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Abstract: Candida albicans is a commensal fungus in healthy humans that causes infection in im-
munocompromised individuals through the secretion of several virulence factors. The successful
establishment of infection is owing to elaborate strategies to cope with defensive molecules secreted
by the host, including responses toward oxidative stress. Extracellular vesicle (EV) release is con-
sidered an alternative to the biomolecule secretory mechanism that favors fungal interactions with
the host cells. During candidiasis establishment, the host environment becomes oxidative, and it
impacts EV release and cargo. To simulate the host oxidative environment, we added menadione
(an oxidative stress inducer) to the culture medium, and we explored C. albicans EV metabolites by
metabolomics analysis. This study characterized lipidic molecules transported to an extracellular
milieu by C. albicans after menadione exposure. Through Liquid Chromatography coupled with Mass
Spectrometry (LC-MS) analyses, we identified biomolecules transported by EVs and supernatant.
The identified molecules are related to several biological processes, such as glycerophospholipid
and sphingolipid pathways, which may act at different levels by tuning compound production in
accordance with cell requirements that favor a myriad of adaptive responses. Taken together, our
results provide new insights into the role of EVs in fungal biology and host–pathogen interactions.

Keywords: Candida albicans; extracellular vesicles; virulence factor; metabolomics; biomolecules

1. Introduction

Fungal infections are responsible for over 1.6 million deaths per year [1,2]. Candida spp.
are the main etiologic agents of systemic fungal infections, with C. albicans being the most
prevalent species [3]. C. albicans is a commensal and dimorphic fungus that may cause
infection in immunocompromised individuals [4,5].

C. albicans infection is characterized by morphogenetic transitions, in which sapro-
phytic fungal cells convert themselves to parasitic hyphae [4,6]. This transition process,
associated with the employment of several virulence factors, allows the establishment of
C. albicans in the host and the development of candidiasis. As an immune defense response
to invasion, phagocytes attack several reactive chemicals in an attempt to kill invading
microorganisms [7,8]. The production of Reactive Oxygen Species (ROS) by phagocytes re-
sults in oxidative stress, stimulating a respiratory burst [8,9]. In host–pathogen interactions
and as an adaptive response, C. albicans employs biomolecules and metabolic pathways to
attenuate oxidative damage [10,11].

Biomolecule secretory mechanisms are associated with virulence events that lead to
the breakdown of physical barriers, host cell adhesion, and immune defense evasion. Taken
together, these events allow for the establishment of an infection [2,6,12,13]. Identification
of these virulence-associated molecules is a key to understanding pathogenic processes
and establishing strategies to design new drugs [2,6].
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Extracellular vesicles (EVs) are spherical bilayered compartments secreted by all live
cells [12,14]. EV production was reported in several fungal species, such as Aspergillus
flavus [15], Aspergillus fumigatus [16], C. albicans [12], Candida parapsilosis [12], Cryptococ-
cus gattii [17], Histoplasma capsulatum [12], Malassezia sympodialis [18], Sporothrix brasilien-
sis [19], Sporothrix schenckii [12], Saccharomyces cerevisiae [20], Paracoccidioides brasiliensis [21],
Trichophyton interdigitale [22], and several other fungi. EVs are composed of proteins,
polysaccharides, lipids, RNA, and pigments, and these structures may be associated with
pathogenesis during fungal infection [6,12,13,23–25]. The C. albicans EVs play an essential
role during candidiasis establishment, and the virulence-associated molecules have been
identified [6,12,24,26]. These systematic characterizations allow for a better understanding
of fungal physiopathology [15]. However, the molecules induced by oxidative stress have
not yet been characterized.

During oxidative stress, the ROS overproduction triggers damage to several cellular
components and process [9]. Specifically, lipids are susceptible to lipids peroxidation by
ROS attack, leading to structural modifications, which affects membrane integrity [27,28].
Since the EVs may be plasma-membrane-derived, and lipids play a crucial role in EV
biogenesis [29,30], any plasma membrane injury may alter EV production. EV cargo and
production reflects the cell state [31]. The oxidative stress response alters the fungal cells’
metabolism [9] and may also affect the EVs’ release and content [32]. The impact of oxida-
tive stress over Candida albicans extracellular vesicles is still poorly understood. This study
reports the presence of metabolites in C. albicans EVs after menadione exposure. We charac-
terized the metabolites using Liquid Chromatography coupled with Mass Spectrometry
(LC-MS) analyses. The identified molecules may be a component of EVs’ membrane and
associated with oxidative stress response.

2. Materials and Methods
2.1. Growth Conditions

C. albicans strain ATCC 64548 was used in all experiments performed in this study.
Yeast cells were cultivated in Sabouraud solid medium (Oxoid, Basingstoke, UK) for 72 h
at 30 ◦C, as previously described [6].

2.2. Susceptibility Test

The susceptibility of C. albicans strain ATCC 64548 towards menadione was evaluated
by the determination of Minimum Inhibitory Concentrations (MIC), as described by the
Clinical Laboratory Standard Institute [33]. Menadione (Sigma-Aldrich, St. Louis, MO,
USA) was tested in the range of 2500 uM to 4.8 uM. The microtiter plates were incubated
for 48 h at 30 ◦C. Then, MIC100 was determined as the lowest concentration that inhibited
the growth of C. albicans. The assay was performed in three biological replicates. Then,
we determined the minimal fungicidal concentration (MFC) by inoculating the MIC100
concentration and two higher concentrations on Sabouraud plates at 30 ◦C for 48 h.

2.3. Extracellular Vesicle Isolation, Characterization, and Quantification

EVs were isolated as previously described [34] with slight modifications. We com-
pared the two conditions (control and oxidative stress conditions). Under the oxidative
stress condition, we added 46.8 µM of menadione to 20 mL Sabouraud solid medium.
Sabouraud medium alone was used as the control. Ten isolated colonies were inoculated
in 10 mL Sabouraud dextrose liquid medium (Oxoid, Basingstoke, UK) and cultivated
under agitation (200 rpm) at 30 ◦C for 48 h. The fungal cells were counted and calculated
to a final concentration of 3.5 × 106 cells/mL, and they were spread onto Sabouraud solid
medium and incubated for 24 h at 30 ◦C [34]. Yeast cells were harvested from solid medium
and transferred to a centrifuge tube containing 30 mL of sterile phosphate-buffered saline.
Fungal cells were separated from the supernatant using centrifugation at 5000× g for
15 min. The supernatant was harvested and centrifuged at 15,000× g for 15 min. The
resulting supernatant was concentrated using an Amicon ultrafiltration system (100 kDa
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cutoff). The liquid (EV-free) from the ultrafiltration system was collected and stored at 4 ◦C.
The concentrate was then centrifuged again at 15,000× g for 15 min. The EV suspension
was ultracentrifuged at 100,000× g for 60 min. The pellet (only EVs) was resuspended
in 1 mL sterile nuclease-free water (Sigma Aldrich). All steps were conducted at 4 ◦C.
Characterization and quantification of EV preparation was performed using nanoparticle
tracking analysis (NTA) in NanoSight NS300 (Malvern Instruments, Malvern, UK), as
previously described [22]. The experiments were performed in triplicate.

2.4. Liquid Chromatography–Mass Spectrometry (LC-MS) Analyses

The metabolites in the EV and supernatant samples were extracted with methanol
in an ultrasonic bath for 40 min and further dried under inert conditions, as previously
described [35]. The dried extracts were diluted in 100 µL methanol, filtered, and loaded in
a mass spectrometer. UHPLC-MS/MS analyses were performed using a Thermo Scientific
QExactive®hybrid Quadrupole-Orbitrap mass spectrometer. The chromatographic condi-
tions were as follows: as the stationary phase, we used a Thermo Scientific Accucore C18
2.6 µm (2.1 mm × 100 mm) column. Mobile phases were 0.1% (v/v) formic acid in water (A)
and acetonitrile (B). Eluent profile (A:B) 0–10 min, gradient from 95:5 up to 2:98; held for
5 min; 15–16.2 min gradient up to 95:5; held for 8.8 min. The flow rate was 0.2 mL min−1

with an injection volume of 3 µL. For the Mass Spectrometry analysis, we used electrospray
ionization in positive mode, the capillary voltage at +3.5 kV; the capillary temperature at
250 ◦C; S-lens of 50 V and m/z range of 133.40–2000.00. MS/MS was performed using
normalized collision energy (NCE) of 30 eV, and 5 precursors per cycle were selected.
Stationary phase: operation and spectra analysis were conducted using Xcalibur software
(version 3.0.63) developed by Thermo Fisher Scientific (Waltham, MA, USA).

2.5. Molecular Networking and Metabolomic Analyses

The metadata and data from Xcalibur software were converted to .mzML using the
MSConvert software (http://proteowizard.sourceforge.net (accessed on 1 October 2020).
A molecular network for C. albicans (EVs and supernatant metabolites) was created using
the online workflow (https://ccms-ucsd.github.io/GNPSDocumentation/networking/
(accessed on 1 October 2020) on the Global Natural Products Social (GNPS) molecular
networking website platform (http://gnps.ucsd.edu) using the Classical Molecular Net-
working (CMN) tool. For CMN, the data were filtered by removing all MS/MS fragment
ions within ±17 Da of precursor m/z. MS/MS spectra were window-filtered by choosing
only the top six fragment ions in the ±50 Da window throughout the spectrum. The
precursor ion mass tolerance was set to 0.02 Da and an MS/MS fragment ion tolerance
of 0.02 Da. A network was then created where edges were filtered to have a cosine score
above 0.5 and more than five matched peaks. Furthermore, the edges between two nodes
were retained in the network, if and only if each of the nodes appeared in each of the
top 10 most similar nodes. Finally, the maximum size of a molecular family was set to
100, and the lowest scoring edges were removed from the molecular families until the
molecular family size was below this threshold. The spectra in the network were then
searched against the GNPS spectral libraries. The library spectra were filtered in the same
manner as for the input data. All matches kept between network spectra and library spectra
were required to have a score above 0.5 and at least 5 matched peaks [36]. The resulting
molecular network is available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=92
af3c25e2d147c5af0e619b52bb0667 (accessed on 1 October 2020). Other studies using Net-
work Annotation Propagation (NAP) and MolNetEnhancer tools were carried out on the
GNPS platform. The nodes (compounds) originating from Sabouraud media and solvent
analyses (methanol) were excluded from the original network to enable visualization of
metabolites derived from control and oxidative stress conditions [37]. Finally, the final
spectral network (.cys) was uploaded to Cytoscape 3.8 to obtain better visualization and
editing. To improve the data visualization, GNPS Dashboard was used in ‘feature finding’
process using MZMine 2. The parameters used were precursor tolerance: 10 ppm; noise

http://proteowizard.sourceforge.net
https://ccms-ucsd.github.io/GNPSDocumentation/networking/
http://gnps.ucsd.edu
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=92af3c25e2d147c5af0e619b52bb0667
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=92af3c25e2d147c5af0e619b52bb0667
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level: 10 × 104; minimum and maximum peak width: 0.05–1.5 min; and retention time
tolerance: 0.3 min. The quantification table data were submitted to MetaboAnalyst 5.0
(https://www.metaboanalyst.ca/ (accessed on 1 October 2020) to enhance univariate and
multivariate statistical analyses. Semiquantitative evaluations were performed based on
Feature-Based Molecular Networking (FBMN), according to the GNPS workflow (https:
//ccms-ucsd.github.io/GNPSDocumentation/feature-based/molecular/networking/ (ac-
cessed on 1 October 2020).

3. Results
3.1. C. albicans Extracellular Vesicle Profile

During the infection process, host cells use high levels of oxidative chemical com-
pounds to counteract fungal invasion. To mimic the oxidative stress environment in the
host milieu, we added menadione to Sabouraud medium (an oxidative stress condition)
and compared the EV metabolite content in this condition with the EV metabolite content
in Sabouraud medium (control). We inoculated the MIC100 (156 µM) in Sabouraud plates
and observed insignificant growth. We needed an expressive growth to isolate EVs, and for
that reason, we used MIC30 (46.8 µM).

We isolated and concentrated EVs from C. albicans yeast cells under control (with no
treatment) and oxidative stress conditions from C. albicans yeast cells. NTA analysis for
control revealed EV heterogeneous size ranging from 70 to 400 nm (Figure 1A), with an
average size of 136.4 nm (±58.5 nm) and mode diameter of approximately 100.3 nm. The
EVs under oxidative stress showed a different range size (36 to 294 nm), with an average of
160.6 nm (±51.6 nm) and a mode diameter of approximately 158.7 (Figure 1B). A screenshot
of C. albicans EVs was obtained from a video recording generated using the Nanosight
NS300 system (Figure 1C).
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3.2. Statistical and Molecular Networking Analyses in C. albicans EVs

Principal Component Analysis (PCA) of the comparison between metabolites pro-
duced under oxidative stress (EVs and supernatant) and control conditions (EVs, super-
natant, and culture media) was performed to evaluate the grouping tendencies. According
to the PCA, the samples did not form a distinct cluster. Both principal components (PC1
and PC2) were responsible for 33.7% of the total data variance and did not show a clear
separation between the main groups of control and samples under oxidative stress. For this
reason, Partial Least Square (discriminant analysis) (PLS-DA) (Figure 2) was performed.
The PLS-DA principal components were responsible for 31.11% of the total data variance
(16.8% for PC1 and 14.3% for PC2) and exhibited a clear separation between the conditions
evaluated. Discriminant analyses revealed validated parameters (p < 0.01, R2 = 0.99, and
Q2 = 0.71). The culture media control was performed to remove Sabouraud medium
interferents and show the particular behavior of culture control clusters. To analyze the
chemical composition (EVs and supernatant) under control and stress conditions, a classic
molecular network based on MS data was generated using the GNPS platform [37]. In both
conditions, Molecular Networking consisted of 2940 nodes, in which each node indicated
an MS spectrum. Some chemical families detected included sphingolipids and glycerophos-
pholipids, which were annotated by the spectral library. Other chemical superclasses were
also annotated, e.g., fatty acyls, steroids, benzene, and derivatives.
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3.3. Metabolites Annotation

During C. albicans infection, the fungus copes with defensive mechanisms triggered by
host cells, such as oxidative stress caused by phagocytes [9]. From the menadione MIC100
determination, we set the MIC30 concentration to be used for EV isolation to 46.8 µM of
menadione. During the isolation process, we hypothesized the occurrence of canonical
(transporter) and noncanonical (via EVs) metabolite secretions. For this reason, filtered
EVs were collected to investigate the possible presence of metabolites. To rule out any
interference from Sabouraud medium, the ions present in the control were subtracted
during LC-MS/MS analysis.

As we isolated C. albicans EVs under both conditions, we aimed to identify whether
metabolite content could be differentially produced by oxidative stress stimuli. Therefore,
metabolites were extracted from these EVs under both conditions and compared. EV
isolation yielded approximately 1010 EVs/mL (control) and 1011 EVs/mL (oxidative stress
conditions). The different yields obtained among the analyzed conditions were expected
because of the reduced yeast growth upon menadione exposure. We predefined MIC30
concentration of menadione exposure as a concentration to promote stress and, in the
meanwhile, to allow yeast growth enough for EV extraction for downstream application.
The purified EVs were further extracted, and their chemical composition was analyzed
by Liquid Chromatography–Mass Spectrometry (Figure S1). The data obtained were
submitted to the GNPS platform for metabolite annotation. Metabolite fragmentation
profiles were compared and annotated as hits in the GNPS database (Supplementary
material). Six metabolites were annotated in the network (Figure 3). The nodes represent
each chemical and the lines the similarity between them.
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Figure 3. Molecular network and chemical structure obtained for Candida albicans super-
natant/extracellular vesicles through LC-MS/MS analysis: A GNPS molecular network of six metabo-
lites were identified. The GNPS grouped the metabolites according to their structural functions,
percentage in supernatant or EVs, and their similarity. The glycerophospholipid compounds were
grouped in clusters (A–C,F), whereas the sphingolipids were grouped in clusters (D,E).

Compounds A–F (Table 1) were divided according to their metabolic functions: glyc-
erophospholipid metabolic pathways and sphingolipid biosynthesis. Compounds (A)
(Figure 3A) and (B) (Figure 3B) were identified in the supernatants of EV isolation. Regard-
ing compounds related to glycerophospholipid metabolism identified in the supernatant,
we detected the precursor ion [M + H]+ m/z 716.5220, annotated as 1-palmitoyl-2-linoleoyl-
glycero-3-phosphoethanolamine (A), present in control and oxidative stress conditions,
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which yielded the main fragments at m/z 575.5100, characteristic of phosphoethanolamine
moiety loss, and m/z 95.0860, both matching the spectral library on GNPS (Figure S2) [38].
Compound 1-palmitoyl-2-linoleoyl-glycerol (B) was induced under oxidative stress con-
ditions and annotated with the precursor ion [M + NH4]+ at m/z 610.5400. Most of the
main fragments of compound (B) matched the fragmentation patterns found in the GNPS
database (Figure S3). The product ions at m/z 313.27 and 337.27 correspond to the loss of
palmitic and linoleic acid [39], respectively.

Table 1. C. albicans metabolites identified and their metabolic pathways.

ID Compounds Ion
Formula

Experimental
m/z

Retention
Time (min)

Supernatant
or EVs

Control or Stress
Oxidative Condition Related Pathways

A 1-palmitoyl-2-linoleoyl-glycero-3-
phosphoethanolamine C39H74NO8P 716.5209 9.89 Supernatant

and EVs
Control and stress

oxidative condition
Glycerophospholipid

metabolism

B 1-palmitoyl-2-linoleoyl-glycerol C37H68O5 610.5399 15.94 Supernatant Stress oxidative
condition

Glycerophospholipid
metabolism

C 1-oleoyl-glycero-3-
phosphoethanolamine C23H46NO7P 480.3080 9.41 EVs Stress oxidative

condition
Glycerophospholipid

metabolism

D Dihydrosphingosine C18H39NO2 302.3050 7.94 EVs Control and stress
oxidative condition

Sphingolipids
metabolism

E Phytosphingosine C18H39NO3 318.3001 7.74 EVs Control and stress
oxidative condition

Sphingolipids
metabolism

F 1-oleoyl-glycero-3-
phosphocholine C26H52NO7P 522.3552 9.74 EVs Stress oxidative

condition
Glycerophospholipid

metabolism

In EVs under oxidative stress conditions, compound (C) was induced, and the precur-
sor ion [M + H]+ at m/z 480.3080 was annotated with high similarity to the spectral library
(Figure S4) of the metabolite 1-oleoyl-glycero-3-phosphoethanolamine (Figure 3C). The ion
at m/z 339.2910 is a major fragment that corresponds to dehydrated oleoyl (18:1) glycerol,
which was predicted by the HMDB database and previously described [40].

In both conditions, compounds (D) (Figure 3D) and (E) (Figure 3E) were identified in
EVs. Compound dihydrosphingosine (D) with a precursor ion at m/z [M + H]+ 302.3050.
(D) shows the ions at m/z 254.2850, 95.0860, 81.0710, and 60.0450 as the main fragments [41].
The loss of the moiety [H2NCHCH2OH]+ is known for compound (D) as the ion at m/z
60.0450 and the base peak according to the HMDB spectral and GNPS database (Figure
S5). In addition, the ion [M + H]+ at m/z 318.3000 was annotated in the GNPS database
(Figure S6) as phytosphingosine (E), and the MS/MS experiment yielded major fragments
at m/z 282.2780 and 60.0450, which corresponded to di-dehydration and to the fragment
[H2NCHCH2OH]+, as expected for compound (E) and experimentally found in the HMDB
database [42].

The metabolite 1-oleoyl-glycero-3-phosphocholine (F) (Figure 3F) was also induced
in EVs during oxidative stress and was annotated with the precursor ion [M + H]+ at m/z
522.350. MS/MS indicated the main fragments at m/z 86.10, 184.0730, and 104.1080, corre-
sponding to choline fragmentation, phosphocholine, and choline ions, respectively [43].
These fragments were related to the amino-phosphate moiety loss and the cleavage between
the oxygen–phosphorus bond, respectively, as can be seen in the spectral library in GNPS
(Figure S7) and predicted in the HMDB spectral database. Spectral matches are available in
the Supplementary Materials.

4. Discussion

Previously, we described the role of EVs during yeast-to-hypha transition and fungal
cell communication in C. albicans strain (ATCC 64548) [44]. Zang et al. measured ROS
production in the same strain [45]. Herein, we demonstrated that EVs from C. albicans
present different metabolite contents, according to environmental changes. The oxidative
stress condition was designed to simulate one of the events that occurs during the estab-
lishment of C. albicans infection. These changes were triggered by menadione addition
to mimic the overproduction of ROS caused by a phagocytic milieu [46]. Menadione (or
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vitamin K3) is a quinone class compound [47,48]. This compound has been used as a model
to study damage related to oxidative stress [47,48]. Menadione induced by the semiquinone
redox process stimulates ROS production [47,48]. High levels of ROS alter cellular redox
homeostasis [49]. Moreover, oxygen forms are highly harmful to cellular integrity, affecting
cell growth and physiological functions [46,50]. The yields of EVs were greater for Candida
albicans cells exposed to menadione (1011 EVs/mL) than control condition (1010 EVs/mL).
We attribute this behavior to yeast cell response to oxidative stress. The stress response
may regulate the vesicle traffic [51]. In this respect, we compared the EV metabolite content
under oxidative conditions with the EV metabolite content in the control condition (a
nonstress stimuli condition). We also collected the supernatant and evaluated the possible
presence of metabolites regardless of the EV loading molecules. EV content is regulated by
oxidative stress.

We suggest the possible metabolites release via canonical (transporter), noncanonical
(EVs), or both pathways in C. albicans. The presence of metabolites in supernatant and
in the EVs supports our hypothesis of canonical/noncanonical transport (Figure 4). The
traffic of fungal biomolecules is coordinated in response to environmental changes [52,53].
In addition, communication mediated by C. albicans EVs has been reported, demonstrating
the vital role of EVs in environmental stress.
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The presence of 1-palmitoyl-2-linoleoyl-glycero-3-phosphoethanolamine in the su-
pernatant and EVs under both conditions suggests that the release of these molecules is
independent of cell redox homeostasis. On the other hand, the high amount of ROS leads
to lipid peroxidation by a free radical chain reaction and may cause plasma membrane
injure, affecting its physical propriety and dynamism [9,32]. Some membrane polyun-
saturated fatty acids are the most susceptible to ROS attack [32]. Biomolecules react to
ROS exposure, and previous studies have reported the release of metabolites by fungi
during oxidative stress [54–56]. Furthermore, some fungal species try to avoid ROS attack
through glycerophospholipid hydrolysis [57], which may justify the presence of com-
pounds 1-palmitoyl-2-linoleoyl-glycerol, 1-oleoyl-glycero-3-phosphoethanolamine, and
1-oleoyl-glycero-3-phosphocholine in the supernatant and EVs from the menadione culture.
These glycerophospholipids are likely to be involved in oxidative stress pathways. Under
oxidative conditions, glycerophospholipids undergo structural modifications that affect the
membrane integrity [58]. In addition, our data corroborate the occurrence of metabolite
transport in other vias, as previously shown in A. fumigatus [59].

In yeasts, sphingolipid biosynthesis initiates with an enzymatic conjugation of ser-
ine and fatty acyl-CoA, yielding 3-ketodihydrosphingosine [60]. The next step produces
dihydrosphingosine (or sphinganine) dihydrosphingosine, which may be converted to
phytosphingosine through hydroxylation at carbon 4 [61]. The same mass fragment pattern
obtained in our data was previously described for dihydrosphingosine and phytosphin-
gosine in analyses of pathogenic strains of Candida albicans and Cryptococcus spp. [62,63].
Previous studies also evaluated the metabolome of C. albicans under different growth
conditions or exposed to antifungals and identified similar classes of metabolites, such as
glycerophospholipid metabolism and sphingolipid metabolism [62,64,65].

The compounds 1-oleoyl-glycero-3-phosphoethanolamine (Lyso-PE [18:1]) 1-oleoyl-glycero-
3-phosphoethanolamine and 1-oleoyl-glycero-3-phosphocholine (Lyso-PC [18:1]) may also be
related to glycerophospholipid pathways [66]. These compounds are classified as lysophos-
phatidylethanolamines (LysoPE) and lysophosphatidylcholines (LysoPC), respectively, and the
same mass fragment pattern obtained in our data was previously described for 1-oleoyl-glycero-
3-phosphoethanolamine and 1-oleoyl-glycero-3-phosphocholine [43]. Intermediates of these
pathways are the building blocks for most subcellular membranes [67]. A recent study iden-
tified LysoPE and LysoPC compounds in the pathogenic fungal Histoplasma capsulatum [68].
In addition, the characterization of glycerophospholipids and phospholipids in EV content
has been described for the pathogenic phase of Paracoccidioides brasiliensis, C. albicans, and
Candida auris [69,70]. The induction of these metabolites during oxidative stress in EVs may
reflect an imbalance in glycerophospholipid and phospholipid homeostasis caused by high
ROS levels [71,72]. Furthermore, some lysophospholipids are directly linked to leukocyte
activity and may act as virulence factors during infection [69,73,74]. A previous study
reported that the integrity of fungal EVs is crucial for transmitting virulence [17]. To ensure
cell-to-cell information delivery, EVs may be internalized by the acceptor cell; however,
these mechanisms are not completely characterized [44,75]. The exclusive presence of
LysoPC and LysoPE compounds in C. albicans EVs reflected the response to oxidative stress
caused by menadione, and C. albicans cells may take up these EVs, transmitting the oxida-
tive stress information. Accurate lipidomic analysis should be conducted in an attempt
to attribute the exact locale of the identified metabolites (EVs membrane or cargo). The
identified molecules have their particular pathways’ biosynthesis and may not participate
in central metabolism, which is involved in energy generation.

The EVs can assist in environmental sensing, showing alterations in their sorting of
molecules in accordance with cellular requirements [14], which was reinforced by our data,
highlighting the occurrence of specific metabolites after menadione exposure. Unveiling the
metabolites content within C. albicans EVs may be useful to generate more information about
the mechanisms underlying EV communication that may favor the fungal infection process.
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