Boletim Técnico da Escola Politécnica da USP Departamento de Engenharia de Telecomunicações e Controle

ISSN 1517-3550

BT/PTC/0403

Modelagem de FCC Usando Métodos de Identificação por Predição de Erro e por Sub-Espaços

Santos Demetrio Miranda Borjas Claudio Garcia

São Paulo - 2004

14421866

O presente trabalho é um resumo da dissertação de mestrado apresentada por Santos Demetrio Miranda Borjas, sob orientação do Prof. Dr. Claudio Garcia: "Estudo de Identificação por Sub-Espaços e Aplicação a um Processo Industrial", defendida em 05/03/04, na Escola Politécnica.

A íntegra da dissertação encontra-se à disposição com o autor e na Biblioteca de Engenharia de Eletricidade da Escola Politécnica.

FICHA CATALOGRÁFICA

Borjas, Santos Demetrio Miranda

Modelagem de FCC usando métodos de identificação por predição de erro e por sub-espaços / Santos Demetrio Miranda Borjas, Claudio Garcia. -- São Paulo : EPUSP, 2004.

- 6 p. (Boletim Técnico da Escola Politécnica da USP, Departamento de Engenharia de Telecomunicações e Controle ; BT/PTC/0403)
- 1. Modelagem matemática 2. Processos químicos 3. Identificação (Teoria de sistemas e controle) 4. Sistemas discretos I. Garcia, Claudio II. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia de Telecomunicações e Controle III. Título IV. Série ISSN 1517-3550 CDD 511.8

660.2

003.1

511.1

1

Modelagem de FCC usando Métodos de Identificação por Predição de Erro e por Sub-Espaços

Santos Demetrio Miranda Borjas, Claudio Garcia, Laboratório de Automação e Controle- Depto. De Engenharia de Telecomunicações e Controle- Escola Politécnica da Universidade de São Paulo

Resumo-Muitos processos industriais são não lineares, mas em uma determinada faixa de valores, podem ser considerados lineares. O objetivo deste trabalho é mostrar o uso dos métodos de identificação por sub-espaços e o método de Predição de Erro, aplicado a uma unidade de craqueamento catalítico fluidizado. Tal unidade é um equipamento de operação complexa, de não linear, multivariável com comportamento acoplamentos, bifurcações de complexas e problemas estabilidade. Neste estudo simulado, três algoritmos de identificação em tempo discreto são aplicados para obter um modelo aproximado em espaço de estados de múltiplas entradas e múltiplas saídas, em torno de um ponto de operação dado, com o sistema em malha aberta excitado por sinais aleatórios multinível. O desempenho de tais algoritmos é comparado usando-se critérios de qualidade, levando-se em conta a validação cruzada dos modelos. O modelo selecionado descreve muito bem a dinâmica complexa do sistema.

Palavras-chave—Identificação por sub-espaços, modelos em espaço de estados, comparação entre métodos de identificação.

I. INTRODUÇÃO

O funcionamento dos processos industriais tem mudado drasticamente nas últimas décadas. A automação dos processos levou a um aumento de produtividade em alguns setores, obrigando a indústria a se adaptar às demandas do mercado e aumentar sua competitividade [15].

Para aumentar a competitividade é necessário maximizar a eficiência dos processos e, consequentemente, implantar controladores mais eficientes e confiáveis. Para isso é imprescindível se conhecer o comportamento dinâmico do processo, principalmente das partes críticas.

Na atualidade, cada vez mais, o trabalho de um engenheiro consiste na obtenção de modelos matemáticos dos processos estudados [6]. Os modelos são utilizados em áreas tão distintas como: bioengenharia, economia, meteorologia, engenharia, etc. O campo de utilização desses modelos é muito amplo, destacando-se aplicações como: controle, supervisão, predição, simulação, otimização, etc. As técnicas de identificação de sistemas têm evoluído bastante, procurando atender essa demanda com modelos cada vez mais precisos.

Enfatiza-se ainda que os processos industriais estão sujeitos a severos requisitos de eficiência, disponibilidade e segurança.

A complexidade dos mesmos aumenta constantemente e isso torna necessário o desenvolvimento de ferramentas automáticas de auxílio ao operador humano: os sistemas de supervisão. Em termos de disponibilidade e segurança, é necessário destacar as áreas destinadas à detecção e diagnóstico de falhas. Com uma rápida detecção das falhas se pode evitar desde uma perda de produção até uma deterioração do sistema com conseqüências que podem ser catastróficas para o próprio sistema e, pior ainda, para o pessoal da planta. Um dos métodos utilizados para isso é a comparação de algumas variáveis do processo com as saídas equivalentes de um modelo da planta. Tais métodos são denominados diagnóstico baseado em modelo. E para isto, é necessário se dispor de um modelo matemático que se ajuste bem ao comportamento do sistema estudado.

Nesse sentido, grande parte da literatura referente à identificação de sistemas trata como achar modelos polinomiais, como o métodos de predição do erro (PEM) e o métodos das variáveis instrumentais (IVM). No entanto, o uso destes métodos acarreta vários problemas que precisam ser resolvidos. O método PEM, por exemplo, tem excelentes propriedades estatísticas desde que o modelo PEM seja encontrado, o que pode ser às vezes difícil. Por outro lado, o método IVM tenta dar uma estimação dos parâmetros solucionando um sistema de equações lineares. De qualquer forma, a obtenção de modelos PEM e IVM é muito difícil no caso de sistemas multivariáveis, e a confiabilidade numérica pode ser inaceitável em problemas complexos, incluindo sistemas de grandes dimensões, com grande número de entradas, saídas e estados [10], [12].

No caso de sistemas complexos, o modelo em espaço de estados surge como uma alternativa aos modelos PEM e IVM [9]. Para sistemas multivariáveis estes métodos provêem modelos confiáveis em espaço de estados diretamente a partir dos dados de entrada e saída. Os algoritmos envolvidos são numericamente robustos e não usam técnicas de otimização não lineares, o que significa que os algoritmos são rápidos (não iterativos) e precisos (não existem problemas de mínimos locais). A complexidade computacional destes métodos é menor quando comparada ao método PEM, especialmente quando o número de entradas e saídas é grande. Eles não requerem uma representação canônica do modelo em espaço de estados e não precisam de muitos parâmetros de inicialização, como o método PEM.

Dado que sistemas de grandes dimensões são comumente

^{*} Autor para correspondência e-mail. borjas@lac.usp.br (S. M. Borjas)

encontrados na indústria, a aplicação dos algoritmos de identificação por sub-espaços neste campo é bastante promissora [16],[17],[4].

Neste trabalho, um modelo multivariável em espaço de estados é gerado para modelar a unidade de craqueamento catalítico fluidizado (FCC), estimado em torno de um ponto de operação. Três métodos de identificação são aplicados para obter o melhor modelo que descreve o FCC: MOESP e N4SID (identificação por sub-espaços) e PEM. Comparações com vários métodos de identificação por sub-espaços aplicados a outros processos podem ser encontradas em [14].

II. MÉTODO DE IDENTIFICAÇÃO POR SUB-ESPAÇOS

Nos métodos de identificação de sistemas dinâmicos por sub-espaços são tratados modelos de sistemas lineares invariantes no tempo em espaço de estados operando em tempo discreto. Para empregar tais métodos é necessários o uso de ferramentas de teoria de sistemas, geometria e álgebra linear.

Os métodos lineares de identificação de sistemas por subespaços estão relacionados com sistemas e modelos da forma:

$$x_{k+1} = Ax_k + Bu_k + w_k \tag{1}$$

$$y_1 = Cx_1 + Du_1 + v_1 \tag{2}$$

com:

$$E\left[\begin{pmatrix} w_{p} \\ v_{p} \end{pmatrix} \begin{pmatrix} w_{q}^{T} & v_{q}^{T} \end{pmatrix}\right] = \begin{pmatrix} Q & S \\ S^{T} & R \end{pmatrix} \delta_{pq} \geq 0 \qquad (3)$$

Neste modelo, se tem:

Vetores: Os vetores $u_k \in \Re^m$ e $y_k \in \Re^l$ são as medições das entradas e saídas no instante de tempo k dos processos com m entradas e l saídas, respectivamente. O vetor $x_k \in \Re^n$ é o vetor de estados do processo em tempo discreto no instante k e contém os valores numéricos de n estados. $v_k \in \Re^{k + 1}$ e $w_k \in \Re^{m + 1}$ são vetores de sinais não medidos, v_k corresponde ao ruído na medição e w_k ao ruído do processo. Assume-se que v_k e w_k tenham média zero, sejam seqüências vetoriais de ruído branco estacionário e não sejam correlacionados com as entradas u_k . δ em (3) é o delta de Kronecker e satisfaz $\delta_{pq} = 0$ se $p \neq q$ e $\delta_{pq} = 1$ se p = q. O efeito do ruído w_k é diferente do ruído v_k : w_k como uma entrada terá um efeito dinâmico no estado x_k e na saída y_k , v_k somente afeta y_k e portanto é chamado de ruído de medição.

Matrizes: $A \in \mathbb{R}^{ncn}$ é a matriz dinâmica do sistema. Descreve a dinâmica do sistema (é caracterizada por seus autovalores). $B \in \mathbb{R}^{ncm}$ é a matriz de entrada, a qual representa a transformação linear pela qual as entradas determinísticas (u_k) influenciam o estado seguinte. $C \in \mathbb{R}^{ncn}$ é a matriz de

saída, a qual descreve o estado interno atual que será transferido para o mundo exterior nas saídas y_k . O termo $D \in \mathbb{R}^{hom}$ é a matriz de transmissão direta. As matrizes $Q \in \mathbb{R}^{nor}$, $S \in \mathbb{R}^{mil}$ e $R \in \mathbb{R}^{hil}$ são as matrizes de covariância das seqüências de ruído w_k e v_k . A matriz em blocos (3) é assumida como definida positiva, como é indicado pelo sinal de desigualdade. O par de matrizes $\{A,C\}$ é assumido como observável, o que implica que todas as saídas y_k do sistema podem ser observadas e podem ser assim identificadas. O par de matrizes $\{A,[B,Q^{uz}]\}$ é assumido como controlável, o que implica que todos os modos do sistema podem ser excitados por quaisquer entradas determinísticas u_k e/ou entradas estocásticas w_k .

Uma das idéias importantes ao se desenvolver a identificação por sub-espaços foi a re-introdução do conceito dos estados x_k de um sistema dinâmico dentro do sistema de identificação. Em contraste com os algoritmos de identificação "clássicos". muitos dos algoritmos por sub-espaços primeiro estimam /calculam os estados (implícita ou explicitamente), em seguida o modelo em espaço de estados é determinado. Esta é uma importante diferença entre os métodos clássicos, por exemplo PEM e os métodos por sub-espaços, como se ilustra na figura 1.

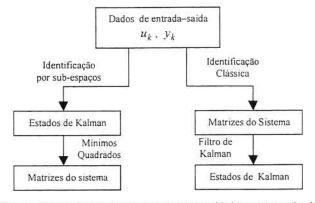


Fig. 1. A identificação de sistemas tem como objetivo a construção de modelos a partir dos dados de entrada e saída. O lado esquerdo mostra uma aproximação do método por sub-espaços: os estados de Kalman podem ser estimados diretamente dos dados de entrada e saída, depois é fácil obter as matrizes do sistemas A. B. C. D. O lado direito é uma aproximação clássica primeiro se obtêm as matrizes do sistema com as quais depois podem ser estimados os estados.

É uma prática comum distinguir três casos distintos na identificação de sistemas por sub-espaços [14]:

- O caso puramente determinístico $(w_k = v_k = 0)$
- O caso puramente estocástico $(u_k = 0)$
- O caso combinado determinístico/estocástico.

O termo "método de identificação por sub-espaços" foi introduzido em [8]. Existem agora muitas versões de métodos por sub-espaços.

Os métodos de identificação por sub-espaços estimam sequências de estados diretamente dos dados de entrada e

saída, explícita ou implicitamente, com uma projeção ortogonal ou oblíqua dos espaços de filas de certas matrizes em blocos de Hankel de dados (de entrada e saída) nos espaços de filas de outras matrizes em blocos de Hankel, seguido por uma decomposição em valores singulares (SVD) para determinar a ordem, a matriz de observabilidade e/ou a sequência de estados. A extração do modelo em espaço de estados então se alcança através da solução do problema de Cada um destes passos pode ser mínimos quadrados. executado usando-se algoritmos lineares numéricos bem conhecidos da álgebra, tais como SVD e a decomposição QR. Uma desvantagem destes métodos é que os estados são "artificiais" e não é possível entender como uma variável do processo, que não está diretamente incluída no modelo, afeta o processo. Grande quantidade de dados é necessária para obter modelos mais precisos, o que às vezes pode ser demasiado custoso.

Cada método de identificação por sub-espaços difere dos outros em conceito, interpretação e implementação computacional. Uma generalização da identificação por sub-espaços é apresentada em [13].

Os algoritmos de identificação considerados neste trabalho

MOESP: Multivariable Output-Error State sPace, [3].

N4SID: N4SID function (n4sid.m) no MATLAB System Identification Toolbox v.4.04.

PEM: Prediction Error Method.

Como previamente foi mencionado, o objetivo deste trabalho é comparar o desempenho destes métodos e não analisar a implementação dos algoritmos. No entanto, para maiores detalhes, o leitor pode consultar [11], [13], [14], [2].

III. DESCRIÇÃO DO PROCESSO

Diversos tipos de FCC existem na literatura. Este trabalho é baseado no modelo desenvolvido por Moro e Odloak [7], o qual é considerado padrão para a validação de estruturas de controle de FCC nas refinarias da PETROBRÁS S.A. [1]. Os valores operacionais deste modelo estão de acordo com dados reais provenientes da refinaria Henrique Lajes de São José dos Campos (REVAP), situada no Estado de São Paulo, Brasil. O processo é mostrado na Fig. 2, cuja descrição pode-se encontrar em [12].

Neste trabalho, se quer obter um modelo para monitoramento e controle, então se considerou, como entradas as variáveis manipuladas e como saídas as variáveis controladas.

Variáveis de entrada

- Fluxo total de ar para o regenerador $(u_1 = R_{a1} + R_{a2} = R_{ai})$.
- Abertura da válvula do catalisador regenerado para o riser (u₂ = C_{TCI}).
- Fluxo total da carga $\left(u_3 = R_{i/1} + R_{i/2} = R_{i/}\right)$ e temperatura da carga $\left(u_4 = T_{jp}\right)$.
- Abertura da válvula de nível de catalizador no reator

$$\left(u_{5}=C_{1(1)}\right).$$

- Abertura da válvula de pressão diferencial entre o regenerador e o reator (u₀ = C_{PACT}).
- Abertura da válvula de pressão de sucção do compressor $(u_7 = C_{K^{(1)}})$.

Variáveis de saída

- Temperatura da fase densa da primeira etapa do regenerador $(y_1 = T_{rx})$.
- Temperatura da fase densa da segunda etapa do regenerador $(y_z = T_{rez})$.
- Severidade das reações de craqueamento (y, = SEV).
- Temperatura de saída do riser $(y_4 = T_{rr})$.
- Temperatura da fase diluída da primeira etapa do regenarador $(y_s = T_{ab})$.
- Temperatura da fase diluída geral do regenerador $(y_6 = T_{dx})$.

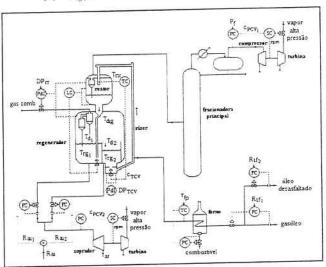


Fig. 2. Diagrama esquemático da unidade FCC Kellog modelo F

Os dados de entrada/saída foram coletados com um tempo de amostra de Δt =10 segundos, obtendo-se 8639 amostras.

Os sinais pré-tratados são mostrados nas Figs. 3-4. Das amostras, 75% são usadas na identificação e os restantes 25% na validação cruzada do modelo. Para o procedimento de identificação foi considerado o caso puramente determinístico.

5.1 Estimação da ordem

Existe uma extensa literatura de algoritmos para estimar a ordem do modelo de um sistema linear em espaço de estados.

Nos algoritmos por sub-espaços, a determinação da ordem do sistema (n) é muito sutil. Idealmente, esta informação pode ser determinada pelo número dos valores singulares diferentes de zero da projeção ortogonal ou oblíqua dos espaços de filas da matriz em blocos de Hankel de dados de entrada e saída. No entanto, quando os dados do sistema contêm ruídos, este número não é fácil de calcular.

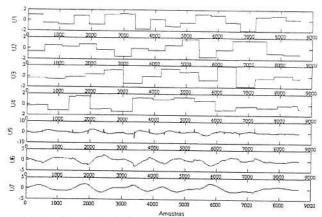


Fig. 3. Dados das sequências de entrada

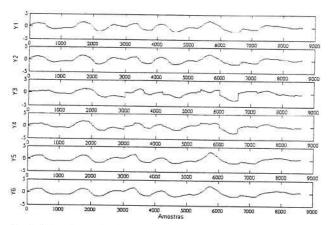


Fig. 4. Dados das sequências de saída

Outro procedimento é selecionar o valor n que minimiza os erros de estimação, técnica usada por algoritmos como PEM, os quais requerem maior esforço computacional. Existe um critério estatístico que pode ajudar a obter a ordem de modelo, Critério de Informação de Akaike (AIC), definido em [5].

$$AIC(n) = \eta . \ln \left[\sigma_{error}^{2}(n) \right] + 4P_{n}$$
 (4)

onde η é o número de dados usados na identificação, $\sigma_{enur}^2(n)$ é a variância do erro de modelagem para um modelo de ordem $n \text{ com } P_n$ parâmetros.

A aplicação do critério AIC é mostrada na fig. 5, onde se pode observar que o valor mínimo ocorre para n = 15.

5.2 Desempenho dos modelos

Considerando como a melhor ordem n=15, se pretende avaliar a qualidade do modelo, usando-se dois indicadores de desempenho. Os indicadores de desempenho são: média relativa do erro quadrático (MRSE) e média da variância relativa (MVAF), os quais são definidos como:

MRSE (%) =
$$\frac{1}{l} \cdot \sum_{i=1}^{l} \sqrt{\frac{\sum_{j=1}^{N} (y - \hat{y})^2}{\sum_{j=1}^{N} (y)^2}} \cdot 100$$
 (6)

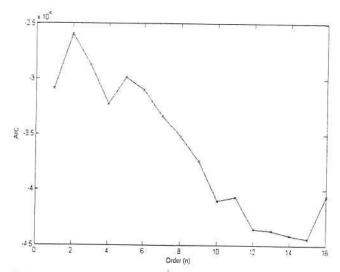


Fig. 5. Espectro de valores AIC

$$MVAF(\%) = \frac{1}{l} \cdot \sum_{i=1}^{l} \left(1 - \frac{\text{var} iancia}{\text{var} iancia} (y - \hat{y})}{\text{var} iancia} \right) \cdot 100 \tag{7}$$

onde y é a saída real e \hat{y} é a saída estimada pelo modelo obtido. O índice MRSE é muito usado na literatura e o índice MVAF é usado pelo SMI Toolbox. Ambos índices de desempenho são usados para avaliar a qualidade do modelo produzido por cada algoritmo.

TABELA I
RESULTADOS NUMÉRICOS DO DESEMPENHO DOS ALGORITMOS

Algoritmos	Identificação		Validação cruzada		Tempo de
	MRSE (%)	MVAF (%)	MRSE (%)	MVAF (%)	ento (s)
MOESP	3.0625	99.8946	11,7724	98.0947	345.266
N4SID	2.1038	99.9506	7.8526	99.6038	585.682
PEM	2.3363	99.9310	7.0869	99.6804	4563.392

Analisando-se os valore da tabela I, o modelo N4SID é o melhor em termos de identificação, na validação o melhor modelo é o PEM. Verifica-se que o tempo de processamento para obtenção do modelo é menor para o MOESP e é enorme para o PEM. Optou-se pelo modelo N4SID para identificar a unidade de FCC.

5.3 Resultados da identificação

O algoritmo N4SID gera um modelo determinístico, descrito pelas seguintes matrizes:

```
0.9971
              0.0016 0.0016 -0.0020
                                         0.0008 -0.0014
                                                           0.0003 -0.0011
      -0.0188
              0.9788
                       -0.0199
                                -0.0132
                                          0.0005
                                                 -0.0017
                                                            0.0045
                                                                    -0.0309
      -0.0151
              -0.0215
                       0.9806
                                -0 0116
                                          0.0059
                                                  -0.0076
                                                           -0.0079
                                                                    -0 0365
      -0.0066
              0.0206
                       0.0150
                                0.9770
                                          0.0042
                                                  -0.0021
                                                           -0.0042
                                                                    -0.0015
      0.0036
              -0.0065
                       -0.0161
                                0.0014
                                          0.9766
                                                  0.0257
                                                           0.0302
                                                                    0.0084
     -0.0107
              0.0336
                       0.0456
                                -0 0345
                                          0.0275
                                                  0.9425
                                                           0.0080
                                                                    -0.0219
     -0.0530
              -0.0685
                       -0.0768
                                0.0300
                                          0.0196
                                                  0.0370
                                                           0.8579
                                                                    0.0135
              0.0422
      0.0031
                       0.0721
                                -0 0540
                                         -0.0018
                                                  -0.0541
                                                           0.1031
                                                                    0.8787
              -0.0667
     -0.0538
                       -0.0560
                                0.0158
                                          0.0709
                                                  -0.0307
                                                           -0.0629
                                                                    -0.0905
              0.0643
                       0.0662
                                0.0481
                                         -0.0422
                                                  -0.0046
                                                           0.0780
                                                                    0.0997
      0.0563
      -0.0435
              -0.0674
                       -0.0620
                                -0.1128
                                          0.0053
                                                   0.0316
                                                           -0.0918
                                                                    -0.1064
                                        -0.1223
                       0.0743
                                -0.0032
                                                  0.0930
                                                           0.1977
                                                                    0 2228
      0.1677
              0.1424
                                -0.0880
                                                   0.0229
                                                           -0.3380
     -0.1620
              -0.1084
                       -0.1227
                                          0.0738
                                                                    -0.0720
                       0.0974
                                -0.0273
                                         0.0133
                                                  -0.1283
                                                           0.1960
                                                                    -0.0507
      0.0974
              0.1278
      -0.0875
              -0.0243
                       0.0208
                                0.0068
                                         0.1419
                                                 -0.2144
                                                           -0.0240
                                                                    -0.2225
             -0.0002
                      -0.0005
                                0.0005
                                        -0.0010
                                                 -0.0004
                                                           0.0001
                                                                   -0.0009
                                                 -0.0063
                      0.0048
                                0.0031
                                        -0.0123
                                                          -0.0022
                                                                   -0.0093
              0.0020
                      0.0004
                               0.0051
                                        -0.0144
                                                 -0.0067
                                                          -0.0008
                                                                   -0.0099
              0.0040
                      -0.0322
                                0.0141
                                        -0.0176
                                                 -0.0006
                                                          0.0060
                                                                   -0.0164
             -0.0091
                      0.0132
                                0.0393
                                         -0.0399
                                                  0.0182
                                                          -0.0151
                                                                   -0.0274
              0.0501
                      -0.0407
                                0.0422
                                        0.0056
                                                 -0.0275
                                                          0.0578
                                                                   0.0497
             -0.0338
                      -0.0137
                                0.0745
                                         0.0491
                                                 -0.0452
                                                          0.0287
                                                                   0.0932
              0.0287
                      0.0027
                               -0.0088
                                        0.0124
                                                 0.0311
                                                          -0.0660
                                                                   -0.1140
              0.8395
                               -0.0076
                                        0.1369
                                                 0.0732
                                                          -0.0089
                                                                  -0.0324
              0.1065
                      0.7599
                               0.1441
                                        0.0970
                                                 0.0331
                                                          0.0554
                                                                  -0.0786
             -0.1381
                      0.1404
                               0.8488
                                        -0.2100
                                                 -0.1220
                                                          -0.0630
                                                                   -0.1034
             0.0928
                      -0.1044
                               -0.2030
                                        0.6325
                                                 0.0400
                                                          -0.1811
                                                                  -0.0623
             -0.0124
                      -0.0951
                               0.1454
                                        -0.0869
                                                 0.7038
                                                          0.1723
                                                                   0.1867
             0.0194 -0.0512
                               0.0300
                                        0.2220
                                                 0.0575
                                                          0.5618 -0.2240
        0.0008 -0.0006 -0.0006 -0.0006
                                           0.0004
                                                    0.0004 -0.0753
        -0.0215
                -0.0120
                         -0.0205
                                  -0.0014
                                           -0.0197
                                                     0.0255
                                                             -1.5740
        0.0078
                -0.0062
                         -0 0145
                                  -0.0018
                                           -0.0070
                                                     0.0303
                                                             -0.7581
        0.0443
                -0.0102
                         -0.0126
                                  -0.0230
                                            0.0227
                                                    0.0123
                                                             -1.8957
        -0 1420
                -0.0522
                         -0.0947
                                  -0.0023
                                           -0.0717
                                                     0.0761
                                                             -7.5617
                                                    -0.1807
                                                             7.6301
        0.2021
                 0.0580
                         0.1341
                                  -0.0051
                                           0.1634
                                                    0.4498
        0.3417
                0.1412
                         0.1836
                                  -0.0072
                                           0.1976
                                                             20,1760
        -0.2097
                                                    -0.3891
                -0.1194
                         -0.1723
                                   0.0306
                                           -0.2513
                                                             -16,2036
 B
        -0.5631
                -0.0511
                         -0.0467
                                   0.0049
                                           -0.2495
                                                    0.7668
        0.3384
                -0.0199
                          0.0470
                                  -0.0831
                                           0.0919
                                                    -1.0659
                                                             -9.0940
                          -0.2022
                                            -0.3483
                                                    -1.0798 -11.2650
        -0.3888
                -0.1040
                                  -0.0338
       -0.0403
                -0.1395
                         -0.4313
                                   0.0263
                                           0.0534
                                                    1 7008
                                                            -15 6494
        1 0045
                0.3328
                         0.5300
                                  -0.0931
                                           0.4901
                                                    -1.5066
                                                            46,1010
                                           -0.5869
                                                    -0.0179
                                                             -5.2137
        0.0085
                -0.1171
                         -0.3299
                                  0.2160
        -0.8273 -0.2708
                         -0.3151
                                  -0.1506
                                           -0.5829
                                                    0.3114 -43.9104
   15 1600 -0 0397
                     0.0601 -0.3288
                                       -0.0046
                                                -0.0097
                                                          0.0074
                                                                  -0.0054
   14.8961
                                       -0.0012
                                                         -0.0007
                                                                   0.0111
            -0.7823
                     -0.3916
                              -0.1962
                                                -0.0092
                              -2.4651
                                        0.4254
                                                -1.2191
                                                         -1.2291
                                                                  -1.2662
   20.8635
            -1.2671
                     -0.2665
                                                                  -1.0003
                              -1.9987
                                        0.8739
                                                -0.7633
                                                         -0.9132
   21.4853
            -1.5652
                     -0.3272
                                                -0.0314
                                                         0.0883
                                                                  0.0567
   -2 0342
            4.6441
                     -4.1332
                              2.1016
                                       -0.0097
                                                         0.0425
                                                                  0.0302
   -1.2676
            2.0325
                    -1.2223
                               1.8996
                                       -0.0095
                                                -0.0145
                     0.0019
                             -0.0010
                                       0.0003
                                                -0.0002
                                                        -0.0006
                                                                 -0.0007
            0.0021
                                       -0.0003
                                                0.0011
                                                        -0.0017
                                                                 -0.0021
            0.0047
                     -0.0015
                              -0.0012
                     -0.3961
                               0.1077
                                        0.3289
                                                0.0381
                                                         -0.0986
                                                                 -0.0811
                                                                  -0.0607
            -0.9184
                     -0.3236
                               0.0829
                                        0.2434
                                                0.0340
                                                         -0.0799
                                                        -0.0106
            0.0349
                     -0.0996
                              0.0106
                                       0.0003
                                                0.0105
                                                                 -0.0047
                     -0.0642
                              0.0048
                                       0.0001
                                                0.0067
                                                        -0.0063
                                                                 -0.0034
      0.0400 0.0177
                     -0.0018 -0.0041
                                      0.0119 -0.0157
                                                      1.9575
                              -0.0025
                                      -0.0036
                                              -0.0098
                                                      0.4024
      0.0241
              0.0062
                     -0.0167
                                              -0.4077
              0.0644
                     -0.4713
                              -0.0366
                                      0.0558
                                                      -2.7370
D=
      0.1112
                              0.0755
                                      0.0387
                                              -0.2059
                                                      0.7633
              0.0414
      0.0425
                     -0.2684
                              0.0242
                                     -0.1464
                                              0.3582
      -0 0412
             0.0314
                     -0.0364
```

Os pólos (autovalores da matriz A) são mostrados na fig. 6. Os pólos localizados próximos do círculo de raio unitário estão relacionados com a dinâmica lenta do sistema.

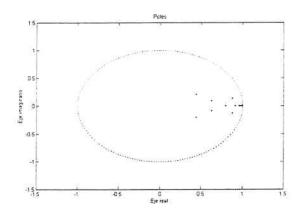


Fig. 6. Localização dos pólos do modelo obtido

A fig. 7 mostra as saídas geradas pelo modelo determinístico identificado (linha tracejada). Pode-se observar que para uma faixa de operação dada, o modelo identificado reproduz muito bem as principais características dinâmicas do processo da unidade FCC. Foram consideradas condições iniciais nulas.

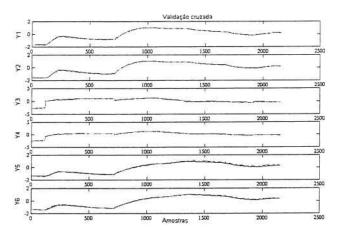


Fig. 7. Comparação das respostas do processo (linha continua) versus modelo (linha tracejada)

IV. CONCLUSÕES

Neste trabalho, três algoritmos de identificação (MOESP, N4SID, PEM) foram aplicados a um processo industrial complexo (unidade de FCC), para identificar um modelo MIMO em espaço de estados de tempo discreto, linear, invariante no tempo e seus resultados foram comparados. Percebe-se que um modelo linear pode aproximar um processo não linear dentro de uma determinada faixa de operações. O critério de Akaike forneceu a ordem do modelo (n=15). A comparação do desempenho foi feita mediante validação cruzada para cada algoritmo, fazendo-se uso de critérios de desempenho. Para este caso particular, o modelo N4SID apresentou melhor desempenho. Dos três algoritmos testados o modelo PEM foi o mais lento. O modelo obtido é observável, controlável e assintoticamente estável em uma determinada faixa de operação, podendo ser usado em aplicações de controle e monitoramento.

V. AGRADECIMENTO

Os autores agradecem o apoio financeiro da CAPES (Brasil) para a realização deste trabalho.

VI. REFERÊNCIAS

- A. C. Zanin, M. T. Gouvêa, D. Odloak, Integrating real-time optimization into model-predictive controller of the FCC system Control Engineering Practice, 10(8), pp.819-831, 2002.
- [2] B. De Moor, P. Van Overschee, & W. Favoreel, Algorithms for subspace state space system identication - an overview. In B. Datta (Ed.), Applied and computational control, signal and circuits, Vol. 1 (pp. 247–311). Birkh.auser: Boston (Chapter 6), 1999.
- [3] B. Haverkamp; M. Verhaegen, SMI Toolbox: state space model identification software for multivariable dynamical systems, v.1.0, Delft University of Technologyy, The Netherlands. 1997.
- [4] G. Emoto; S. Lakshminarayanan; T. Katayama; M. Ogawa, Industrial applications of subspace identification methods. In: *International Symposium on Advanced Control of Industrial Processes*, AdCONIP'02, Kumamoto, Japan, Proceedings, pp.321-326. 2002.
- [5] H. Akaike, Information theory and an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory, Budapest, Hungary. Petrov, B.N., Csaki, F.; (Eds.), pp.267-281. 1973.
- [6] L. Ljung, System Identification -Theory for the User, 2da. Ed., Prentice Hall Englewood Cliffs, NJ, 1999.
- [7] L.F.L. Moro, D. Odloak, Constrained multivariable control of fluid catalytic cracking converters. *Journal of Process Control*, 5(1), pp 29-39, 1995.
- [8] M. Verhaegen, & E. Deprettere, Subspace model identication. In E. F. Deprettere, & A. J. van der Veen (Eds.), Algorithms and parallel VLSI architectures, Vol. II. Amsterdam: North-Holland, 1991.
- [9] M. Viberg, "Subspace-based methods for the identication of linear timeinvariant systems". Automatica, Special Issue on Trends in System Identification, 31(12), 1835–1851, 1995.
- [10] M. Viberg. "Subspace-based state-space system identication". Circuits. Systems and Signal Processing, 21(1), 23–37. 2002.
- [11] M. Viberg, Subspace methods in systems identification. In: 10th IFAC Symposium on System Identification, SYSID'94, Copenhagen, Denmark, Proceedings, v.1, pp.1-12, 1994
- [12] O. A. Z. Sotomayor, D. Odloak, "Modelamiento de Procesos Industriales Complejos Usando Métodos de Identificación por subespacios," en: Il encuentro científico internacional de invierno ECI2003i, Lima, Perú. 2003.
- [13] P. Van Overschee, & B. De Moor, A unifying theorem for three subspace system identication algorithms. *Automatica, Special Issue on Trends in System Identification*, 31(12), 1853–1864, 1995.
- [14] P. Van Overschee, & B. De Moor, Subspace identification for linear systems: Theory, implementation, applications. Dordrecht: Kluwer Academic Publishers, 1996.
- [15] T. Backx, "Identification of an industrial process: A Markov Parameter Approach", Ph.D. dissertation, Technical Univ Eindhoven, the Netherlands, 1987.
- [16] W. E. Larimore, Automated multivariable system identification and industrial applications. In: American Control Conference, ACC'99, San Diego, CA, Proceedings, v.2, pp.1148-1162, 1999.
- [17] W Favoreel, B. DeMoor, P. VanOverschee, Subspace state space system identification for industrial processes. *Journal of Process Control*, v.10, n.2-3, pp.149-155, 2000

VII. BIOGRAFIA

Miranda Borjas, nascido na cidade de Trujillo. La Libertad. Perú, em 24 de Dezembro de 1972. Graduado em Licenciatura em Matemática na Universidade Nacional de Trujillo.

Está desenvolvendo Mestrado em Engenharia Elétrica na área de Automação e Controle na Escola Politécnica da Universidade de São Paulo(EPUSP) Brasil.

Claudio Garcia, Engenherio. Mestre e Doutor pela Escola Politécnica da Universidade de São Paulo Trabalha com identificação de sistemas, modelagem e controle de processos industriais.

BOLETINS TÉCNICOS - TEXTOS PUBLICADOS

- BT/PTC/9901 Avaliação de Ergoespirômetros Segundo a Norma NBR IEC 601-1- MARIA RUTH C. R. LEITE, JOSÉ CARLOS TEIXEIRA DE B. MORAES
- BT/PTC/9902 Sistemas de Criptofonia de Voz com Mapas Caóticos e Redes Neurais Artificiais MIGUEL ANTONIO FERNANDES SOLER, EUVALDO FERREIRA CABRAL JR.
- BT/PTC/9903 Regulação Sincronizada de Distúrbios Senodais VAIDYA INÈS CARRILLO SEGURA, PAULO SÉRGIO PEREIRA DA SILVA
- BT/PTC/9904 Desenvolvimento e Implementação de Algoritmo Computacional para Garantir um Determinado Nível de Letalidade Acumulada para Microorganismos Presentes em Alimentos Industrializados – RUBENS GEDRAITE, CLÁUDIO GARCIA
- BT/PTC/9905 Modelo Operacional de Gestão de Qualidade em Laboratórios de Ensaio e Calibração de Equipamentos Eletromédicos – MANUEL ANTONIO TAPIA LÓPEZ, JOSÉ CARLOS TEIXEIRA DE BARROS MORAES
- BT/PTC/9906 Extração de Componentes Principais de Sinais Cerebrais Usando Karhunen Loève Neural Network EDUARDO AKIRA KINTO, EUVALDO F. CABRAL JR.
- BT/PTC/9907 Observador Pseudo-Derivativo de Kalman Numa Coluna de Destilação Binária JOSÉ HERNANDEZ LÓPEZ, JOSÉ JAIME DA CRUZ, CLAUDIO GARCIA
- BT/PTC/9908 Reconhecimento Automático do Locutor com Coeficientes Mel-Cepstrais e Redes Neurais Artificiais ANDRÉ BORDIN MAGNI, EUVALDO F. CABRAL JÚNIOR
- BT/PTC/9909 Análise de Estabilidade e Síntese de Sistemas Híbridos DIEGO COLÓN, FELIPE MIGUEL PAIT
- BT/PTC/0001 Alguns Aspectos de Visão Multiescalas e Multiresolução JOÃO E. KOGLER JR., MARCIO RILLO
- BT/PTC/0002 Placa de Sinalização E1: Sinalização de Linha R2 Digital Sinalização entre Registradores MFC- PHILLIP MARK SEYMOUR BURT, FERNANDA CARDOSO DA SILVA
- BT/PTC/0003 Estudo da Técnica de Comunicação FO-CDMA em Redes de Fibra Óptica de Alta Velocidade TULIPA PERSO, JOSÉ ROBERTO DE A. AMAZONAS
- BT/PTC/0004 Avaliação de Modelos Matemáticos para Motoneurônios DANIEL GUSTAVO GOROSO, ANDRÉ FÁBIO KOHN
- BT/PTC/0005 Extração e Avaliação de Atributos do Eletrocardiograma para Classificação de Batimentos Cardiacos ELDER VIEIRA COSTA, JOSÉ CARLOS T. DE BARROS MORAES
- BT/PTC/0006 Uma Técnica de Imposição de Zeros para Auxílio em Projeto de Sistemas de Controle PAULO SÉRGIO PIERRI, ROBERTO MOURA SALES
- BT/PTC/0007 A Connected Multireticulated Diagram Viewer PAULO EDUARDO PILON, EUVALDO F. CABRAL JÚNIOR
- BT/PTC/0008 Some Geometric Properties of the Dynamic Extension Algorithm PAULO SÉRGIO PEREIRA DA SILVA
- BT/PTC/0009 Comparison of Alternatives for Capacity Increase in Multiple-Rate Dual-Class DS/CDMA Systems CYRO SACARANO HESI, PAUL ETIENNE JESZENSKY
- BT/PTC/0010 Reconhecimento Automático de Ações Faciais usando FACS e Redes Neurais Artificiais ALEXANDRE TORNICE, EUVALDO F. CABRAL JÚNIOR
- BT/PTC/0011 Estudo de Caso: Tornando um Projeto Testável Utilizando Ferramentas Synopsys REINALDO SILVEIRA, JOSÉ ROBERTO A. AMAZONAS
- BT/PTC/0012 Modelos Probabilisticos para Rastreamento em Carteiras de Investimento HUGO G. V. DE ASSUNÇÃO, OSWALDO L. V. COSTA
- BT/PTC/0013 Influência de um Controle Imperfeito de Potência e Monitoramento da Atividade Vocal na Capacidade de Sistemas DS/CDMA MÁRCIO WAGNER DUARTE ROLIM, PAUL JEAN ETIENNE JESZENSKY
- BT/PTC/0014 Canceladores de Interferência Sucessivo e Paralelo para DS/CDMA TAUFIK ABRÃO, PAUL JEAN E. JESZENSKY
- BT/PTC/0015 Transmissão de Serviços de Multimídia num Sistema Móvel Celular CDMA de Banda Larga EDUARDO MEIRELLES MASSAUD, PAUL JEAN ETIENNE JESZENSKY
- BT/PTC/0016 Disseminação do HIV em uma População Homossexual Heterogênea MARCOS CASADO CASTÑO, JOSÉ ROBERTO CASTILHO PIQUEIRA
- BT/PTC/0017 Implementação e Avaliação em Laboratório de um Monitor Cardíaco Portátil para Três Derivações RAISA FERNÁNDEZ NUNEZ, JOSE CARLOS TEIXEIRA DE BAROS MORAES
- BT/PTC/0018 Projeto de Filtros Recursivos de N-ésima Banda IRINEU ANTUNES JÚNIOR, MAX GERKEN
- BT/PTC/0019 Relative Flatness and Flatness of Implicit Systems PAULO SÉRGIO PEREIRA DA SILVA, CARLOS CORRÊA FILHO
- BT/PTC/0020 Estimativa de Fluxo Sangüíneo nas Artérias Coronárias Usando Imagens de Cineangiocardiografia ANA CRISTINA DOS SANTOS, SÉRGIO SHIGUEMI FURUIE
- BT/PTC/0021 Modelos Populacionais para AIDS e Análise do Equilibrio sem Epidemia ELIZABETH FERREIRA SANTOS, JOSÉ ROBERTO CASTILHO PIQUEIRA

- BT/PTC/0101 Model-Based Soft-Sensor Design for On-Line Estimation of the Biological Activity in Activated Sludge Wastewater Treatment Plants OSCAR A. Z. SOTOMAYOR, SONG WON PARK, CLAUDIO GARCIA
- BT/PTC/0102 Reconhecimento Automático do Locutor Utilizando a Rede Neural Artificial Field Distributed Memory FDM MARCELO BLANCO, EUVALDO F. CABRAL JR.
- BT/PTC/0103 Algoritmos de Filtragem e Previsão em Modelos de Volatilidade FERNANDO LOVISOTTO, OSWALDO L. V. COSTA
- BT/PTC/0104 Método de Diferenças Temporais Aplicado às Equações de Riccati Acopladas entre Si OSWALDO L. V. COSTA, JULIO C. C. AYA
- BT/PTC/0105 Método de Diferenças Finitas e de Monte Carlo em Derivativos ANDRÉ CURY MAIALI, OSWALDO LUIZ DO VALLE COSTA
- BT/PTC/0106 Resolução de um Problema Inverso de Eletromagnetismo por Meio de Redes Neurais Artificiais ARNALDO MEGRICH, JORGE MIECZYSLAW JANISZEWSKI
- BT/PTC/0107 Projeto de Controlador de Temperatura para Perfusão Peritoneal com Hipertermia e Quimioterapia GIANCARLO ANTONIO BERZACOLA, FUAD KASSAB JÚNIOR
- BT/PTC/0108 0 Papel de Diferentes Grupos Populacionais na Transmissão Sexual do HIV ELIZABETH FERREIRA SANTOS, JOSÉ ROBERTO CASTILHO PIQUEIRA
- BT/PTC/0109 Terapias Ótimas Anti-HIV para a Redução da Transmissão Vertical RENATO BEVILACQUA, LUIZ HENRIQUE ALVES MONTEIRO
- BT/PTC/0110 Brain Signal Analysis Using Non-Linear ARIMA Models ERNANE J. X. COSTA, EUVALDO FERREIRA CABRAL JR
- BT/PTC/0111 Cancelamento de Eco Acústico Estéreo: Análise de Algoritmos Adaptativos e um novo Método de Redução do Desalinhamento ROBERTO ROSCHEL BELLI, PHILLIP MARK SEYMOUR BURT
- BT/PTC/0112 Natural Gas Flow Computer With Open Architecture Using Intelligent Instrumentation And Field Bus OSMEL REYES VAILLANT, CLAUDIO GARCIA
- BT/PTC/0113 Aplicação de Métodos de Inteligência Artificial em Inteligência de Negócios –ROGÉRIO GARCIA DUTRA, EUVALDO FERREIRA CABRAL JR.
- BT/PTC/0114 Detectores Multiusuário para DS/CDMA Canceladores de Interferência –TAUFIK ABRÃO, PAUL JEAN E. JESZENSKY
- BT/PTC/0115 Reconhecimento Automático do Locutor Usando Pré-Processamento em Sons Nasalizados com Diversos Classificadores Neurais ROBERTO AMILTON BERNARDES SÓRIA, EUVALDO FERREIRA CABRAL JR.
- BT/PTC/0116 Aplicando a Técnica de Times Assíncronos na Otimização de Problemas de Empacotamento Unidimensional REINALDO DE BERNARDI, TSEN CHUNG KANG
- BT/PTC/0117 A Simplified Implementation of the Theory of Emotions for Emotrots RODRIGO DE TOLEDO CAROPRESO, RODRIGO DIAS MORGADO, EUVALDO FERREIRA CABRAL JR.
- BT/PTC/0118 Modelos Dinâmicos Aplicados à Propagação de Virus em Redes de Computadores BETYNA FERNÁNDEZ NAVARRO, JOSÉ ROBERTO CASTILHO PIQUEIRA
- BT/PTC/0119 Técnicas para Melhorar o Desempenho do Método dos Análogos Modificado em Predição de Séries Temporais Caóticas – LUIZ MONZÓN BENITEZ, ADEMAR FERREIRA
- BT/PTC/0120 Um Modelo Microscópico para a Simulação de uma Intersecção Semaforizada EDUARDO ULI NELLAR, ADEMAR FERREIRA
- BT/PTC/0121 Subspace Identification Methods Applied to Activated Sludge Processes: A Performance Comparison Study OSCAR A. Z. SOTOMAYOR, SONG WON PARK, CLAUDIO GARCIA
- BT/PTC/0122 Controle Avançado de Temperatura para Perfusão Peritoneal com Hipertermia e Quimioterapia ARNALDO LAGANARO JÚNIOR, FUAD KASSAB JUNIOR
- BT/PTC/0123 Análise de Sinais Biológicos Utilizando Wavelets FRANCO BELTRAME RUNZA, FUAD KASSAB JUNIOR
- BT/PTC/0123 Certificação de Estimuladores Neuromusculares no Sistema Brasileiro de Certificação de Equipamentos Médicos EDUARDO RODRIGUES MANDL, JOSÉ CARLOS TEIXEIRA DE BARROS
- BT/PTC/0201 Aplicação de Transformadas Tempo Freqüência e de Redes Neurais Artificiais no Processamento Digital de Sinais Cerebrais MARCOS TEIXEIRA DE FREITAS FILHO, EUVALDO FERREIRA CABRAL JR.
- BT/PTC/0202 Aspectos de Identificação para Controle de Sistemas NARX usando Redes Neurais RBF RITA DE CÁSSIA PAVANI LAMAS, ADEMAR FERREIRA
- BT/PTC/0203 A Equação de Riccati Estacionária na Estimação Linear em Sistemas Lineares Discretos no Tempo com Saltos Markovianos SUSSET GUERRA JIMENEZ, OSWALDO LUIZ DO VALLE COSTA
- BT/PTC/0204 Comparação entre Algoritmos de Identificação Não-Assistida de Canais de Comunicação Baseados em Estatísticas de Segunda Ordem CLÁUDIO JOSÉ BORDIN JUNIOR, LUIZ ANTONIO BACCALA
- BT/PTC/0205 Desenvolvimento de um Simulador de uma Sub-Rede da Medula Espinhal ROGÉRIO RODRIGUES LIMA CISI, ANDRÉ FABIO KOHN
- BT/PTC/0206 Novos Modelos de Motoneurônios de Vertebrados MARCOS FRAGA VIEIRA, ANDRÉ FABIO KOHN

- BT/PTC/0207 Modelagem Auto-Regressiva e Memórias Associativas na Classificação de Sinais Eletromiográficos de Agulhas IARA KAZUYO IKE, CINTHIA ITIKI
- BT/PTC/0208 Análise da Classificação e da Síntese de Expressões Faciais com Redes Neurais Artificiais OLIMPO MURILO CAPELI, EUVALDO FERREIRA CABRAL JUNIOR
- BT/PTC/0209 Guiagem Automática de um Veículo Autônomo Baseada em Sistema de Visão NICOLÁS CÉSAR LAVINIA, JOSÉ JAIME DA CRUZ
- BT/PTC/0210 Some Geometric Properties of Differential-Algebraic Equations PAULO SÉRGIO PEREIRA DA SILVA, CARLOS JUTTI WATANABE
- BT/PTC/0211 Modelos de Média-Variância de Período Simples e Multi-Períodos na Análise de Carteiras de Investimento MARGARETH AP. DE SOUZA BUENO, OSWALDO LUIZ DO VALLE COSTA
- BT/PTC/0212 Avaliação da Utilização de Centrais Públicas de Informações de Crédito num Modelo de Previsão para Risco de Crédito GUILHERME GONZALEZ C. PARENTE, OSWALDO LUIZ DO VALLE COSTA
- BT/PTC/0213 Propagação de Erros de Freqüência em Redes Mestre Escravo em Estrela Dupla SANTOS ANDRÉS CASTILHO VARGAS, JOSÉ ROBERTO CASTILHO PIQUEIRA
- BT/PTC/0214 Avaliação Prática de um Algoritmo de Alta Resolução na Determinação de Freqüências de Ressonância em Estruturas de Grande Porte LUIZ ANTONIO BARBOSA COELHO, LUIZ ANTONIO BACCALÁ
- BT/PTC/0301 Finite Horizon Quadratic Optimal Control Problem of Markovian Jump Linear Systems With Partial Information ESTEBAN FERNANDEZ TUESTA, OSWALDO LUIZ DO VALLE COSTA
- BT/PTC/0302 A Framework for Admission Control Based on Aggregate Traffic Measurements and Network Characterization ALEXANDRE BARBOSA DE LIMA, JOSE ROBERTO DE ALMEIDA AMAZONAS
- BT/PTC/0303 Identificação Nebulosa da Concentração de Oxigênio Dissolvido do Tanque de Aeração de uma Estação de Tratamento de Esgotos por Lodos Ativados ALEXANDRE MAGNO PARENTE DA ROCHA, CLAUDIO GARCIA
- BT/PTC/0304 Cálculo de Balanço de Potência em Sistemas DWDM com Spans Variáveis e Amplificadores com Curva de Ganho não Plana WALMARA DE PAULA HERMAN, JOSÉ ROBERTO DE ALMEIDA AMAZONAS
- BT/PTC/0305 Robust Model Tracking and 2-D Control Design FABRIZIO LEONARDI, JOSÉ JAIME DA CRUZ
- BT/PTC/0306 Classificação de Ações do Mercado Financeiro Utilizando Técnicas Fuzzy –RENATO APARECIDO AGUIAR, ROBERTO MOURA SALES
- BT/PTC/0307 Esquemas de Multitaxa para Sistemas CDMA de Banda Larga ANDRÉ FAGUNDES DA ROCHA, PAUL JEAN ETIENNE JESZENSKY
- BT/PTC/0308 A Time-Invariant Flat System Always Admits a Time-Invariant Flat Output PAULO SERGIO PEREIRA DA SILVA, PIERRE ROUCHON
- BT/PTC/0309 Otimização Robusta de Carteiras Utilizando Desigualdades Matriciais Lineares RODRIGO BARROS NABHOLZ, OSWALDO LUIZ DO VALLE COSTA
- BT/PTC/0310 Desenvolvimento de um Controlador Automático para Sistemas de Guiagem de Tiras de Aço em Linhas de Processos Siderúrgicos AMAURI DIAS DE CARVALHO, JOSÉ JAIME DA CRUZ
- BT/PTC/0311 Sincronismo em Redes Mestre-Escravo de Via Única: Estrela Simples, Cadeia Simples e Mista CARLOS NEHEMY MARMO, JOSÉ ROBERTO CASTILHO PIQUEIRA
- BT/PTC/0312 Aprendizado por Reforço Aplicado a Sistemas Neuro-Difusos para o Controle de Sinais de Trânsito LEONCIO ZÁRATE GAMARRA, ADEMAR FERREIRA
- BT/PTC/0313 Métodos de Decomposição em Problemas de Estoque e Roteirização PATRIÍCIA PRADO BELFIORE, OSVALDO LUIZ DO VALLE COSTA
- BT/PTC/0314 Reconhecimento do Sinal Mioelétrico Aplicado à Engenharia de Reabilitação LEONARDO PINHEIRO DA SILVA, FUAD KASSAB JR.
- BT/PTC/0401 Comparação Entre Receptores Espaço-Temporais Semicegos de Formatação de Feixe e Diversidade para SistemaS W-CDMA IVAN ROBERTO SANTANA CASELLA, PAUL JEAN ETIENNE JESZENSKY
- BT/PTC/0402 Mapas Acoplado e Aplicações: Processamento de Imagens, Auto-Organização e Processamento Simbólico ROGÉRIO DE OLIVEIRA, LUIZ HENRIQUE ALVES MONTEIRO

