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Homoscedastic controlled calibration model
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In the context of the usual calibration model, we consider the case in which the independent
variable is unobservable, but a pre-fixed value on its surrogate is available. Thus, considering
controlled variables and assuming that the measurement errors have equal variances we propose
a new calibration model. Likelihood-based methodology is used to estimate the model parameters
and the Fisher information matrix is used to construct a confidence interval for the unknown value
of the regressor variable. A simulation study is carried out to asses the effect of the measurement
error on the estimation of the parameter of interest. This new approach is illustrated with an example.
Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the first stage of a calibration problem, a pair of data
sample (xi, Yi), i = 1, 2, . . . n is observed. In the second stage,
it is observed one or more values, which are the responses
corresponding to a single unknown value of the regressor
variable, X0. The first and second stage equations of the usual
linear calibration model are defined, respectively, as

Yi = α + βxi + εi, i = 1, 2 . . . , n (1.1)

Y0i = α + βX0 + εi, i = n + 1, n + 2, . . . , n + k (1.2)

It is considered the following assumptions:

� x1, x2, . . . , xn take fixed values, which are considered as true
values.

� ε1, ε2, . . . , εn+k are independent and normally distributed
with mean 0 and variance σ2

ε .

The model parameters are α, β, X0 and σ2
ε and the main interest

is to estimate the quantity X0.
The maximun likelihood estimators of the usual calibration

model are given by

α̂ = Ȳ − β̂x̄, β̂ = SxY

Sxx

, X̂0 = Ȳ0 − α̂

β̂
(1.3)

σ2
ε = 1

n + k

[
n∑

i=1

(Yi − α̂ − β̂xi)2 +
n+k∑

i=n+1

(Y0i − Ȳ0)2

]
(1.4)
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where

x̄ = 1
n

n∑
i=1

xi, Ȳ = 1
n

n∑
i=1

Yi, SxY = 1
n

n∑
i=1

(xi − x̄)(Yi − Ȳ )

Sxx = 1
n

n∑
i=1

(xi − x̄)2, Ȳ0 = 1
n

n+k∑
i=n+1

Y0i

In Reference [1] an approximate expression is derived
for the variance of the estimator X̂0, which is derived
through the propagation error law. Another approximation
for the variance of X̂0 is given by the Fisher information
of θ = (α, β, X0, σ

2
ε ) which, after some length algebraic

manipulations, it can be shown to be given by

I(θ) = 1
σ2

ε




n + k kX0 + nx̄ kβ 0

kX0 + nx̄ kX2
0 + ∑n

i=1 x2
i κβX0 0

kβ κβX0 kβ2 0

0 0 0 n+k

2σ2
ε


 (1.5)

The maximum likelihood estimator of θ̂ = (α̂, β̂, X̂0, σ̂2
ε )

has approximately normal distribution with mean θ and
covariance matrix I(θ)−1, when k = qn, q ∈ Q+ and n −→ ∞.
Thus, the approximation of order n−1 for the variance of X̂0 is
given by

V1(X̂0) = σ2
ε

β2

[
1
k

+ 1
n

+ (X̄ − X0)2

nSxx

]
(1.6)

On the other hand, in Reference [2] the size k of the second
stage is considered fixed, so that expanding X̂0 in Taylor series
around the point (α, β) and ignoring terms of order less than
n−2, we can find the following approximations for the bias
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and variance of X̂0, respectively:

Bias(X̂0) = σ2
ε (X0 − x̄)
nβ2Sxx

(1.7)

V2(X̂0) = σ2
ε

β2

[
1
k

+ 1
n

+ (X̄ − X0)2

nSxx

+ 3σ2
ε

nkβ2Sxx

]
(1.8)

In order to construct a confidence interval for X0, we
consider that

X̂0 − X0√
V̂ (X̂0)

D−→ N(0, 1) (1.9)

where V̂ (X̂0) is the estimated variance computed according to
Equations (1.6) or (1.8). Hence, the approximated confidence
interval for X0 with a confidence level (1 − α), is given by(

X̂0 − z α
2

√
V̂ (X̂0), X̂0 + z α

2

√
V̂ (X̂0)

)
(1.10)

where z α
2

is the quantile of order (1 − α

2 ) of the standard
normal distribution.

The usual calibration problem has been discussed in
the literature for several decades (see References [2–7]).
An illustration of this model is presented for example in
Reference [8]. We can find a review of the literature on
statistical calibration in Reference [9], where some approaches
to the solution of the calibration problem are summarized.

This model encounters applications in different areas, but
it is not well suited in some instances as, for example, in
chemical analysis, where the preparation process of standard
solutions are subject to measurement error [1].

There exist some situations, as mentioned above, where one
is unable to observe xi directly. In this case, Reference [10]
defines two types of observations: controlled and uncontrolled.

In the uncontrolled situation, instead of observing xi, one
observes the sum

Xi = xi + δi, i = 1, . . . , n (1.11)

where δi is a (0, σ2
δ ) random variable.

Assuming that xi is a unknown fixed constant, the model
defined by the classical linear regression Equations (1.1) and
(1.11) is named as functional model [11,12], while the model
defined by the Equations (1.1) and (1.11) with xi regarded as
random variable is called structural model [11,12]. On the
other hand, the model defined by (1.1), (1.2), and (1.11) is
called as the functional or structural calibration model if xi is
assumed as a fixed value or a random variable, respectively
[12].

The controlled observation is defined by a pre-fixed value Xi

according to the experimenter convenience and a procedure
is established in order to attain the pre-fixed value. The
experiment gives the unobserved xi and it is such that

xi = Xi − δi, i = 1, . . . , n (1.12)

where δi is a (0, σ2
δ ) random variable. The model defined by

Equations (1.1) and (1.12) is known as Berkson regression
model [13]. The model defined by (1.1), (1.2), and (1.12)
has not been considered before in the measurement error

literature and in this work it will be called as the controlled
calibration model.

In the functional and structural calibration model, the
regressor Xi is random variable, whereas in the controlled
calibration model it is assumed as pre-fixed by the
experimenter.

This work is organized as follows. In Section 2, we derive
the maximum likelihood estimators of the homoscedastic
controlled calibration model by considering both cases:
σ2

δ unknown and known. In Section 3, a simulation study
is undertaken to investigate the sensitivity of parameter
estimates of the proposed model (Proposed-M). In Section
4, an example is presented to illustrate our new approach. In
Section 5, the concluding remark is presented.

2. PARAMETER ESTIMATION

In this section we study the controlled calibration model.
From the Equations (1.1), (1.2), and (1.12) we can write

Yi = α + βXi + (εi − βδi), i = 1, 2 . . . , n (2.1)

Y0i = α + βX0 + εi, i = n + 1, n + 2, . . . , n + k (2.2)

with the following assumptions for the random errors:

� εi are independent N(0, σ2
ε ) random variables.

� E(δi)=0, (Vδi)= σ2
δi

.
� cov(δi, δj)=0 for any i �= j.
� cov(εi, δj)=0 for all i, j.

Some comments are in order here. The variable Xi in
Equation (2.1) is controlled and the error model (εi − βδi) is
independent of Xi. The error model in Equation (2.2) is only in
function of error measure εi related to Y0i, this model assumes
that there is no error in the preparation sample related to pa-
rameter X0. We define the homoscedastic controlled calibra-
tion model by considering that the errors δi are independent
and normally distributed with mean 0 and constant variance,
σ2

δ . The study of this model is carried out following similar
analysis to the usual calibration model as summarized above.

The maximum likelihood estimator for the homoscedastic
controlled calibration model is derived in the following. The
logarithm of the likelihood function is given by:

l
(
α, β, X0, σ

2
ε , σ

2
δ

) ∝ −n

2
log

(
σ2

ε + β2σ2
δ

) − k

2
log

(
σ2

ε

)

− 1
2

[
1

σ2
ε + β2σ2

δ

n∑
i=1

(Yi − α − βXi)2

+ 1
σ2

ε

n+k∑
i=n+1

(Y0i − α − βX0)2

]
(2.3)

Solving ∂l/∂α = 0 and ∂l/∂X0 = 0 we have the maximum
likelihood estimator of α and X0, which are given,
respectively, by

α̂ = Ȳ − β̂X̄ and X̂0 = Ȳ0 − α̂

β̂
(2.4)

Copyright © 2007 John Wiley & Sons, Ltd. J. Chemometrics 2007; 21: 145–155
DOI: 10.1002/cem

 1099128x, 2007, 3-4, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.1053 by U
niversity O

f Sao Paulo - B
razil, W

iley O
nline L

ibrary on [10/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Homoscedastic controlled calibration model 147

From Equations (2.3) and (2.4), it follows that the likelihood
for (β, σ2

ε , σ
2
δ ) can be written as:

l
(
β, σ2

ε , σ
2
δ

) ∝ −n

2
log

(
σ2

ε + β2σ2
δ

) − k

2
log

(
σ2

ε

)

− 1
2

[
1

σ2
ε + β2σ2

δ

n∑
i=1

[(Yi − Ȳ ) − β(Xi − X̄)]2

+ 1
σ2

ε

n+k∑
i=n+1

(Y0i − Ȳ0)2

]
(2.5)

Next, we consider two cases for σ2
δ . First, we obtain the max-

imum likelihood estimator ofβ,σ2
ε , andσ2

δ from Equation (2.5).
In the second case we assume that the variance σ2

δ is known
and obtain the maximum likelihood estimators for β and σ2

ε .

Case 1. Unknown variance σ2
δ .

The maximum likelihood estimators of β, σ2
δ , and σ2

ε (the
proof is given in Appendix A) are given, respectively, by

β̂ = SXY

SXX

σ̂2
δ = (SYY − 2β̂SXY + β̂2SXX) − σ̂2

ε

β̂2

σ̂2
ε = SY0Y0

The variance of X̂0, derived from the Fisher information
matrix (see Appendix B), is given by:

V1(X̂0) = σ2
ε

β2

[
1
k

+ γ

nσ2
ε

+ γ

σ2
ε

(X̄ − X0)2

nSXX

]
(2.6)

where

γ = β2σ2
δ + σ2

ε (2.7)

Considering k fixed and expanding X̂0 in a Taylor series
around (α, β) and ignoring terms of order less than n−2, it can
be shown that the bias and variance of X̂0 (the proof is given
in Appendix C), are given by:

Bias(X̂0) = γ(X̄ − X0)
nβ2SXX

(2.8)

V2(X̂0) = σ2
ε

β2

[
1
k

+ γ

nσ2
ε

+ γ(X̄ − X0)2

nσ2
ε SXX

+ 3γ

nkβ2SXX

]
(2.9)

We can observe that the estimator of X0 is biased, but it is
asymptotically unbiased.

With relation to the variance of the estimator X̂0, let us
notice that when k = qn, q ∈ Q+, and ignoring the terms of
order less than n−1 the variance in Equation (2.9) coincide
with the variance given in Equation (2.6), which was found
through the Fisher information. Equation (2.6) considers large
sample sizes in the first and second stages (n and k), whereas
(2.9) considers large sample sizes in the first stage and a fixed
sample size in the second stage.

Notice that when σ2
δ = 0, Equations (2.6) and (2.9) coincide

with (1.6) and (1.8) of the usual model (Usual-M), respectively.

Case 2. Known variance σ2
δ .

Assuming now that σ2
δ is known and equating to zero the

partial derivative of Equation (2.5) with respect to the param-
eters β and σ2

ε , we have the following equations, respectively:

β̂σ2
δ (σ̂2

ε + β̂2σ2
δ − SYY + β̂SXY ) = (SXY − β̂SXX)σ̂2

ε (2.10)

and

kSY0Y0

(σ̂2
ε )2

− k

σ̂2
ε

= n

σ̂2
ε + β̂2σ2

δ

− SYY − 2β̂SXY + β̂2SXX

(σ̂2
ε + β̂2σ2

δ )2
(2.11)

The estimates of β and σ2
ε are obtained using some iterative

method to solve Equations (2.10) and (2.11).
The variance of X̂0, derived from the Fisher information

matrix (see Appendix D), is given by

V (X̂0) = σ2
ε

β2

[
1
k

+ γ

nσ2
ε

+ γ

σ2
ε

E

]
(2.12)

where γ is defined in Equation (2.7) and

E = nX2
0σ

4
ε + kX2

0γ
2 − 2nX0X̄σ4

ε − 2kX0X̄γ2 + nX̄2σ4
ε + kX̄2γ2

(nσ4
ε + kγ2)

∑n

i=1 X2
i + 2nkβ2γσ4

δ − n2X̄2σ4
ε − nkX̄2γ2

Notice that if σ2
δ = 0, the Expression (2.12) is reduced

to (1.6).
To construct a confidence interval for X0, for both cases σ2

δ

unknown and known, we consider the interval (1.10), where
V̂ (X̂0C) is the estimated variance that follows from (2.6), (2.9),
or (2.12).

3. SIMULATION STUDY

In this section we present a simulation study for both cases
of the homoscedastic controlled calibration model: σ2

δ known
and unknown. The objective of this section is to study the
performance of the estimators of the Proposed-M and verify
the impact by considering erratically the Usual-M.

It was considered 5000 samples generated from the
homoscedastic controlled calibration model. In all samples,
the value of the parameters α and β were 0.1 and 2,
respectively. The range of values for the controlled variable
was [0,2]. The fixed values for the controlled variable were
x1 = 04, xi = xi−1 + 2/n − 1, i = 2, . . . , n, and the parameter
values X0 were 0.01 (extreme inferior value), 0.8 (near to
the central value), and 1.9 (extreme superior value). It was
considered σ2

ε = 0.04 and the parameter values of σ2
δ were 0.01

and 0.1, which are named, respectively, as small and large
variances. For the first and second stages we consider the
sample of sizes n = 5, 20, 100 and k = 2, 20, 100, respectively.

The empirical mean bias is given by
∑5000

j=1 (X̂0 − X0)/5000
and the empirical mean squared error (MSE) is given by∑5000

j=1 (X̂0 − X0)2/5000. The mean estimated variance of X̂0 is
given by

∑5000
j=1 V̂ (X̂0)/5000, with V̂ (X̂0) = V̂1(X̂0) or V̂2(X̂0),

where V̂1(X̂0) is the estimated variance of (1.6), (2.6), or (2.12)
and V̂2(X̂0) is the estimated variance of (2.9). The theoretical
variances of X̂0 denoted as V1(X̂0) and V2(X̂0) are referred,
respectively, to the Expressions (1.6), (2.6) or (2.12) and (2.9)
evaluated on the relevant parameter values. In Appendix E it
is presented the simulation results.

Copyright © 2007 John Wiley & Sons, Ltd. J. Chemometrics 2007; 21: 145–155
DOI: 10.1002/cem
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Tables E1, E2, E5, and E6 present the empirical bias, the
empirical MSE, the theoretical variance, and the estimated
variance of X0. In these tables, it is considered only the
variance (1.6) of the Usual-M, because based on a simulation
study in Reference [15] it was shown that the variances (1.6)
and (1.8) give similar results.

Tables E3, E4, and E7 present the covering percentages
and the confidence interval amplitudes constructed with a
95% confidence level for the parameter X0. In Table E3, the
covering percentages %1 and %2 and amplitudes A1 and A2

are referred to the confidence intervals constructed using the
Equations (2.6) and (2.12).

Tables E1–E4 consider the homoscedastic controlled
calibration model assuming that σ2

δ is unknown.
In Table E1 the empirical bias and MSE of X̂0 are little and an

addition in the size of the variance σ2
δ , described in Table E2,

causes an increase in the bias and MSE. Moreover, we have
that the bias and MSE of X̂0 are smaller when X0 is near to the
center value of the variation interval of the variable X. These
tables show that for all n, k, and X0, the theoretical variances
obtained using the Expressions (2.12) and (2.9) are equal. This
fact occurs also for the mean estimated variances. We verify
also that when n ≥ 20 and k ≥ 20 the theoretical variances
and the mean estimated variances from the Proposed-M are
approximately equal. Observing these tables, we can also
notice that there exist differences between the mean estimated
variances of the Usual- and Proposed-Ms.

Analyzing Tables E3 and E4, we observe that for all n and
X0 when it is adopted erratically the Usual-M, the amplitudes
decrease very much as the size of k increases. This causes
the covering percentage to decrease moving away from 95%.
Whereas, adopting the Proposed-M it is observed that when
k increases the confidence interval amplitude decreases, but
the covering percentages increase approaching 95%. Notice
that the covering percentage %1 and %2 and the amplitudes
A1 and A2 are approximately equal, the amplitudes are
very small for X0 = 0.8. In these tables, we observe that
when k = 20 or 100 and when n increases, the amplitudes
of the intervals decrease and the covering percentages
approach 95%. In most cases, the covering percentages
obtained through the Proposed-M are greater than that for
the Usual-M results and are close to 95%.

Tables E5 and E7 describe the results for the controlled
homoscedastic calibration model with σ2

δ known. The
iterative method Quasi-Newton [14] has been used.

In Tables E5 and E6 we have that the empirical bias and
SME decrease as the size of n or k increases and they are

Table III. Estimates of α, β, X0, V (X̂0), and the confidence interval amplitude U(X0) from the usual and proposed model for the
samples A and B of cromo element

Sample A Sample B

Proposed-M Proposed-M

Parameters Usual-M Unknown σ2
δ Known σ2

δ Usual-M Unknown σ2
δ Known σ2

δ

α 123 574 123 574 123 889 123 574 123 574 124 021
β 1.23E+05 1.23E+05 1.23E+05 1.23E+05 1.23E+05 1.23E+05
X0 0.011 0.011 0.011 0.083 0.083 0.083
V(X̂0) 9.80E-07 9.15E-07 1.35E-06 1.16E-06 1.13E-06 1.71E-06
σ2

δ — 1.60E-06 — — 5.48E-07 —
U(X0) 2.55E-03 2.46E-03 2.99E-03 2.77E-03 2.73E-03 3.36E-03

Table I. Concentration (mg/g) and intensity of the standard
solutions of cromo and cadmium element

Cromo element Cadmium element

Xi Intensity Xi Intensity

0.05 6 455 900 0.05 489 733
0.11 13 042 933 0.10 9 706
0.26 32 621 733 0.25 2 341 333
0.79 97 364 500 0.73 6973
1.05 129 178 100 1.01 9 685 667

small when X0 is near to the central value of the variation
interval, X0 = 0.8. When σ2

δ is small (Table E5), for all n
and k, the empirical values of MSE from the Usual- and
Proposed-M are close to the theoretical variance, but only the
mean estimated variance from the Proposed-M is close to the
theoretical variance. When σ2

δ is large (Table E6), in general,
the empirical MSE and the mean estimated variance from the
Usual- and Proposed-M are different, but the values supplied
by the Proposed-M are very close to the theoretical variance.

Analyzing Table E7, we can make similar comments to the
ones we made about Tables E3 and E4.

4. APLICATION

In this section we test our model, considering both cases σδ

known and unknown, using the data supplied by the chem-
ical laboratory of the ‘Instituto de Pesquisas Tecnológicas
(IPT)’—Brasil. We also consider the Usual-M in order to ob-
serve the performance of the Proposed-M. Our main interest is
to estimate the unknown concentration value X0 of two sam-
ples A and B of the chemical elements cromo and cadmium.

Table I presents the fixed values of concentration of the
standard solutions and the corresponding intensities for the
cromo and cadmium element, which are supplied by the
plasma spectrometry method. These data are referred to as
the first stage of the calibration model.

Table II. Intensity of the sample solutions A and B of cromo
and cadmium element

Intensity for cromo element Intensity for cadmium element

Sample A Sample B Sample A Sample B

1465.0 10173.6 0.679 5066
1351.0 10516.9 0.6837 5027
1495.6 10352.2 0.6846 5085

Copyright © 2007 John Wiley & Sons, Ltd. J. Chemometrics 2007; 21: 145–155
DOI: 10.1002/cem
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Table IV. Estimates of α, β, X0, V (X̂0), and the confidence interval amplitude U(X0) from the usual and proposed model for the
samples A and B of cadmium element

Sample A Sample B

Proposed-M Proposed-M

Parameters Usual-M Unknown σ2
δ Known σ2

δ Usual-M Unknown σ2
δ Known σ2

δ

α −0.156 −0.156 −0.158 −0.156 −0.156 −0.158
β 95.828 95.828 95.831 95.828 95.828 95.831
X0 8.75E-03 8.75E-03 8.77E-03 0.054 0.054 0.054
V(X̂0) 4.06E-06 3.72E-06 1.26E-06 3.81E-06 3.32E-06 1.17E-06
σ2

δ — 8.31E-06 — — 8.24E-06 —
U(X0) 5.18E-03 4.96E-03 2.89E-03 5.02E-03 4.68E-03 2.78E-03

Table II presents the intensities corresponding to three
sample solutions from the samples A and B. These data are
referred to as the second stage of the calibration model.

Tables III and IV describe the estimates of α, β, X0, V (X̂0),
σ2

δ , and the confidence interval amplitude U(X0) from the
homoscedastic controlled calibration model of the samples
A and B for the chemical elements cromo and cadmium.
The values of the variance σ2

δ considered as known are
obtained from an external study carried out by the IPT,
which are σ2

δ = 2.5865E − 06 for the cromo element and σ2
δ =

0.0017E + 02 for the cadmium element. As seen in Section 2,
in order to obtain the estimates of the parameters β and σ2

ε

of the Proposed-M when σ2
δ is known, iterative methods are

required. In order to solve the system of Equations (2.10) and
(2.11) it was used the Quasi-Newton iterative method. It is
also presented the estimates from the Usual-M. The estimates
of the variance of X̂0 are computed using the relevant
Expressions (1.6), (2.6), or (2.12). The amplitude U(X0) is given
by the product of the squared root of the estimated variance
of X̂0 and 1.96.

In Tables III and IV we can observe that the estimates of
α and β supplied by the Usual-M are equal to the Proposed-
M when σ2

δ is unknown and they are equal for samples A
and B, this occurs because the expressions of the estimators
α̂ and β̂ of both models are equal and they only depend on
the first stage of the calibration model. These estimates are
slightly different when compared with the estimates from the
Proposed-M when σ2

δ is known. With respect to the estimate
of X0, we observe that there is no difference in the estimates
supplied by the Usual- and the Proposed-Ms of the cromo and
cadmium element in both samples A and B, respectively. The
estimates of the concentration of the sample A, of the elements
cromo and cadmium, are outside of the variation range of
the standard solution concentrations. We verify that, except
to the known σ2

δ case of the cromo element, the estimates
of the variance of X̂0 and the amplitude U(X0) from the
Usual-M are greater than the estimates supplied by the both
Proposed-Ms.

5. CONCLUDING REMARKS

In general, the simulation study reveals that the Proposed-M
is sensible to the presence of error related to the independent
variable and gives better results in contrast to the Usual-
M results. It was noticed that when the error variance σ2

δ

increases, the mean estimated variance of X̂0 obtained using
the Usual-M moves away from the theoretical value. In the
example above, the confidence interval amplitude from the
Proposed-Ms are supplied by the incorporation of error due to
the lecture of equipment and the preparation of the standard
solutions. It is observed that despite the classical model
only considers the error originated from the lecture of the
equipment, the amplitude is greater than obtained by the new
approach.
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APPENDIX A

We derive the maximum likelihood estimator for β, σ2
ε ,

and σ2
δ .

Taking the partial derivative of Equation (2.5) with
respect to β, σ2

ε , and σ2
δ and equating to zero we obtain,

respectively:

β̂σ̂2
δ (σ̂2

ε + β̂2σ̂2
δ − SYY + β̂SXY ) = (SXY − β̂SXX)σ̂2

ε (A-1)

σ̂2
ε + β̂2σ̂2

δ = SYY − 2β̂SXY + β̂2SXX (A-2)

kSY0Y0

(σ̂2
ε )2

− k

σ̂2
ε

= n

σ̂2
ε + β̂2σ̂2

δ

−n(SYY − 2β̂SXY + β̂2SXX)
(σ̂2

ε + β̂2σ̂2
δ )2

(A-3)

where SXX = 1
n

∑n

i=1(Xi − X̄)2, SXY = 1
n

∑n

i=1(Xi − X̄)(Yi −
Ȳ ), SYY = 1

n

∑n

i=1(Yi − Ȳ )2, and SY0Y0 = 1
k

∑n+k

i=n+1(Y0i − Ȳ0)2,
and the relevant estimator notation has been introduced.
From Equations (A-1) and (A-2) we have the following
equations:

(β̂SXX − SXY )(SYY − 2β̂SXY + β̂2SXX) = 0
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hence

β̂SXX − SXY = 0 or (A-4)

SYY − 2β̂SXY + β̂2SXX = 0 (A-5)

Therefore, from Equation (A-4), we have that β̂ = SXY/SXX.
But, according to the Cauchy–Schwarz inequality, SXXSYY ≥
S2

XY , hence Equation (A-5) has real roots if and only if Yi = cXi,
where c is a constant.

The estimator of σ2
δ can be obtained from the

Equation (A-2)

σ̂2
δ = (SYY − 2β̂SXY + β̂2SXX) − σ̂2

ε

β̂2

Likewise, from Equations (A-2) and (A-3) we obtain the
estimator of the variance σ2

ε

σ̂2
ε = SY0Y0 (A-6)

APPENDIX B
In order to find the variance of X̂0, we need to derive the
Fisher information matrix of θ = (α, β, X0, σ

2
δ , σ

2
ε ), which can

be shown to be given by:

I(θ) =




n
γ

+ k
σ2

ε

nX̄
γ

+ kX0
σ2

ε

kβ

σ2
ε

0 0

nX̄
γ

+ kX0
σ2

ε

∑n
i=1 X2

i

γ
+ 2nβ2σ4

δ

γ2 + kX2
0

σ2
ε

kβX0
σ2

ε

nβ3σ2
δ

γ2
nβσ2

δ

γ2

kβ

σ2
ε

kβX0
σ2

ε

kβ2

σ2
ε

0 0

0 nβ3σ2
δ

γ2 0 nβ4

2γ2
nβ2

2γ2

0 nβσ2
δ

γ2 0 nβ2

2γ2
n

2γ2 + k
2σ4

ε




When k = qn, q ∈ Q+, and n −→ ∞, the estimator θ̂

is approximately normally distributed with mean θ and
variance I(θ)−1, thus we have that the approximate variance
to order n−1 for X̂0 is given by

V1(X̂0) = σ2
ε

β2

[
1
k

+ γ

nσ2
ε

+ γ

σ2
ε

(X̄ − X0)2

nSXX

]
(B-1)

APPENDIX C

In the following we derive the bias (2.8) and the variance
(2.9) of the estimator X̂0 from the homoscedastic controlled
calibration model when σ2

δ is unknown.
Considering the models (2.1) and (2.2), the estimator X̂0 =

(Ȳ0 − α̂)/β̂ can be expressed as

X̂0 = X̄ + β(X0 − X̄) + ε̄0 − φ̄

β̂
(C-1)

where ε̄0 = ∑n+k

i=n+1 εi/k and φ̄ = ∑n

i=1(εi − βδi)/n.
Considering k fixed, expanding 1/β̂ in a Taylor series

around β and ignoring terms of order less than n−2, we obtain

the expected value of Equation (C-1), given by:

E(X̂0) = X0 + γ(X̄ − X0)
nβ2SXX

(C-2)

From this last equation we get the bias (2.8).
To derive the variance (2.9) we take the variance of Equation

(C-1), which is given by

V (X̂0) = β2(X0 − X̄)2V

(
1
β̂

)
+ V

(
ε̄0

β̂

)
+ V

(
φ̄

β̂

)
(C-3)

We call attention to the fact that Equation (C-3) is
only expressed as a function of the related variances
because the corresponding covariances are zero. The
variances V (1/β̂), V (ε̄0/β̂), and V (φ̄/β̂) can be obtained by
expanding 1/β̂, ε̄0/β̂, and φ̄/β̂ in a Taylor series around
β and ignoring terms of order less than n−2. They are
given by:

V (1/β̂) = V (β̂)
β4

(C-4)

V (ε̄0/β̂) = σ2
ε

kβ2
+ 3

σ2
ε

kβ4
V (β̂) (C-5)

V (φ̄/β̂) = γ

nβ2
(C-6)

Substituing Equations (C-4), (C-5), and (C-6) in Equation (C-
3), then, the variance (2.9) is obtained.

APPENDIX D

Similarly, as in Case 1, the Fisher information matrix of θ =
(α, β, X0, σ

2
ε ) is given by

I(θ)=




n

γ
+ k

σ2
ε

nX̄

γ
+ kX0

σ2
ε

kβ

σ2
ε

0

nX̄

γ
+ kX0

σ2
ε

∑n
i=1 X2

i

γ
+ 2nβ2σ4

δ

γ2 + kX2
0

σ2
ε

kβX0
σ2
ε

nβσ2
δ

γ2

kβ

σ2
ε

kβX0
σ2
ε

kβ2

σ2
ε

0

0 nβσ2
δ

γ2 0 n

2γ2 + k

2σ4
ε




(D-1)

The large sample variance of X̂0 follows by
inverting the Fisher information matrix and is
given by:

V (X̂0) = σ2
ε

β2

[
1
k

+ γ

nσ2
ε

+ γ

σ2
ε

E

]
(D-1)

where,

E = nX2
0σ

4
ε + kX2

0γ
2 − 2nX0X̄σ4

ε − 2kX0X̄γ2 + nX̄2σ4
ε + kX̄2γ2

(nσ4
ε + kγ2)

n∑
i=1

X2
i + 2nkβ2γσ4

δ − n2X̄2σ4
ε − nkX̄2γ2
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APPENDIX E

Table E1. Empirical bias and mean squared error, theoretical variance, and the mean estimated variance of X̂0, for σ2
δ = 0.01

and unknown

Mean of V̂(X̂0)

Empirical Theoretical Proposed-M Usual-M Proposed-M

X0 n k Bias MSE V1(X̂0) V2(X̂0) V̂1(X̂0) V̂1(X̂0) V̂2(X̂0)

0.01 5 2 −0.0060 0.0180 0.0170 0.0170 0.0120 0.0100 0.0100
20 −0.0087 0.0130 0.0120 0.0120 0.0072 0.0120 0.0120

100 −0.0060 0.0130 0.0120 0.0120 0.0065 0.0120 0.0120
20 2 −0.0038 0.0086 0.0087 0.0087 0.0120 0.0052 0.0053

20 −0.0028 0.0043 0.0042 0.0042 0.0033 0.0040 0.0040
100 −0.0032 0.0038 0.0038 0.0038 0.0022 0.0036 0.0036

100 2 −0.0023 0.0058 0.0058 0.0058 0.0100 0.0027 0.0027
20 −0.0002 0.0013 0.0013 0.0013 0.0016 0.0012 0.0012

100 −0.0007 0.0008 0.0009 0.0009 0.0007 0.0009 0.0009

0.8 5 2 −0.0011 0.0094 0.0093 0.0094 0.0079 0.0045 0.0046
20 −0.0034 0.0050 0.0048 0.0048 0.0029 0.0045 0.0046

100 −0.0007 0.0047 0.0044 0.0044 0.0024 0.0045 0.0045
20 2 0.0005 0.0063 0.0061 0.0061 0.0095 0.0028 0.0029

20 0.0007 0.0016 0.0016 0.0016 0.0015 0.0015 0.0015
100 −0.0001 0.0012 0.0012 0.0012 0.0008 0.0012 0.0012

100 2 0.0005 0.0050 0.0052 0.0052 0.0099 0.0021 0.0021
20 −0.0001 0.0007 0.0007 0.0007 0.0011 0.0007 0.0007

100 −0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

1.9 5 2 0.0041 0.0160 0.0150 0.0160 0.0120 0.0093 0.0094
20 0.0026 0.0110 0.0110 0.0110 0.0065 0.0110 0.0110

100 0.0076 0.0110 0.0110 0.0110 0.0058 0.0110 0.0110
20 2 0.0006 0.0079 0.0082 0.0082 0.0110 0.0049 0.0049

20 0.0040 0.0039 0.0037 0.0037 0.0030 0.0035 0.0035
100 0.0008 0.0033 0.0033 0.0033 0.0019 0.0031 0.0031

100 2 0.0020 0.0057 0.0057 0.0057 0.0100 0.0025 0.0025
20 0.0003 0.0012 0.0012 0.0012 0.0015 0.0011 0.0011

100 0.0003 0.0008 0.0008 0.0008 0.0006 0.0008 0.0008

Table E2. Empirical bias and mean squared error, theoretical variance, and the mean estimated variance of X̂0, for σ2
δ = 0.1 and

unknown

Mean of V̂(X̂0)

Empirical Theoretical Proposed-M Usual-M Proposed-M

X0 n k Bias MSE V1(X̂0) V2(X̂0) V̂1(X̂0) V̂1(X̂0) V̂2(X̂0)

0.01 5 2 −0.0510 0.1000 0.0700 0.0710 0.0770 0.0680 0.0690
20 −0.0500 0.0950 0.0660 0.0660 0.0220 0.0660 0.0660

100 −0.0510 0.0950 0.0650 0.0650 0.0130 0.0730 0.0730
20 2 −0.0180 0.0280 0.0250 0.0250 0.0670 0.0240 0.0240

20 −0.0160 0.0230 0.0210 0.0210 0.0140 0.0210 0.0210
100 −0.0170 0.0230 0.0200 0.0200 0.0055 0.0210 0.0210

100 2 −0.0046 0.0094 0.0093 0.0093 0.0580 0.0069 0.0069
20 −0.0026 0.0048 0.0048 0.0048 0.0082 0.0048 0.0048

100 −0.0033 0.0043 0.0044 0.0044 0.0029 0.0044 0.0044

0.8 5 2 −0.0084 0.0370 0.0290 0.0290 0.0460 0.0250 0.0250
20 −0.0095 0.0270 0.0240 0.0240 0.0071 0.0200 0.0200

100 −0.0072 0.0290 0.0240 0.0240 0.0037 0.0200 0.0200
20 2 −0.0030 0.0120 0.0110 0.0110 0.0530 0.0085 0.0086

20 −0.0040 0.0068 0.0066 0.0066 0.0061 0.0064 0.0064
100 −0.0031 0.0063 0.0062 0.0062 0.0017 0.0060 0.0060

100 2 −0.0011 0.0063 0.0062 0.0063 0.0550 0.0038 0.0038
20 −0.0015 0.0017 0.0017 0.0017 0.0057 0.0017 0.0017

100 −0.0011 0.0014 0.0013 0.0013 0.0013 0.0013 0.0013

(Continued)
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Table E2. (Continued)

Mean of V̂(X̂0)

Empirical Theoretical Proposed-M Usual-M Proposed-M

X0 n k Bias MSE V1(X̂0) V2(X̂0) V̂1(X̂0) V̂1(X̂0) V̂2(X̂0)

1.9 5 2 0.0430 0.1090 0.0630 0.0630 0.0830 0.0750 0.0750
20 0.0450 0.0860 0.0580 0.0580 0.0210 0.0650 0.0650

100 0.0410 0.0860 0.0580 0.0580 0.0110 0.0600 0.0600
20 2 0.0160 0.0260 0.0230 0.0230 0.0650 0.0210 0.0210

20 0.0140 0.0190 0.0180 0.0180 0.0130 0.0180 0.0180
100 0.0170 0.0200 0.0180 0.0180 0.0048 0.0180 0.0180

100 2 0.0050 0.0088 0.0087 0.0088 0.0570 0.0063 0.0063
20 0.0030 0.0043 0.0042 0.0042 0.0078 0.0042 0.0042

100 0.0020 0.0039 0.0038 0.0038 0.0026 0.0038 0.0038

Table E3. Covering percentage (%) and amplitude (A) of the intervals with a 95% confidence level for the parameter X0, when
σ2

δ = 0.01 and unknown

Usual-M Proposed-M

X0 n k % A %1 A1 %2 A2

0.01 5 2 83.04 0.40 79.34 0.36 79.37 0.36
20 84.95 0.32 91.15 0.41 91.15 0.41

100 83.72 0.31 92.24 0.42 92.24 0.42
20 2 96.46 0.42 83.48 0.28 83.52 0.28

20 90.19 0.22 92.47 0.24 92.47 0.24
100 86.16 0.18 92.78 0.23 92.78 0.23

100 2 98.84 0.40 73.16 0.19 73.16 0.19
20 96.71 0.16 94.14 0.14 94.14 0.14

100 91.90 0.11 94.68 0.12 94.68 0.12

0.8 5 2 85.43 0.32 74.33 0.24 74.39 0.24
20 85.16 0.21 91.34 0.26 91.34 0.26

100 85.04 0.19 92.50 0.25 92.50 0.25
20 2 97.90 0.38 73.55 0.20 73.55 0.20

20 93.55 0.15 93.89 0.15 93.89 0.15
100 86.53 0.11 93.12 0.13 93.12 0.13

100 2 99.41 0.39 65.05 0.16 65.05 0.16
20 98.54 0.13 94.05 0.10 94.05 0.10

100 94.56 0.07 94.86 0.07 94.86 0.07

1.9 5 2 82.47 0.39 78.05 0.35 78.13 0.35
20 84.50 0.31 90.92 0.39 90.92 0.39

100 84.75 0.29 92.83 0.39 92.83 0.39
20 2 96.79 0.41 83.09 0.26 83.11 0.26

20 91.32 0.21 93.29 0.23 93.31 0.23
100 86.43 0.17 93.32 0.22 93.32 0.22

100 2 98.88 0.40 73.06 0.19 73.06 0.19
20 97.12 0.15 94.31 0.13 94.31 0.13

100 92.56 0.10 94.74 0.11 94.74 0.11

Table E4. Covering percentage (%) and amplitude (A) of the intervals with a 95% confidence level for the parameter X0, when
σ2

δ = 0.1 and unknown

Usual-M Proposed-M

X0 n k % A %1 A1 %2 A2

0.01 5 2 84.89 0.94 80.73 0.85 80.79 0.86
20 64.10 0.51 82.75 0.86 82.75 0.86

100 52.09 0.39 82.42 0.86 82.42 0.86
20 2 99.40 0.99 91.04 0.58 91.10 0.58

20 87.10 0.45 92.60 0.55 92.62 0.55
100 65.70 0.28 92.16 0.55 92.18 0.55

100 2 100.00 0.94 87.60 0.32 87.66 0.32
20 98.82 0.36 94.88 0.27 94.88 0.27

100 89.12 0.21 94.84 0.26 94.84 0.26

(Continued)
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Table E4. (Continued)

Usual-M Proposed-M

X0 n k % A %1 A1 %2 A2

0.8 5 2 90.27 0.73 80.63 0.52 80.75 0.52
20 64.39 0.31 82.68 0.51 82.74 0.51

100 50.57 0.23 84.08 0.50 84.08 0.50
20 2 99.92 0.88 87.30 0.35 87.50 0.35

20 91.80 0.30 92.78 0.31 92.82 0.31
100 67.46 0.16 92.38 0.30 92.38 0.30

100 2 100.00 0.91 77.88 0.22 77.98 0.22
20 99.94 0.29 94.98 0.16 95.04 0.16

100 94.60 0.14 94.92 0.14 94.92 0.14

1.9 5 2 85.63 0.91 81.42 0.81 81.42 0.81
20 61.71 0.49 81.89 0.82 81.89 0.82

100 50.71 0.37 81.24 0.81 81.24 0.81
20 2 99.54 0.97 91.12 0.54 91.18 0.55

20 88.10 0.43 92.74 0.52 92.76 0.52
100 66.44 0.26 92.86 0.51 92.86 0.51

100 2 100.00 0.93 86.38 0.30 86.38 0.30
20 99.12 0.35 94.76 0.25 94.76 0.25

100 89.40 0.20 95.00 0.24 95.00 0.24

Table E5. Empirical bias and mean squared error, theoretical variance, and the mean estimated variance of X̂0, for σ2
δ = 0.01

and known

Empirical Theoretical

Usual-M Proposed-M Proposed-M Mean of V̂(X0)

X0 n k Bias MSE Bias MSE V(X̂0) Usual-M Proposed-M

0.01 5 2 −0.0290 0.0210 −0.0280 0.0210 0.0170 0.0180 0.0160
20 −0.0290 0.0140 −0.0320 0.0140 0.0120 0.0081 0.0130

100 −0.0240 0.0140 −0.0270 0.0140 0.0120 0.0070 0.0130
20 2 −0.0081 0.0091 −0.0064 0.0090 0.0086 0.0130 0.0076

20 −0.0060 0.0043 −0.0072 0.0043 0.0041 0.0034 0.0041
100 −0.0038 0.0038 −0.0060 0.0038 0.0037 0.0022 0.0038

100 2 −0.0011 0.0056 −0.0005 0.0056 0.0058 0.0100 0.0053
20 −0.0002 0.0013 −0.0001 0.0013 0.0013 0.0016 0.0012

100 −0.0009 0.0009 −0.0012 0.0009 0.0009 0.0007 0.0009

0.8 5 2 −0.0074 0.0110 −0.0072 0.0100 0.0093 0.0120 0.0085
20 −0.0046 0.0051 −0.0051 0.0052 0.0048 0.0032 0.0049

100 −0.0076 0.0048 −0.0082 0.0048 0.0044 0.0025 0.0046
20 2 −0.0034 0.0063 −0.0031 0.0063 0.0061 0.0100 0.0052

20 0.0001 0.0016 0.0000 0.0016 0.0016 0.0015 0.0016
100 −0.0009 0.0012 −0.0013 0.0012 0.0012 0.0008 0.0012

100 2 0.0000 0.0053 0.0002 0.0053 0.0052 0.0099 0.0048
20 0.0000 0.0007 0.0000 0.0007 0.0007 0.0011 0.0007

100 −0.0001 0.0003 −0.0002 0.0003 0.0003 0.0003 0.0003

1.9 5 2 0.0200 0.0180 0.0200 0.0180 0.0150 0.0170 0.0140
20 0.0240 0.0120 0.0260 0.0130 0.0110 0.0071 0.0120

100 0.0200 0.0130 0.0230 0.0130 0.0100 0.0062 0.0110
20 2 0.0037 0.0082 0.0021 0.0081 0.0082 0.0120 0.0071

20 0.0059 0.0037 0.0066 0.0037 0.0037 0.0030 0.0036
100 0.0033 0.0032 0.0051 0.0032 0.0032 0.0020 0.0033

100 2 0.0020 0.0058 0.0015 0.0057 0.0057 0.0100 0.0053
20 0.0003 0.0012 0.0002 0.0012 0.0012 0.0015 0.0011

100 0.0003 0.0008 0.0006 0.0008 0.0008 0.0006 0.0008
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Table E6. Empirical bias and mean squared error, theoretical variance, and the mean estimated variance of X̂0, for σ2
δ = 0.1 and

known

Empirical Theoretical

Usual-M Proposed-M Proposed-M Mean of V̂(X0)

X0 n k Bias MSE Bias MSE V(X̂0) Usual-M Proposed-M

0.01 5 2 −0.4330 0.5590 −0.3830 0.4580 0.0590 0.3650 0.2310
20 −0.1140 0.1310 0.4140 1.0880 0.0540 0.0250 0.0760

100 −0.1890 0.1540 −0.0290 0.7730 0.0540 0.0200 0.1250
20 2 −0.0930 0.0430 −0.0770 0.0360 0.0210 0.0950 0.0380

20 −0.0490 0.0210 −0.0510 0.0210 0.0160 0.0150 0.0180
100 −0.0430 0.0190 −0.0250 0.0640 0.0150 0.0058 0.0170

100 2 −0.0200 0.0110 −0.0160 0.0097 0.0084 0.0630 0.0110
20 −0.0077 0.0041 −0.0085 0.0039 0.0037 0.0084 0.0038

100 −0.0066 0.0037 −0.0087 0.0037 0.0033 0.0029 0.0033

0.8 5 2 −0.0500 0.0620 −0.0430 0.0550 0.0280 0.1150 0.0620
20 −0.0450 0.0380 0.0820 0.0810 0.0240 0.0086 0.0320

100 −0.0530 0.0510 −0.0069 0.0980 0.0230 0.0055 0.0360
20 2 −0.0280 0.0150 −0.0240 0.0140 0.0110 0.0740 0.0210

20 −0.0079 0.0068 −0.0085 0.0069 0.0064 0.0065 0.0067
100 −0.0055 0.0065 −0.0030 0.0079 0.0060 0.0018 0.0062

100 2 −0.0030 0.0067 −0.0021 0.0065 0.0062 0.0600 0.0091
20 −0.0018 0.0018 −0.0018 0.0017 0.0017 0.0058 0.0017

100 −0.0021 0.0013 −0.0025 0.0013 0.0013 0.0013 0.0013

1.9 5 2 0.3480 0.3770 0.3070 0.3000 0.0530 0.2850 0.1760
20 0.1400 0.1630 −0.3310 0.9370 0.0490 0.0300 0.0780

100 0.0410 0.0180 0.0270 0.0510 0.0140 0.0051 0.0150
20 2 0.0970 0.0430 0.0790 0.0350 0.0190 0.0930 0.0350

20 0.1400 0.1630 −0.3310 0.9370 0.0490 0.0300 0.0780
100 0.1670 0.1300 −0.0005 0.7090 0.0480 0.0160 0.1120

100 2 0.0200 0.0093 0.0160 0.0087 0.0080 0.0620 0.0110
20 0.0120 0.0039 0.0130 0.0037 0.0033 0.0080 0.0035

100 0.0072 0.0031 0.0089 0.0031 0.0029 0.0027 0.0030

Table E7. Covering percentage (%) and amplitude (A) of the intervals with a 95% confidence level for the parameter X0, when
σ2

δ = 0.01 and 0.1 and known

σ2
δ = 0.01 σ2

δ = 0.1

Usual-M Proposed-M Usual-M Proposed-M

X0 n k % A % A % A % A

0.01 5 2 92.10 0.51 91.20 0.48 95.06 1.89 92.40 1.49
20 87.32 0.34 95.18 0.44 63.38 0.59 64.47 1.09

100 84.50 0.32 95.19 0.44 52.69 0.48 89.24 1.18
20 2 97.46 0.43 90.12 0.33 99.87 1.17 96.27 0.71

20 91.00 0.23 94.03 0.25 92.76 0.48 94.48 0.52
100 86.73 0.19 95.21 0.24 70.38 0.30 90.35 0.51

100 2 97.01 0.43 90.00 0.33 100.00 0.98 93.41 0.40
20 92.34 0.23 95.26 0.25 99.77 0.36 95.09 0.24

100 85.93 0.19 94.55 0.24 92.70 0.21 94.42 0.23

0.8 5 2 94.33 0.41 89.28 0.35 98.77 1.31 97.54 0.98
20 86.84 0.22 95.03 0.27 61.85 0.34 81.25 0.69

100 85.65 0.19 95.56 0.27 49.29 0.27 87.82 0.69
20 2 98.35 0.39 88.44 0.27 100.00 1.03 94.09 0.53

20 93.84 0.15 94.41 0.15 94.44 0.32 95.11 0.32
100 85.98 0.11 94.32 0.14 70.38 0.17 92.41 0.31

100 2 98.08 0.39 88.22 0.27 100.00 0.95 92.25 0.34
20 92.75 0.15 93.96 0.15 99.89 0.30 94.89 0.16

100 87.17 0.11 94.60 0.14 95.00 0.14 94.88 0.14

(Continued)
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Table E7. (Continued)

σ2
δ = 0.01 σ2

δ = 0.1

Usual-M Proposed-M Usual-M Proposed-M

X0 n k % A % A % A % A

1.9 5 2 92.30 0.50 90.61 0.46 96.26 1.78 92.14 1.45
20 86.96 0.33 95.13 0.42 63.58 0.56 67.24 1.03

100 85.84 0.30 94.73 0.42 49.30 0.46 83.75 1.21
20 2 97.61 0.43 89.92 0.32 100.00 1.17 96.27 0.70

20 91.60 0.21 94.27 0.23 94.26 0.46 94.95 0.49
100 86.16 0.17 94.99 0.23 72.44 0.28 94.18 0.48

100 2 97.04 0.43 89.70 0.32 100.00 0.97 94.27 0.39
20 91.21 0.21 93.85 0.23 99.59 0.35 95.18 0.23

100 87.04 0.17 95.11 0.23 93.38 0.20 94.98 0.21
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