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In the context of the usual calibration model, we consider the case in which the independent
variable is unobservable, but a pre-fixed value on its surrogate is available. Thus, considering
controlled variables and assuming that the measurement errors have equal variances we propose
a new calibration model. Likelihood-based methodology is used to estimate the model parameters
and the Fisher information matrix is used to construct a confidence interval for the unknown value
of the regressor variable. A simulation study is carried out to asses the effect of the measurement
error on the estimation of the parameter of interest. This new approach is illustrated with an example.
Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION where
In the first stage of a calibration problem, a pair of data n n n
o1 o 1 1 _ _

sample (x;, Y;),i = 1,2,...n is observed. In the second stage, = in, Y= o Yi, Sw= . Z(Xi —-X)Y;,-7)
it is observed one or more values, which are the responses i=1 i=1 =1
corresponding to a single unknown value of the regressor 1 o o1 ntk
variable, X,. The first and second stage equations of the usual S = n Z(x,- -%°, K= n Z Yoi

i=1 i=n+1

linear calibration model are defined, respectively, as

In Reference [1] an approximate expression is derived
for the variance of the estimator X, which is derived
through the propagation error law. Another approximation
for the variance of X, is given by the Fisher information

Yy=a+Bxi+e, i=1,2...,n (1.1)

Yo =a+BXo+e€, i=n+1,n+2,....n+k (12)

of 0= (a B, Xo,0%) which, after some length algebraic

It is considered the following assumptions: manipulations, it can be shown to be given by

® X1, Xp, ..., x, take fixed values, which are considered as true B
values. n+k kXo + nx kB 0
® ¢, 6, ..., 64 are independent and normally distributed 16) = 1 kXo+nx kX34+Y7 %2 kBXo 0 L5)
with mean 0 and variance 2. o? kB kBXo kB? 0
. 0 0 0 =5
The model parameters are o, 8, Xy and af and the main interest 20¢

is to estimate the quantity X,.

The maximun likelihood estimators of the usual calibration The maximum likelihood estimator of 6 = (&, B, Xo, 07)

model are given by has approximately normal distribution with mean 6 and
covariance matrix 1(#) "', when k = gn, g € Q" and n — oo.

Thus, the approximation of order n~! for the variance of X, is

. A Sy N Yo—a
a=Y - Bx, B= S r X, = OB ¢ (1.3) given by
, 1 n R - n+k Y V(X):a—z 1+1+()_(—X0)2 (1.6)
o, = ntk i§=1 (Yz —o— ,Bxi) + imZJrl(Yo,' - Y[)) (14) 1\A0 ‘32 A n 7}1&“ .

On the other hand, in Reference [2] the size k of the second

stageis considered fixed, so that expanding Xoin Taylor series
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around the point (¢, ) and ignoring terms of order less than
n~2, we can find the following approximations for the bias
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and variance of X, respectively:

(X — %)

Bias(X.) — 1.7
ias(Xo) np2S.. a7

o 021 1 (X—X0? 302
vk %L € 1.8
2( 0) ﬂz |:k + n + nSxx nkﬂszx] ( )

In order to construct a confidence interval for X,;, we
consider that

X0 - X
20770 PN, 1) (1.9)

V(Xo)

where V(X)) is the estimated variance computed according to
Equations (1.6) or (1.8). Hence, the approximated confidence
interval for X, with a confidence level (1 — «), is given by

(0= 2570 K0 +24/0(80) (1.10)

where z¢ is the quantile of order (1 — 5) of the standard
normal distribution.

The usual calibration problem has been discussed in
the literature for several decades (see References [2-7]).
An illustration of this model is presented for example in
Reference [8]. We can find a review of the literature on
statistical calibration in Reference [9], where some approaches
to the solution of the calibration problem are summarized.

This model encounters applications in different areas, but
it is not well suited in some instances as, for example, in
chemical analysis, where the preparation process of standard
solutions are subject to measurement error [1].

There exist some situations, as mentioned above, where one
is unable to observe x; directly. In this case, Reference [10]
defines two types of observations: controlled and uncontrolled.

In the uncontrolled situation, instead of observing x;, one
observes the sum

X,»:x,-—l—éi, i=1,...,}’l (111)

where §; is a (0, 02) random variable.

Assuming that x; is a unknown fixed constant, the model
defined by the classical linear regression Equations (1.1) and
(1.11) is named as functional model [11,12], while the model
defined by the Equations (1.1) and (1.11) with x; regarded as
random variable is called structural model [11,12]. On the
other hand, the model defined by (1.1), (1.2), and (1.11) is
called as the functional or structural calibration model if x; is
assumed as a fixed value or a random variable, respectively
[12].

The controlled observation is defined by a pre-fixed value X;
according to the experimenter convenience and a procedure
is established in order to attain the pre-fixed value. The
experiment gives the unobserved x; and it is such that

Xl':Xl'—(Si, i=1,...,n (112)

where §; is a (0, 0?) random variable. The model defined by
Equations (1.1) and (1.12) is known as Berkson regression
model [13]. The model defined by (1.1), (1.2), and (1.12)
has not been considered before in the measurement error

Copyright © 2007 John Wiley & Sons, Ltd.

literature and in this work it will be called as the controlled
calibration model.

In the functional and structural calibration model, the
regressor X; is random variable, whereas in the controlled
calibration model it is assumed as pre-fixed by the
experimenter.

This work is organized as follows. In Section 2, we derive
the maximum likelihood estimators of the homoscedastic
controlled calibration model by considering both cases:
o2 unknown and known. In Section 3, a simulation study
is undertaken to investigate the sensitivity of parameter
estimates of the proposed model (Proposed-M). In Section
4, an example is presented to illustrate our new approach. In
Section 5, the concluding remark is presented.

2. PARAMETER ESTIMATION

In this section we study the controlled calibration model.

From the Equations (1.1), (1.2), and (1.12) we can write
Y,=a+,3X,—|—(e,—/38,), l=1,2,}’l (21)
Yo=a+BXo+e€, i=n+1,n+2,....n+k (22)

with the following assumptions for the random errors:

€; are independent N(0, 0?) random variables.
E(8,)=0, (V&;)=o;..

cov(é;, 8;)=0 for any i # j.

cov(e;, 8;)=0 for all i, j.

Some comments are in order here. The variable X; in
Equation (2.1) is controlled and the error model (¢; — B8;) is
independent of X;. The error model in Equation (2.2) is only in
function of error measure ¢; related to Yy;, this model assumes
that there is no error in the preparation sample related to pa-
rameter X,. We define the homoscedastic controlled calibra-
tion model by considering that the errors §; are independent
and normally distributed with mean 0 and constant variance,
o2. The study of this model is carried out following similar
analysis to the usual calibration model as summarized above.

The maximum likelihood estimator for the homoscedastic
controlled calibration model is derived in the following. The
logarithm of the likelihood function is given by:

o . X, 0% 03) o~ log (o7 + o) — 5 10g (0?)
1 1 . )
) [W;(Yi_a_ﬁxi)

1 n+k
=L —a—ﬂXo)z} 23)

€ i=n+1

Solving 9//9x =0 and 9//0X, = 0 we have the maximum
likelihood estimator of « and X, which are given,
respectively, by

N N Yo — @&

&a=Y—pBX and X,= OB“ (2.4)
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From Equations (2.3) and (2.4), it follows that the likelihood
for (B, 02, 62) can be written as:

[(p. 02, 03) o~ log (o7 + o) — 5 g (4?)

—;[(Mﬁz ZZ[(Y—Y) BX — X)P
1 n+k

+ =5 > (Yo— Y0)2i| (2.5
6 i=n+1

Next, we consider two cases for a§ First, we obtain the max-
imum likelihood estimator of 8,62, and o from Equatlon (2.5).
In the second case we assume that the variance o? is known
and obtain the maximum likelihood estimators for 8 and o2.

2

Case 1. Unknown variance oj.

The maximum likelihood estimators of g, 02, and o? (the
proof is given in Appendix A) are given, respectively, by

3 gXY
XX
52 — (Syy — 2BSxy + B*Sxx) — 62
s = 2
6_62 = Syyx,

The variance of X;, derived from the Fisher information
matrix (see Appendix B), is given by:
N 271 X — Xo)?
Vi(Xo) = ¢ [ + L4 lg] 2.6)

2 2 2
B no?  o? nSxx

where

y = ol + o2 (2.7)

Considering k fixed and expanding X, in a Taylor series
around (o, B) and ignoring terms of order less than n~2, it can
be shown that the bias and variance of X, (the proof is given
in Appendix C), are given by:

. X—-X
AR y(X — Xo)? 3y
Vo(Xo) = E |:7 + — no? + 702 Sy + nkﬂzSXX] (2.9)

We can observe that the estimator of X is biased, but it is
asymptotically unbiased.

With relation to the variance of the estimator X, let us
notice that when k = gn, ¢ € Q%, and ignoring the terms of
order less than n~! the variance in Equation (2.9) coincide
with the variance given in Equation (2.6), which was found
through the Fisher information. Equation (2.6) considers large
sample sizes in the first and second stages (1 and k), whereas
(2.9) considers large sample sizes in the first stage and a fixed
sample size in the second stage.

Notice that when o7 = 0, Equations (2.6) and (2.9) coincide
with (1.6) and (1.8) of the usual model (Usual-M), respectively.

Copyright © 2007 John Wiley & Sons, Ltd.
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Case 2. Known variance o?.

Assuming now that o7 is known and equating to zero the
partial derivative of Equation (2.5) with respect to the param-
eters B and o2, we have the following equations, respectively:

BO’;((ATEZ + 320’(? — Syy + 3Sxy) = (SXY — 3SXx)6'€2 (210)

and

kSy,v, _ i _ n _ Syy — 2IBSXY + IBZSXX @.11)
@2 &2 62+ pro (62 + Po})? ‘

The estimates of B and o7 are obtained using some iterative
method to solve Equations (2.10) and (2.11).

The variance of X, derived from the Fisher information
matrix (see Appendix D), is given by

o o1,y vy
V(o) = 25 [— + ot ;E] (2.12)

where y is defined in Equation (2.7) and

_ nXaod + kX%y? — 2nXoXot — 2kXoXy? + nX20t + kX%y?
(no? +ky2) Y0, X? + 2nkp2yoy — n2X20? — nkX2y?

Notice that if o7 =0, the Expression (2.12) is reduced
to (1.6).

To construct a confidence interval for Xy, for both cases o2
unknown and known, we consider the interval (1.10), where
V(Xoc) is the estimated variance that follows from (2.6), (2.9),
or (2.12).

3. SIMULATION STUDY

In this section we present a simulation study for both cases
of the homoscedastic controlled calibration model: o2 known
and unknown. The objective of this section is to study the
performance of the estimators of the Proposed-M and verify
the impact by considering erratically the Usual-M.

It was considered 5000 samples generated from the
homoscedastic controlled calibration model. In all samples,
the value of the parameters « and g were 0.1 and 2,
respectively. The range of values for the controlled variable
was [0,2]. The fixed values for the controlled variable were
x1=04, x;, =x;_1+2/n—1,i=2,...,n, and the parameter
values X, were 0.01 (extreme inferior value), 0.8 (near to
the central value), and 1.9 (extreme superior value). It was
considered 02 = 0.04 and the parameter values of o7 were 0.01
and 0.1, which are named, respectively, as small and large
variances. For the first and second stages we consider the
sample of sizes n = 5, 20, 100 and k = 2, 20, 100, respectively.

The empirical mean bias is given by 25000 — X0)/5000
and the empirical mean squared error (MSE) is given by
ZSOOO(XO X0)?/5000. The mean estimated variance of X is
given by Y7 ¥(X,)/5000, with ¥(Xo) = V1(Xo) or ¥2(Xo),
where V;(X,) is the estimated variance of (1.6), (2.6), or (2.12)
and V»(X,) is the estimated variance of (2.9). The theoretical
variances of X, denoted as V;(X,) and V»(X,) are referred,
respectively, to the Expressions (1.6), (2.6) or (2.12) and (2.9)
evaluated on the relevant parameter values. In Appendix E it
is presented the simulation results.
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Tables E1, E2, E5, and E6 present the empirical bias, the
empirical MSE, the theoretical variance, and the estimated
variance of X,. In these tables, it is considered only the
variance (1.6) of the Usual-M, because based on a simulation
study in Reference [15] it was shown that the variances (1.6)
and (1.8) give similar results.

Tables E3, E4, and E7 present the covering percentages
and the confidence interval amplitudes constructed with a
95% confidence level for the parameter X,. In Table E3, the
covering percentages %; and %, and amplitudes A; and A,
are referred to the confidence intervals constructed using the
Equations (2.6) and (2.12).

Tables E1-E4 consider the homoscedastic controlled
calibration model assuming that o7 is unknown.

In Table E1 the empirical bias and MSE of X, arelittleand an
addition in the size of the variance a§, described in Table E2,
causes an increase in the bias and MSE. Moreover, we have
that the bias and MSE of X, are smaller when X is near to the
center value of the variation interval of the variable X. These
tables show that for all n, k, and X, the theoretical variances
obtained using the Expressions (2.12) and (2.9) are equal. This
fact occurs also for the mean estimated variances. We verify
also that when n > 20 and k > 20 the theoretical variances
and the mean estimated variances from the Proposed-M are
approximately equal. Observing these tables, we can also
notice that there exist differences between the mean estimated
variances of the Usual- and Proposed-Ms.

Analyzing Tables E3 and E4, we observe that for all n and
Xo when itis adopted erratically the Usual-M, the amplitudes
decrease very much as the size of k increases. This causes
the covering percentage to decrease moving away from 95%.
Whereas, adopting the Proposed-M it is observed that when
k increases the confidence interval amplitude decreases, but
the covering percentages increase approaching 95%. Notice
that the covering percentage %; and %, and the amplitudes
A; and A, are approximately equal, the amplitudes are
very small for X, =0.8. In these tables, we observe that
when k =20 or 100 and when # increases, the amplitudes
of the intervals decrease and the covering percentages
approach 95%. In most cases, the covering percentages
obtained through the Proposed-M are greater than that for
the Usual-M results and are close to 95%.

Tables E5 and E7 describe the results for the controlled
homoscedastic calibration model with o7 known. The
iterative method Quasi-Newton [14] has been used.

In Tables E5 and E6 we have that the empirical bias and
SME decrease as the size of n or k increases and they are

Table I. Concentration (mg/g) and intensity of the standard
solutions of cromo and cadmium element

Cromo element Cadmium element

X; Intensity X; Intensity
0.05 6455900 0.05 489733
0.11 13042933 0.10 9706
0.26 32621733 0.25 2341333
0.79 97 364 500 0.73 6973
1.05 129178100 1.01 9685667

small when X, is near to the central value of the variation
interval, X, = 0.8. When a§ is small (Table E5), for all n
and k, the empirical values of MSE from the Usual- and
Proposed-M are close to the theoretical variance, but only the
mean estimated variance from the Proposed-M is close to the
theoretical variance. When ag is large (Table E6), in general,
the empirical MSE and the mean estimated variance from the
Usual- and Proposed-M are different, but the values supplied
by the Proposed-M are very close to the theoretical variance.

Analyzing Table E7, we can make similar comments to the
ones we made about Tables E3 and E4.

4. APLICATION

In this section we test our model, considering both cases o;
known and unknown, using the data supplied by the chem-
ical laboratory of the ‘Instituto de Pesquisas Tecnoldgicas
(IPT)’—Brasil. We also consider the Usual-M in order to ob-
serve the performance of the Proposed-M. Our main interest is
to estimate the unknown concentration value X, of two sam-
ples A and B of the chemical elements cromo and cadmium.

Table I presents the fixed values of concentration of the
standard solutions and the corresponding intensities for the
cromo and cadmium element, which are supplied by the
plasma spectrometry method. These data are referred to as
the first stage of the calibration model.

Table Il. Intensity of the sample solutions A and B of cromo
and cadmium element

Intensity for cromo element Intensity for cadmium element

Sample A Sample B Sample A Sample B
1465.0 10173.6 0.679 5066
1351.0 10516.9 0.6837 5027
1495.6 10352.2 0.6846 5085

Table lll. Estimates of «, 8, X,, V(X,), and the confidence interval amplitude U(X,) from the usual and proposed model for the
samples A and B of cromo element

Sample A Sample B
Proposed-M Proposed-M

Parameters Usual-M Unknown ag Known ag Usual-M Unknown ag Known a§
o 123574 123574 123889 123574 123574 124021
B 1.23E+05 1.23E+05 1.23E+05 1.23E+05 1.23E+05 1.23E+05
Xo 0.011 0.011 0.083 0.083 0.083
V(Xo) 9.80E-07 9.15E-07 1.35E-06 1.16E-06 1.13E-06 1.71E-06
o2 — 1.60E-06 — 5.48E-07 —
U(Xo) 2.55E-03 2.46E-03 2.99E-03 2.77E-03 2.73E-03 3.36E-03

Copyright © 2007 John Wiley & Sons, Ltd.
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Table IV. Estimates of «, 8, X, V(Xo), and the confidence interval amplitude U(X,) from the usual and proposed model for the
samples A and B of cadmium element

Sample A Sample B
Proposed-M Proposed-M

Parameters Usual-M Unknown af Known "52 Usual-M Unknown a? Known of
o —0.156 —0.156 —0.158 —0.156 —0.156 —0.158
B 95.828 95.828 95.831 95.828 95.828 95.831
Xo 8.75E-03 8.75E-03 8.77E-03 0.054 0.054 0.054
V(Xo) 4.06E-06 3.72E-06 1.26E-06 3.81E-06 3.32E-06 1.17E-06
o2 — 8.31E-06 — 8.24E-06 —
U(Xo) 5.18E-03 4.96E-03 2.89E-03 5.02E-03 4.68E-03 2.78E-03

Table II presents the intensities corresponding to three
sample solutions from the samples A and B. These data are
referred to as the second stage of the calibration model.

Tables III and IV describe the estimates of «, 8, Xo, V(Xo),
o2, and the confidence interval amplitude U(X,) from the
homoscedastic controlled calibration model of the samples
A and B for the chemical elements cromo and cadmium.
The values of the variance o? considered as known are
obtained from an external study carried out by the IPT,
which are 02 = 2.5865E — 06 for the cromo element and o2 =
0.0017E + 02 for the cadmium element. As seen in Section 2,
in order to obtain the estimates of the parameters 8 and o2
of the Proposed-M when o? is known, iterative methods are
required. In order to solve the system of Equations (2.10) and
(2.11) it was used the Quasi-Newton iterative method. It is
also presented the estimates from the Usual-M. The estimates
of the variance of X, are computed using the relevant
Expressions (1.6), (2.6), or (2.12). The amplitude U(X,) is given
by the product of the squared root of the estimated variance
of X, and 1.96.

In Tables III and IV we can observe that the estimates of
« and g supplied by the Usual-M are equal to the Proposed-
M when o? is unknown and they are equal for samples A
and B, this occurs because the expressions of the estimators
& and B of both models are equal and they only depend on
the first stage of the calibration model. These estimates are
slightly different when compared with the estimates from the
Proposed-M when o7 is known. With respect to the estimate
of Xy, we observe that there is no difference in the estimates
supplied by the Usual- and the Proposed-Ms of the cromo and
cadmium element in both samples A and B, respectively. The
estimates of the concentration of the sample A, of the elements
cromo and cadmium, are outside of the variation range of
the standard solution concentrations. We verify that, except
to the known o2 case of the cromo element, the estimates
of the variance of X, and the amplitude U(X,) from the
Usual-M are greater than the estimates supplied by the both
Proposed-Ms.

5. CONCLUDING REMARKS

In general, the simulation study reveals that the Proposed-M
is sensible to the presence of error related to the independent
variable and gives better results in contrast to the Usual-
M results. It was noticed that when the error variance o2

Copyright © 2007 John Wiley & Sons, Ltd.

increases, the mean estimated variance of X, obtained using
the Usual-M moves away from the theoretical value. In the
example above, the confidence interval amplitude from the
Proposed-Ms are supplied by the incorporation of error due to
the lecture of equipment and the preparation of the standard
solutions. It is observed that despite the classical model
only considers the error originated from the lecture of the
equipment, the amplitude is greater than obtained by the new
approach.
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APPENDIX A

We derive the maximum likelihood estimator for B, o2,
and o?2.
Taking the partial derivative of Equation (2.5) with

respect to B, 02, and o? and equating to zero we obtain,

respectively:
Bﬂi(f + BZA(? — Syy + BSxy) = (Sxy — BSXX)éf (A-T)
552 + 32&§ = Syy — ZIBSXY + IBZSXX (A-2)
kSyOy0 k n

@2F 82 62+ P
_n(SYY —2BSxy + B*Sxx)
62 + P32

(A-3)

Where SXX = % Z:’Zl(Xi — X)Z, SXY = % Z:’Zl(X,» — X)(Yl —
V), Syy =130 (i —7)? and Sy, =130 (Yo — Yo)?,
and the relevant estimator notation has been introduced.
From Equations (A-1) and (A-2) we have the following

equations:

(BSxx — Sxy)(Syy — 2BSxy + B*Sxx) =0
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hence

3SXX —Sxy =0 or (A-4)
Syy — Zﬁsxy + BZSXX =0 (A-5)

Therefore, from Equation (A-4), we have that B = Sy /Sxx-
But, according to the Cauchy-Schwarz inequality, SxxSyy >
$2,,hence Equation (A-5) has real roots if and only if ¥; = cX;,
where ¢ is a constant.

The estimator of o2 can be obtained from the
Equation (A-2)

o (S — 2BSxy + B*Sxx) — 67
65 = Fz
Likewise, from Equations (A-2) and (A-3) we obtain the

estimator of the variance crf

&% = Sron (A-6)

APPENDIX B

In order to find the variance of X,, we need to derive the
Fisher information matrix of # = (&, 8, Xo, 02, 02), which can
be shown to be given by:

n k nX kX, kB
vt R oz 0 0
nk 4 KXo Xin X | 280l | KG gpxe o} nfo}
y a2 Y 72 o2 o2 ¥ 72
B kBX, K
1 (9) = oZ o2 ‘ o2 0 0
npla? ng* np?
0 7 0 3,7 37
npo; Bk
0 ¥? 0 2)? 2y2 + 208

When k=gn, qe QF, and n — oo, the estimator 0
is approximately normally distributed with mean 6 and
variance 1(9)~!, thus we have that the approximate variance
to order n~! for X, is given by

Vi(Xo) =

o? |: 1 y (B-1)

X — Xo)?
ol *+ﬁ+%u]
ﬂ k nog [ops nSXX

APPENDIX C

In the following we derive the bias (2.8) and the variance
(2.9) of the estimator X from the homoscedastic controlled
calibration model when o7 is unknown.

Considering the models (2.1) and (2.2), the estimator X, =
(Yo — &)/p can be expressed as

X = 3

(C1)

where g = Z:’::H €/kand ¢ = > (e; — BS;)/n.
Considering k fixed, expanding 1/B in a Taylor series

around B and ignoring terms of order less than n~2, we obtain

Copyright © 2007 John Wiley & Sons, Ltd.

the expected value of Equation (C-1), given by:

y(X — Xo)

E(X)) =X
(Xo) o+ B Sy

(C-2)

From this last equation we get the bias (2.8).
To derive the variance (2.9) we take the variance of Equation
(C-1), which is given by

V(Xo) = (X0 — X’V (%) +V (%) +V (%) (C-3)

We call attention to the fact that Equation (C-3) is
only expressed as a function of the related variances
because the corresponding covariances are zero. The
variances V(1/B), V(g/B), and V(¢/B) can be obtained by
expanding 1/B, &/B, and ¢/B in a Taylor series around
B and ignoring terms of order less than n~2. They are
given by:

. V(B
vwm=;? (C4)
A 02 02 A
V@B = 5 +3 V) (C5)
V(®/B) = n—gz (C-6)

Substituing Equations (C-4), (C-5), and (C-6) in Equation (C-
3), then, the variance (2.9) is obtained.

APPENDIX D

Similarly, as in Case 1, the Fisher information matrix of 6 =
(o, B, Xo, 0?) is given by

no k  nX 4 KXo kB 0
Y + 03 Y + agz U€2
X | kKo T X 2P0 | KG sxg npog
10 12 o? Y v? o? o? ¥?
©)= kB kBXo kg2 0
o? o? o?
2
npoy n k
0 v 0 72+ 20¢
(D-1)

The large sample variance of Xo follows by
inverting the Fisher information matrix and is
given by:

. 21 y y
V(Xo) = i [E toat ;E] (D-1)

where,

nX3ot +kX3y* — 2nXoXo? — 2kXo Xy + nX?o? + kX?y?

(no? + ky?) >_ X? + 2nkp2yo} — n2X20* — nkX2y?
i-1
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APPENDIX E

Table E1. Empirical bias and mean squared error, theoretical variance, and the mean estimated variance of X, for a2 =0.01
and unknown

Mean of V(Xg)
Empirical Theoretical Proposed-M Usual-M Proposed-M

Xo n k Bias MSE V1(Xo) V2(Xo) V1(Xo) V1(Xo) V2(Xo)
0.01 5 2 —0.0060 0.0180 0.0170 0.0170 0.0120 0.0100 0.0100
20 —0.0087 0.0130 0.0120 0.0120 0.0072 0.0120 0.0120

100 —0.0060 0.0130 0.0120 0.0120 0.0065 0.0120 0.0120

20 2 —0.0038 0.0086 0.0087 0.0087 0.0120 0.0052 0.0053

20 —0.0028 0.0043 0.0042 0.0042 0.0033 0.0040 0.0040

100 —0.0032 0.0038 0.0038 0.0038 0.0022 0.0036 0.0036

100 2 —0.0023 0.0058 0.0058 0.0058 0.0100 0.0027 0.0027

20 —0.0002 0.0013 0.0013 0.0013 0.0016 0.0012 0.0012

100 —0.0007 0.0008 0.0009 0.0009 0.0007 0.0009 0.0009

0.8 5 2 —0.0011 0.0094 0.0093 0.0094 0.0079 0.0045 0.0046
20 —0.0034 0.0050 0.0048 0.0048 0.0029 0.0045 0.0046

100 —0.0007 0.0047 0.0044 0.0044 0.0024 0.0045 0.0045

20 2 0.0005 0.0063 0.0061 0.0061 0.0095 0.0028 0.0029

20 0.0007 0.0016 0.0016 0.0016 0.0015 0.0015 0.0015

100 —0.0001 0.0012 0.0012 0.0012 0.0008 0.0012 0.0012

100 2 0.0005 0.0050 0.0052 0.0052 0.0099 0.0021 0.0021

20 —0.0001 0.0007 0.0007 0.0007 0.0011 0.0007 0.0007

100 —0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

1.9 5 2 0.0041 0.0160 0.0150 0.0160 0.0120 0.0093 0.0094
20 0.0026 0.0110 0.0110 0.0110 0.0065 0.0110 0.0110

100 0.0076 0.0110 0.0110 0.0110 0.0058 0.0110 0.0110

20 2 0.0006 0.0079 0.0082 0.0082 0.0110 0.0049 0.0049

20 0.0040 0.0039 0.0037 0.0037 0.0030 0.0035 0.0035

100 0.0008 0.0033 0.0033 0.0033 0.0019 0.0031 0.0031

100 2 0.0020 0.0057 0.0057 0.0057 0.0100 0.0025 0.0025

20 0.0003 0.0012 0.0012 0.0012 0.0015 0.0011 0.0011

100 0.0003 0.0008 0.0008 0.0008 0.0006 0.0008 0.0008

Table E2. Empirical bias and mean squared error, theoretical variance, and the mean estimated variance of X, for o2 =0.1and

unknown
Mean of V(Xo)
Empirical Theoretical Proposed-M Usual-M Proposed-M

Xo n k Bias MSE Vi(Xo) Va(Xo) V1(Xo) V1(Xo) V2(Xo)
0.01 5 2 —0.0510 0.1000 0.0700 0.0710 0.0770 0.0680 0.0690
20 —0.0500 0.0950 0.0660 0.0660 0.0220 0.0660 0.0660

100 —0.0510 0.0950 0.0650 0.0650 0.0130 0.0730 0.0730

20 2 —0.0180 0.0280 0.0250 0.0250 0.0670 0.0240 0.0240

20 —0.0160 0.0230 0.0210 0.0210 0.0140 0.0210 0.0210

100 —0.0170 0.0230 0.0200 0.0200 0.0055 0.0210 0.0210

100 2 —0.0046 0.0094 0.0093 0.0093 0.0580 0.0069 0.0069

20 —0.0026 0.0048 0.0048 0.0048 0.0082 0.0048 0.0048

100 —0.0033 0.0043 0.0044 0.0044 0.0029 0.0044 0.0044

0.8 5 2 —0.0084 0.0370 0.0290 0.0290 0.0460 0.0250 0.0250
20 —0.0095 0.0270 0.0240 0.0240 0.0071 0.0200 0.0200

100 —0.0072 0.0290 0.0240 0.0240 0.0037 0.0200 0.0200

20 2 —0.0030 0.0120 0.0110 0.0110 0.0530 0.0085 0.0086

20 —0.0040 0.0068 0.0066 0.0066 0.0061 0.0064 0.0064

100 —0.0031 0.0063 0.0062 0.0062 0.0017 0.0060 0.0060

100 2 —0.0011 0.0063 0.0062 0.0063 0.0550 0.0038 0.0038

20 —0.0015 0.0017 0.0017 0.0017 0.0057 0.0017 0.0017

100 —0.0011 0.0014 0.0013 0.0013 0.0013 0.0013 0.0013

(Continued)
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Table E2. (Continued)

Mean of V(Xo)
Empirical Theoretical Proposed-M Usual-M Proposed-M
Xo n k Bias MSE V1(Xo) V2(Xo) V1(Xo) V1(Xo) V2(Xo)
19 5 2 0.0430 0.1090 0.0630 0.0630 0.0830 0.0750 0.0750
20 0.0450 0.0860 0.0580 0.0580 0.0210 0.0650 0.0650
100 0.0410 0.0860 0.0580 0.0580 0.0110 0.0600 0.0600
20 2 0.0160 0.0260 0.0230 0.0230 0.0650 0.0210 0.0210
20 0.0140 0.0190 0.0180 0.0180 0.0130 0.0180 0.0180
100 0.0170 0.0200 0.0180 0.0180 0.0048 0.0180 0.0180
100 2 0.0050 0.0088 0.0087 0.0088 0.0570 0.0063 0.0063
20 0.0030 0.0043 0.0042 0.0042 0.0078 0.0042 0.0042
100 0.0020 0.0039 0.0038 0.0038 0.0026 0.0038 0.0038

Table E3. Covering percentage (%) and amplitude (A) of the intervals with a 95% confidence level for the parameter X, when
o2 = 0.01 and unknown

Usual-M Proposed-M

X(] n k % A o/o] A] 0/02 A2
0.01 5 2 83.04 0.40 79.34 0.36 79.37 0.36
20 84.95 0.32 91.15 0.41 91.15 0.41
100 83.72 0.31 92.24 0.42 92.24 0.42
20 2 96.46 0.42 83.48 0.28 83.52 0.28
20 90.19 0.22 9247 0.24 92.47 0.24
100 86.16 0.18 92.78 0.23 92.78 0.23
100 2 98.84 0.40 73.16 0.19 73.16 0.19
20 96.71 0.16 94.14 0.14 94.14 0.14
100 91.90 0.11 94.68 0.12 94.68 0.12
0.8 5 2 85.43 0.32 74.33 0.24 74.39 0.24
20 85.16 0.21 91.34 0.26 91.34 0.26
100 85.04 0.19 92.50 0.25 92.50 0.25
20 2 97.90 0.38 73.55 0.20 73.55 0.20
20 93.55 0.15 93.89 0.15 93.89 0.15
100 86.53 0.11 93.12 0.13 93.12 0.13
100 2 99.41 0.39 65.05 0.16 65.05 0.16
20 98.54 0.13 94.05 0.10 94.05 0.10
100 94.56 0.07 94.86 0.07 94.86 0.07
19 5 2 8247 0.39 78.05 0.35 78.13 0.35
20 84.50 0.31 90.92 0.39 90.92 0.39
100 84.75 0.29 92.83 0.39 92.83 0.39
20 2 96.79 0.41 83.09 0.26 83.11 0.26
20 91.32 0.21 93.29 0.23 93.31 0.23
100 86.43 0.17 93.32 0.22 93.32 0.22
100 2 98.88 0.40 73.06 0.19 73.06 0.19
20 97.12 0.15 94.31 0.13 94.31 0.13

100 92.56 0.10 94.74 0.11 94.74 0.11

Table E4. Covering percentage (%) and amplitude (A) of the intervals with a 95% confidence level for the parameter X,, when
o2 = 0.1 and unknown

Usual-M Proposed-M
X(] n k % A 0/01 A1 0/02 A2
0.01 5 2 84.89 0.94 80.73 0.85 80.79 0.86
20 64.10 0.51 82.75 0.86 82.75 0.86
100 52.09 0.39 82.42 0.86 82.42 0.86
20 2 99.40 0.99 91.04 0.58 91.10 0.58
20 87.10 0.45 92.60 0.55 92.62 0.55
100 65.70 0.28 92.16 0.55 92.18 0.55
100 2 100.00 0.94 87.60 0.32 87.66 0.32
20 98.82 0.36 94.88 0.27 94.88 0.27
100 89.12 0.21 94.84 0.26 94.84 0.26
(Continued)
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Table E4. (Continued)

Usual-M Proposed-M

Xg n k % A 0/01 A1 0/02 A2
0.8 5 2 90.27 0.73 80.63 0.52 80.75 0.52
20 64.39 0.31 82.68 0.51 82.74 0.51

100 50.57 0.23 84.08 0.50 84.08 0.50

20 2 99.92 0.88 87.30 0.35 87.50 0.35

20 91.80 0.30 92.78 0.31 92.82 0.31

100 67.46 0.16 92.38 0.30 92.38 0.30

100 2 100.00 0.91 77.88 0.22 77.98 0.22

20 99.94 0.29 94.98 0.16 95.04 0.16
100 94.60 0.14 94.92 0.14 94.92 0.14

19 5 2 85.63 0.91 81.42 0.81 81.42 0.81
20 61.71 0.49 81.89 0.82 81.89 0.82

100 50.71 0.37 81.24 0.81 81.24 0.81

20 2 99.54 0.97 91.12 0.54 91.18 0.55
20 88.10 0.43 92.74 0.52 92.76 0.52

100 66.44 0.26 92.86 0.51 92.86 0.51
100 2 100.00 0.93 86.38 0.30 86.38 0.30

20 99.12 0.35 94.76 0.25 94.76 0.25
100 89.40 0.20 95.00 0.24 95.00 0.24

Table E5. Empirical bias and mean squared error, theoretical variance, and the mean estimated variance of X,, for a2 =0.01

and known
Empirical Theoretical
Usual-M Proposed-M Proposed-M Mean of V(Xg)
Xo n k Bias MSE Bias MSE V(Xo) Usual-M Proposed-M
0.01 5 2 —0.0290 0.0210 —0.0280 0.0210 0.0170 0.0180 0.0160
20 —0.0290 0.0140 —0.0320 0.0140 0.0120 0.0081 0.0130
100 —0.0240 0.0140 —0.0270 0.0140 0.0120 0.0070 0.0130
20 2 —0.0081 0.0091 —0.0064 0.0090 0.0086 0.0130 0.0076
20 —0.0060 0.0043 —0.0072 0.0043 0.0041 0.0034 0.0041
100 —0.0038 0.0038 —0.0060 0.0038 0.0037 0.0022 0.0038
100 2 —0.0011 0.0056 —0.0005 0.0056 0.0058 0.0100 0.0053
20 —0.0002 0.0013 —0.0001 0.0013 0.0013 0.0016 0.0012
100 —0.0009 0.0009 —0.0012 0.0009 0.0009 0.0007 0.0009
0.8 5 2 —0.0074 0.0110 —0.0072 0.0100 0.0093 0.0120 0.0085
20 —0.0046 0.0051 —0.0051 0.0052 0.0048 0.0032 0.0049
100 —0.0076 0.0048 —0.0082 0.0048 0.0044 0.0025 0.0046
20 2 —0.0034 0.0063 —0.0031 0.0063 0.0061 0.0100 0.0052
20 0.0001 0.0016 0.0000 0.0016 0.0016 0.0015 0.0016
100 —0.0009 0.0012 —0.0013 0.0012 0.0012 0.0008 0.0012
100 2 0.0000 0.0053 0.0002 0.0053 0.0052 0.0099 0.0048
20 0.0000 0.0007 0.0000 0.0007 0.0007 0.0011 0.0007
100 —0.0001 0.0003 —0.0002 0.0003 0.0003 0.0003 0.0003
1.9 5 2 0.0200 0.0180 0.0200 0.0180 0.0150 0.0170 0.0140
20 0.0240 0.0120 0.0260 0.0130 0.0110 0.0071 0.0120
100 0.0200 0.0130 0.0230 0.0130 0.0100 0.0062 0.0110
20 2 0.0037 0.0082 0.0021 0.0081 0.0082 0.0120 0.0071
20 0.0059 0.0037 0.0066 0.0037 0.0037 0.0030 0.0036
100 0.0033 0.0032 0.0051 0.0032 0.0032 0.0020 0.0033
100 2 0.0020 0.0058 0.0015 0.0057 0.0057 0.0100 0.0053
20 0.0003 0.0012 0.0002 0.0012 0.0012 0.0015 0.0011
100 0.0003 0.0008 0.0006 0.0008 0.0008 0.0006 0.0008
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Table E6. Empirical bias and mean squared error, theoretical variance, and the mean estimated variance of Xy, for o2 =0.1and

known
Empirical Theoretical
Usual-M Proposed-M Proposed-M Mean of V(Xy)
Xo n k Bias MSE Bias MSE V(Xo) Usual-M Proposed-M
0.01 5 2 —0.4330 0.5590 —0.3830 0.4580 0.0590 0.3650 0.2310
20 —0.1140 0.1310 0.4140 1.0880 0.0540 0.0250 0.0760
100 —0.1890 0.1540 —0.0290 0.7730 0.0540 0.0200 0.1250
20 2 —0.0930 0.0430 —0.0770 0.0360 0.0210 0.0950 0.0380
20 —0.0490 0.0210 —0.0510 0.0210 0.0160 0.0150 0.0180
100 —0.0430 0.0190 —0.0250 0.0640 0.0150 0.0058 0.0170
100 2 —0.0200 0.0110 —0.0160 0.0097 0.0084 0.0630 0.0110
20 —0.0077 0.0041 —0.0085 0.0039 0.0037 0.0084 0.0038
100 —0.0066 0.0037 —0.0087 0.0037 0.0033 0.0029 0.0033
0.8 5 2 —0.0500 0.0620 —0.0430 0.0550 0.0280 0.1150 0.0620
20 —0.0450 0.0380 0.0820 0.0810 0.0240 0.0086 0.0320
100 —0.0530 0.0510 —0.0069 0.0980 0.0230 0.0055 0.0360
20 2 —0.0280 0.0150 —0.0240 0.0140 0.0110 0.0740 0.0210
20 —0.0079 0.0068 —0.0085 0.0069 0.0064 0.0065 0.0067
100 —0.0055 0.0065 —0.0030 0.0079 0.0060 0.0018 0.0062
100 2 —0.0030 0.0067 —0.0021 0.0065 0.0062 0.0600 0.0091
20 —0.0018 0.0018 —0.0018 0.0017 0.0017 0.0058 0.0017
100 —0.0021 0.0013 —0.0025 0.0013 0.0013 0.0013 0.0013
1.9 5 2 0.3480 0.3770 0.3070 0.3000 0.0530 0.2850 0.1760
20 0.1400 0.1630 —0.3310 0.9370 0.0490 0.0300 0.0780
100 0.0410 0.0180 0.0270 0.0510 0.0140 0.0051 0.0150
20 2 0.0970 0.0430 0.0790 0.0350 0.0190 0.0930 0.0350
20 0.1400 0.1630 —0.3310 0.9370 0.0490 0.0300 0.0780
100 0.1670 0.1300 —0.0005 0.7090 0.0480 0.0160 0.1120
100 2 0.0200 0.0093 0.0160 0.0087 0.0080 0.0620 0.0110
20 0.0120 0.0039 0.0130 0.0037 0.0033 0.0080 0.0035
100 0.0072 0.0031 0.0089 0.0031 0.0029 0.0027 0.0030

Table E7. Covering percentage (%) and amplitude (A) of the intervals with a 95% confidence level for the parameter X, when

02 = 0.01 and 0.1 and known

(rg =0.01 (rg =0.1

Usual-M Proposed-M Usual-M Proposed-M

X() n k % A % A % A % A
0.01 5 2 92.10 0.51 91.20 0.48 95.06 1.89 92.40 1.49
20 87.32 0.34 95.18 0.44 63.38 0.59 64.47 1.09
100 84.50 0.32 95.19 0.44 52.69 0.48 89.24 1.18
20 2 97.46 0.43 90.12 0.33 99.87 1.17 96.27 0.71
20 91.00 0.23 94.03 0.25 92.76 0.48 94.48 0.52
100 86.73 0.19 95.21 0.24 70.38 0.30 90.35 0.51
100 2 97.01 0.43 90.00 0.33 100.00 0.98 93.41 0.40
20 92.34 0.23 95.26 0.25 99.77 0.36 95.09 0.24
100 85.93 0.19 94.55 0.24 92.70 0.21 94.42 0.23
0.8 5 2 94.33 0.41 89.28 0.35 98.77 1.31 97.54 0.98
20 86.84 0.22 95.03 0.27 61.85 0.34 81.25 0.69
100 85.65 0.19 95.56 0.27 49.29 0.27 87.82 0.69
20 2 98.35 0.39 88.44 0.27 100.00 1.03 94.09 0.53
20 93.84 0.15 94.41 0.15 94.44 0.32 95.11 0.32
100 85.98 0.11 94.32 0.14 70.38 0.17 92.41 0.31
100 2 98.08 0.39 88.22 0.27 100.00 0.95 92.25 0.34
20 92.75 0.15 93.96 0.15 99.89 0.30 94.89 0.16
100 87.17 0.11 94.60 0.14 95.00 0.14 94.88 0.14

(Continued)
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Table E7. (Continued)

(Tg =0.01 a§ =0.1
_ UsualM __ Proposed-M _ UsualM __ Proposed-M
Xo n k % A % A % A % A
1.9 5 2 92.30 0.50 90.61 0.46 96.26 1.78 92.14 1.45
20 86.96 0.33 95.13 0.42 63.58 0.56 67.24 1.03
100 85.84 0.30 94.73 0.42 49.30 0.46 83.75 1.21
20 2 97.61 0.43 89.92 0.32 100.00 1.17 96.27 0.70
20 91.60 0.21 94.27 0.23 94.26 0.46 94.95 0.49
100 86.16 0.17 94.99 0.23 72.44 0.28 94.18 0.48
100 2 97.04 0.43 89.70 0.32 100.00 0.97 94.27 0.39
20 91.21 0.21 93.85 0.23 99.59 0.35 95.18 0.23
100 87.04 0.17 95.11 0.23 93.38 0.20 94.98 0.21
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