator. While the dependence of
the spatial error on the numerical experiment is weak, it is
important to estimate it accurately for a reliable computation
of Δmax, as quantified in Table 2.

Table 3 Numerical error utilizing the seismogram data produced by
the spatial discretization

Numerical experiment Seismogram error Error tolerance

Corner Model 2.92 · 10−7 4.38 · 10−7

Santos Basin 2.65 · 10−6 3.97 · 10−6

Marmousi 1.3 · 10−6 1.95 · 10−6

SEG/EAGE 4.2 · 10−6 6.3 · 10−6

Fig. 15 Error at a time instant in
the physical space achieved by
each time integrator and several
approximation degrees, for all
the numerical experiments
described in Section 5.1, using a
time step size of Δt = Δx

8cmax
.

Regardless of the order of the
method, there is an inferior limit
for the error due to spatial
discretization step-size size and
scheme
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Table 2 contains two key columns of information. The first
column, labeled “Spatial error”, represents the error stem-
ming from the spatial discretization. Meanwhile, the second
column, labeled “Error tolerance”, accounts for the error
tolerance of 150% of the spatial error we defined for the
numerical experiment.

For the minimum error using the seismogram data, we
have the respective error graphics and tolerance for each
numerical test (Fig. 16). Additionally, Table 3 summarizes
the error values.

Fig. 16 Error using the seismogram data achieved by each time integra-
tor and several approximation degrees, for all the numerical experiments

described in Section 5.1, using a time step size of Δt = Δx
8cmax

. Regard-
less of the order of the method, there is an inferior limit for the error
due to spatial discretization step-size size and scheme
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A.3.1 Computational efficiency andmemory consumption

Figure 17 displays each time the integrator’s computational
cost and memory utilization for the numerical tests Cor-
ner Model, Santos Basin, and SEG/EAGE. Although there
are some variations between the experiments, the general
behavior remains consistent.High-ordermethods require sig-
nificantly less memory; in some cases, they are competitive
with low-order methods, such as the Leap-Frog scheme.

The relationship between the number of MVOs and the
quantity of stored solution vectors concerning the polynomial
degree is illustrated for the Corner Model (first line), Santos
Basin (second line), and SEG/EAGE (third line) numerical
tests. As the number of stages increases, there is a stabi-

lization in the number of computations, and memory usage
decreases.
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Fig. 17 Dependence of the
number of MVOs and amount of
stored solution vectors on the
polynomial degree, for the
Corner Model (first line), Santos
Basin (second line), and
SEG/EAGE (third line)
numerical tests. As the number
of stages increases, the number
of computations stabilizes, and
memory usage decreases. *
Here we neglect the
computational complexity of
creating the Krylov subspaces
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