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Diagnosis
The growing complexity of equipment and systems has motivated the search for auto-
mated methods of fault diagnosis. Fault diagnosis represents the process of identifying
the origin of a fault through the observation of a series of effects that it causes in the sys-
tem. The method proposed in this paper for system fault diagnosis takes advantage of two
very different techniques: Bayesian networks (BN) and systems modeling language
(SysML). SysML allows the modeling of requirements, structure, behavior and parame-
ters to provide a robust description of a system, its components, and its environment. This
system model is used, in the proposed method, to obtain the BN graph in a novel struc-
tured procedure. The BN graph obtained must, in turn, present the components that are
most likely responsible for a certain fault of the system under study. The BN model uses
components reliabilities to solve the diagnosis problem. A case study of a water storage
system is presented and it shows how the method can contribute to an assessment of the
monitoring process of a system even in the early stages of its design. With this kind of
information, the designer can assess the need for changes in the system to make it more
reliable or better monitored. [DOI: 10.1115/1.4045975]

1 Introduction

According to Mobley [1], maintenance costs are an important
part of the total operating costs of all manufacturing or production
plants. Depending on the specific plant, maintenance costs can
represent between 15 and 60% of the total production cost.

Nowadays, thanks to the advances in technology in the areas of
monitoring and data acquisition, the interpretation of sensor
readings makes it possible for plant managers to monitor the
operational status of any individual piece of equipment, and
accordingly to adopt a condition-based maintenance (CBM)
approach based on fault diagnosis in order to avoid critical dam-
ages or degradation in advance. Fault diagnosis, according to
Papadopoulos and McDermid [2], represents the process of identi-
fying the origin of a fault through a series of effects that it causes
in the system where it happens.

Venkatasubramanian et al. [3] list a number of desirable charac-
teristics in a fault diagnosis system (FDS), of which the following
stand out:

(1) Agility in detection and diagnosis: reducing the time spent
to diagnose faults is critical in systems that pose risks to
operators and the environment, as well as contributing to
the reduction of total maintenance time;

(2) Ability to discriminate different faults: the FDS must list
single units or component sets that are most likely responsi-
ble for the faults of the system;

(3) Ease of elucidation: the FDS should explain, in a simple
way, why a certain unit or set of components is responsible
for the fault of the system;

(4) Ability to identify multiple faults: the FDS should be able
to identify whether a performance loss of a system is origi-
nated from a fault of a single piece of equipment or from a
combination of faults of several units;

(5) Robustness: the results presented by the FDS should suffer
little or no interference from noise present in the reading of

the sensors and of uncertainties in relation to the operation
of the monitored system;

(6) Adaptability: FDS must be adaptable to changes in the
monitored system, both in its structure and in operating
conditions.

The methods used in the implementation of fault diagnosis, in
general, do not meet all these characteristics [4]. The choice of
method to be used in a given system must be made according to
the design needs.

The method proposed in this paper for system fault diagnosis
takes advantage of two very different techniques: Bayesian net-
works (BN) and systems modeling language (SysML).

Bayesian networks [5] are diagrams that organize knowledge
about a given system by means of a mapping of causes and
effects. Systems based on Bayesian networks are able to automati-
cally generate predictions or diagnoses, even when there is not
complete information for this, using probabilistic calculations.
They have been increasingly applied in diagnosis problems.

The use of techniques derived from model based system engi-
neering (MBSE) is fundamental for the complete understanding of
the functioning of a given system, and therefore contributes to the
implementation of a fault diagnosis system. One of these techni-
ques is SysML [6], a graphical language commonly used for mod-
eling systems that can include hardware, software, data, people,
installations, and other elements within the physical environment.
The language supports the modeling of requirements, structure,
behavior and parameters to provide a robust description of a sys-
tem, its components, and its environment.

The development of a fault diagnosis methodology using
Bayesian networks in conjunction with SysML language exploits
the advantages found in the application of such techniques, allow-
ing the maintenance team to quickly mitigate a fault, reducing
system downtime.

The objective of this research is to develop a method for fault
diagnosis based on a model of the system under study. This model
will be developed using SysML and it will be used to obtain a
Bayesian network graph through a novel structured procedure.
The Bayesian network obtained will, in turn, be able to present
the components that are most likely responsible for a certain
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system fault. The fault in question will be observed by reading the
indications of sensors present in the system.

One of the great advantages of the proposed method is the pos-
sibility of obtaining the Bayesian network to diagnose faults dur-
ing the initial phases of a design, since SysML is widely used
during the design of new and complex systems. By means of the
Bayesian network obtained, the designer can identify, with some
degree of uncertainty, the probability of a fault occurring during a
certain system mode of operation and, furthermore, identify which
component may be at a faulty state given the reading of the sen-
sors. The information obtained by the BN can contribute to an
assessment of the monitoring system. With this information still
in the early stages of the design, the designer can assess the need
for system architecture changes to make it more reliable and better
monitored.

2 Fault Diagnosis

The goal of fault diagnosis is to identify the root causes of pro-
cess abnormalities by using appropriate models, algorithms, and
system observations. Therefore, a fault diagnosis system helps
operations staff to detect, isolate, and identify faults, as well as to
aid in troubleshooting [7].

One of the main advantages in using a fault diagnosis system is
that it allows the operation team to take action to get around the
identified problem quickly. When a failure occurs in a certain
piece of equipment of the system, this affects the reading of the
sensors responsible for monitoring its operation. These sensor
readings are then processed and interpreted. If one of these
measurable variables exceeds a threshold that identifies a dan-
gerous process state, the monitoring system can either sound an
alarm or stop the plant’s operation in order to protect both plant
and staff.

However, if a dangerous process state is not identified but the
sensors readings are still deviating from normal operation, these
measurements are categorized as symptoms and the FDS, then,
reasons to determine the kind and location of the fault. Given the
results from the FDS, the fault is categorized into hazard classes,
supporting the decision-making process on defining how this fault
is going to be managed.

As the complexity of systems increases, it becomes increasingly
important to automate the fault diagnosis process in order to
obtain systems with high reliability and availability. The automa-
tion of the diagnostic process can contribute to the prediction of
failures and also optimize the response time of the maintenance
team, reducing system downtime. Different fault diagnosis
approaches are briefly described in Sec. 2.1.

2.1 Fault Diagnosis Approaches. Although this classifica-
tion may change depending on the author, there are generally
three different approaches to developing a fault diagnosis system
[7]: model based, signal based, and knowledge based.

In the model-based fault diagnosis approach, mathematical pro-
cess models are established to express dependencies between dif-
ferent measurable signals. The actual behavior of the system is
then compared with its expected behavior obtained from the theo-
retical model. A relevant difference between the actual and the
expected behavior means that the system may be faulty.

According to Lampis [4], a mathematical model created for a
specific system usually cannot be used for other systems. In addi-
tion, it is difficult to adapt the model to design changes in the sys-
tem itself. Due to its low adaptability and the difficulty to obtain
mathematical models for complex systems, model-based fault
diagnosis is considered an expensive approach.

Literature on model-based fault diagnosis is vast and compre-
hensive. Isermann [8], for example, presents how different pieces
of equipment, such as actuators, motors, pumps, and pipelines,
can be mathematically modeled so that their faults can be identi-
fied and diagnosed.

Due to the difficulty to obtain the theoretical models, the
model-based approach is usually applied to specific components
of a bigger, more complex system. Chen et al. [9] use this
approach on an automated manual transmission shifting actuator,
while Zhang et al. [10] apply it to pedal-by-wire systems. The
model-based approach has also been used for spacecraft thrusters
[11], air handling units [12], lithium-ion batteries [13,14], and
other applications.

Differently from the model-based approach, according to Cai
et al. [7], the signal-based fault diagnosis approach uses sensors
signals to diagnose possible abnormalities and faults by compar-
ing these detected signals with historical monitored data of the
system. Experience in the system operation, therefore, is key for
signal-based fault diagnosis, which means this approach can be
difficult to be used for new systems. Also, the lack of knowledge
regarding some extraordinary events due to the fact that they
occur with extremely low frequency can also limit the use of this
approach, especially when safety is a requirement [4].

On the other hand, signal-based reasoning can be useful when
the understanding of the system is poor (i.e., its mathematical
model is very difficult to be determined and model-based fault
diagnosis is not an easy option) and knowledge of previous cases
and actions taken is adequate [4,15]. Different techniques of sig-
nal analysis are employed in the literature related to signal-based
fault diagnosis.

This approach is frequently used in electrical components, such
as power converters. Chen and Lu [16] developed a signal-based
fault diagnosis method for power converters of switched reluc-
tance motors by analyzing changes in the measured root-mean-
square current characteristics. Freire et al. [17] analyzed the
Park’s vector phase angle to determine open-circuit faults in con-
verters of synchronous generator drives.

Signal-based fault diagnosis can also be used in mechanical
components, such as gearboxes and motors. Feng and Zuo [18]
used Fourier spectrum and demodulated spectra of amplitude
envelope for torsional vibration signal analysis in order to diag-
nose faults of planetary gearboxes. Hong and Dhupia [19], on the
other hand, combined correlated kurtosis and dynamic time warp-
ing techniques for monitoring gear faults.

Rather than models or signal patterns, knowledge-based fault
diagnosis is based on a large amount of historical data and sys-
tems expert’s knowledge [7]. A fault diagnosis process that is
knowledge-based will comprise a set of rules (determined by his-
torical data and system experts’ knowledge) and an inference
method that, by combining such rules with systems measured var-
iables, derives a decision about the system’s operating condition.
According to Lampis [4], this approach is considered straightfor-
ward because each rule regards a different piece of information on
the system, such as the relation between symptom and fault or
between component and subsystem.

The symptoms that a faulty system presents can be evaluated
using two types of knowledge, the heuristic and the analytical.
Analytical knowledge about the system refers to measurable sig-
nals (i.e., sensor reading). A particular fault symptom is identified
by checking these measurable values, i.e., if the reading of a sen-
sor has exceeded a tolerance value.

Heuristic knowledge refers to the generally qualitative observa-
tions made by the operation team. Heuristic information is
collected through inspections or maintenance performed on equip-
ment and is presented in the form of noises, smells, vibrations,
etc. Statistical values such as mean time between failures (MTBF)
and failure probabilities, which are usually acquired from experi-
ence with the same or similar equipment, can also be considered
heuristic [8].

The analytic and heuristic symptoms are, then, used for diag-
nosing system faults. Fault diagnosis can be done by classification
methods or inference methods. Classification methods determine
faults from symptoms patterns. Inference methods determine
faults from fault-symptom trees, if-then rules, or other reasoning
procedures [8].
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Different techniques can be used to implement a knowledge-
based fault diagnosis process, as reported in the literature review
published by Gao et al. [20]. expert systems, for example, have
been used for fault diagnosis in different systems, such as vehicles
[21], chemical processes [22], and energy systems [23].

Failure modes and effects analysis (FMEA), a technique exten-
sively used in reliability analysis, has also been used in the devel-
opment of FDS. Case et al. [24] use the FMEA analysis in the
creation of a diagnostic service tool for the analysis of automatic
transmissions of automobiles. Barkai [25] describes the applica-
tion of FMEA analysis, together with expert systems, to obtain a
diagnostic system for off-road vehicles. Price and Taylor [26] pro-
pose the automation of the generation of FMEA tables for the
identification of multiple faults through the use of AUTO-STEVE

software.
Another technique from the area of reliability analysis that is

used in fault diagnosis is fault tree analysis (FTA). Hurdle et al.
[27] used FTA in the development of a fault diagnosis method
that uses sensor readings present in the system as top events of
fault trees. Contini et al. [28] used noncoherent fault trees in the
modeling of security systems and showed that the results obtained
can be more complete with this approach, when compared with
the use of regular fault trees.

Techniques used in risk analysis have also been used in fault
diagnosis. The hazard and operability analysis has been used by
Hu et al. [29], in conjunction with dynamic Bayesian networks, to
develop an intelligent fault diagnosis system for a fluidized cata-
lytic cracking unit. Hidalgo and Souza [30] have also used hazard
and operability analysis, FMEA, and FTA to develop an expert
system for fault diagnosis.

Bayesian networks have been widely used for the diagnosis of
system failures. The great advantage of this method is its probabil-
istic nature, which allows the insertion of uncertainty in the
analysis.

2.2 Fault Diagnosis Based on Bayesian Networks. Bayesian
networks are graphical models that can represent the dependencies
between the variables of a domain, being, for this reason, very
much used in the resolution of problems of prediction and diagno-
sis. They emerged in the field of Artificial Intelligence in the
1980s to facilitate analyzes in which there are uncertainties [31].

A Bayesian network is a directed acyclic graph (DAG) in which
nodes represent the variables of a universe and arcs represent the
dependencies between them. The specifications of a BN are given
below [32]:

(1) Each node represents a random variable, which can be dis-
crete or continuous;

(2) A set of directed lines, or arcs, connect the nodes in pairs.
If there is an arc from a node X to node Y, node X is called
the parent of node Y. The graph has no directed cycles, i.e.,
a BN is a DAG;

(3) Each node Xi has a conditional probability distribution,
given by P (Xi j Parents (Xi)), which quantifies the effect
of the parent node on the child node.

According to Neapolitan [5], a BN contains a qualitative com-
ponent, represented by the graph, and a quantitative component,
represented by the conditional probabilities associated with each
DAG node.

The presence of an arc connecting two nodes can be interpreted
as a direct influence that the parent node exerts on the child node.
According to Russell and Norvig [32], this suggests that causes
should be the parent nodes and effects should be the child nodes.
Figure 1 shows an example of a basic Bayesian network. In it,
node C is said to be the parent of nodes E and B, B is parent of D
and E, and node A is independent of other nodes.

In addition to the BN graph, it is necessary to define a set of
conditional probabilities for each variable, or node, in order to
quantitatively specify the influence of the parent nodes on the

child nodes. If the variables are discrete, such conditional proba-
bilities can be presented in a conditional probability table (CPT).
In it, each line contains the conditional probability of the node in
question, given a possible combination of values that the parent
nodes can assume.

As an example, the CPTs of each node are shown in Fig. 2. For
a better understanding, all nodes are binary, i.e., they have only
two mutually exclusive states (true, v, or false, f). It can be seen
from CPTs that the probability of a node being true or false
depends on the state of its parents. The size of the conditional
probabilities table depends on how many parents a particular node
has. This means that the larger the number of parents or states that
each parent can assume, the larger the CPT will be.

Bayesian networks can fully represent the domain under study,
as well as the table of joint probabilities. Suppose a BN that repre-
sents the dependency relations of the n variables of a domain, X1,
…, Xn. Then, using the product rule [32]

P x1; …; xnð Þ ¼ Pðxnjxn�1; …; x1Þ � Pðxn�1; …; x1Þ (1)

where P (x1, …, xn) is the same as P (X1¼ x1, …, Xn¼ xn). Reap-
plying the product rule n times

P x1; …; xnð Þ ¼ P xnxn�1; …; x1ð Þ � P xn�1xn�2; …; x1ð Þ � � � �

� Pðx2jx1Þ � Pðx1Þ
(2)

Equation (2) can be rewritten as follows, using the so-called Chain
Rule:

P x1; …; xnð Þ ¼
Yn

i¼1

Pðxijxi�1; …; x1Þ (3)

Considering the BN graph, Eq. (3) can be rewritten as follows:

P x1; …; xnð Þ ¼
Yn

i¼1

PðxijParents Xið ÞÞ (4)

Equation (4) is true only if Parents(Xi) � fxi�1, …, x1g. Such a
condition is satisfied by numbering the parent nodes before the
child nodes. By analyzing the above equation, it is possible to
realize that any joint probability can be obtained by multiplying
conditional probabilities present in the Bayesian CPTs.

The Bayesian network allows the probability of a certain vari-
able to be updated by observing the state of another variable, that
is, it makes possible the calculation of the posterior probability.
This process, called inference, can be performed with three differ-
ent objectives [33]:

(1) Causes: given the causes, the probabilities of the effects are
calculated;

(2) Diagnostics: given the effects, the probabilities of the
causes are calculated;

Fig. 1 Example of a Bayesian network
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(3) Intercausal: given a cause, the probability of another cause
is calculated.

Figure 3 shows Bayesian networks that exemplify the three
objectives of making an inference. In BN, parent nodes represent
causes and children nodes, effects.

Inference can be performed through algorithms which, in turn,
can obtain exact or approximate solutions. The advantage of using
algorithms that calculate approximate solutions is that the process-
ing time is much shorter, a fundamental consideration in cases
where BNs are very complex.

For the execution of the exact inference, where X is the variable
to be used to calculate the posterior probability, E is the list of evi-
dence variables (e is the list of observed values for these varia-
bles) and Y is the list of unobserved variables (y is the list of
possible values for these variables), the following equation can be
used:

P Xeð Þ ¼ PðX; eÞ
PðeÞ ¼ aP X; eð Þ (5)

where a¼ 1/P(e). Equation (5) above can be rewritten as follows
[32]:

P Xeð Þ ¼ a
X

y

PðX; e; yÞ (6)

The posterior probability, therefore, is obtained from the CPTs
and (4), which provide the term P (X, e, y). By analyzing Eq. (6),
it is easy to see that, as the complexity of the Bayesian network
increases, the summation present in the equation makes its use
computationally very time-consuming. There are techniques that
simplify this calculation, such as the elimination of variables [32],
but in very complex networks not even these techniques can make
the exact inference feasible.

The approximate inference decreases the processing time of the
posterior probability using stochastic simulation. Russell and Nor-
vig [32], present algorithms used to make the approximate
inference.

In addition to being excellent for representing the relationship
between component failures and their effects on the system,
Bayesian networks are highly recommended tools for modeling
diagnostic systems, since the inference process allows the identifi-
cation of the possible causes of these effects. Figure 4 shows a
general procedure for the construction and use of BN for fault
diagnosis.

One of the most challenging steps in using Bayesian networks
for fault diagnosis is the modeling of its structure. According to
Lampis [4], there is no structured way to construct a Bayesian net-
work; besides, it is difficult to obtain the conditional probabilities

present in the CPTs. Some authors, therefore, propose the use of
different methods to help in the construction of the BN graph,
which can be categorized into two types: the knowledge represen-
tation methods and the machine learning methods [7].

In machine learning methods, algorithms are developed in order
to learn the structure of the Bayesian network based on faults and
fault symptoms data. Lin et al. [34], for example, used K2 algo-
rithm, which is a score-based algorithm that learns probabilistic
networks from databases, to support quality of service manage-
ment and qualitative diagnosis on a peer-to-peer network.

Fig. 2 Example of a BN alongside the CTPs of each node

Fig. 3 Inference (adapted from Ref. [33])

Fig. 4 Flowchart of BN-based fault diagnosis [7]
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Yan and Peng [35] performed fault diagnosis of hydraulic–
electrical simulation systems based on a BN, in which its graph
was learnt from a statistical strategy algorithm. Jin et al. [36] pro-
posed a Bayesian network for fixture fault diagnosis in an auto-
body assembly process. Authors have also used mutual
information test that exposes the causal relationship between sen-
sor readings and faults to obtain the BN graph.

Machine learning methods are able to generate very efficient
BN graphs and can produce very accurate results regarding fault
diagnosis. However, these methods are extremely dependent on
data for learning. If there is not enough data for their algorithms
to determine the causal relationships between faults and sensor
readings, the results obtained may not be representative of the
behavior of the real system.

The methods of knowledge representation, on the other hand,
are based on the knowledge of system experts for the development
of Bayesian network structure. They can also obtain this graph by
mapping other formal knowledge models into the BN.

BN structure can be developed through brainstorms with
experts, who must take into account all factors that can influence
the outcome of fault diagnosis. Mechraoui et al. [37], and Xu [38]
develop Bayesian networks through the knowledge of experts on
the system under study and, through inference, can identify the
possible causes of a deviation in the reading of a system sensor.
These works also take advantage of the fact that BN can represent
uncertainties regarding the behavior of the system.

Several authors used mapping algorithms to obtain BN struc-
ture. Bobbio et al. [39] proposed a FDS of redundant microproces-
sor system by directly mapping FTAs into BNs. Chiremsel et al.
[40] developed a similar approach for safety instrumented systems
used in the oil and gas industry. Lampis and Andrews [41]
improved this proposal by using noncoherent fault trees instead
of regular ones and developed a FDS for a water tank system.

Lo et al. [42] have synthesized the BN graph from bond graphs
for fault diagnosis of a single tank system.

Knowledge representation methods are highly recommended if
there is not enough data to implement machine-learning methods.
However, since these methods depend on expert’s knowledge,
they can produce inaccurate models. That is why mapping algo-
rithms are preferred because they provide a more structured way
for the expert to represent its knowledge. In Sec. 2.3, Systems
Modeling Language (SysML), the systems engineering (SE) tech-
nique used in the proposed method to map the BN graph is
presented.

2.3 Systems Engineering, Systems Modeling Language
and Fault Diagnosis. According to INCOSE [43], a system is
defined as “an integrated set of elements, subsystems, or assem-
blies that accomplish a defined objective.” These elements include
products (hardware, software, and firmware), processes, people,
information, techniques, facilities, services, and other support ele-
ments.” ISO/IEC/IEEE [44] defines it as a combination of inter-
acting elements organized to achieve one or more stated purposes.

Designing and managing systems is the focus of SE. The need
for this field of engineering arose with the increasing complexity
of systems, which required new strategies, techniques and proce-
dures to be developed.

With the objective of assisting in the development of complex
systems, SE practices are becoming more formalized, structured
and rigorous. The model-based systems engineering is an SE
approach that can help to manage system complexity.

A model-based approach in the SE scope aims to maintain and
synchronize all the information about the system in a consistent
and complete way. However, for MBSE to be actually practiced,
according to Friedenthal et al. [45], a robust and standardized

Fig. 5 SysML diagram types [45]

Table 1 SysML diagrams and its correspondence with UML [46]

SysML diagram Purpose UML analog

Activity diagram (ACT) Shows system behavior as control flows and data flows
Useful for functional analysis

Activity

Block definition diagram (BDD) Shows system structure as components along with their properties,
operations, and relationships

Class

Internal block diagram (IBD) Shows the internal structures of components, including their parts and connectors Composite structure
Package diagram (PKG) Shows how a model is organized into packages, views, and viewpoints Package
Parametric diagram (PAR) Shows parametric constraints between structural elements N/A
Requirement diagram (REQ) Shows system requirements and their relationships with other elements N/A
Sequence diagram (SD) Shows system behavior as interactions between system components Sequence
State machine diagram (STM) Shows system behavior in terms of states that a component experiences

in response to some events
State machine

Use case diagram (UC) Shows systems functions and the actors performing them Use case
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modeling language is critical. One of the modeling languages
used in MBSE is SysML.

SysML is based on the unified modeling language (UML) and
was created by an informal association of SE experts called
SysML Partners, organized by Cris Kobryn in 2003. It supports
the specification, design, analysis, and verification of complex
systems. By means of a solid semantic foundation, SysML is able
to represent various aspects of a system, such as structure, behav-
ior, and requirements [45].

SysML includes nine diagrams, as shown in Fig. 5. Seven of
those diagrams come from UML 2, while the requirement and the
parametric diagrams were exclusively developed for SysML.
Table 1 shows the main purpose of each SysML diagram and its
correspondence with UML diagrams.

One very important aspect of SysML is the possibility of cross-
connecting different model elements that appear in different
diagrams. These cross-connections are able to represent deeper
relationships within the elements of the model. There are four

Fig. 6 A BPMN diagram of the proposed method
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main types of cross-connections between model elements: allo-
cate, satisfy, value biding, and verify.

The allocate relationship is used to determine which block (or
system component) is responsible for executing a given action or
behavior. Allocation, therefore, links a behavior type diagram
(activity diagram (ACT), for example), with a structure diagram
(IBD, for example).

The satisfy relationship determines which block is responsible
for accomplishing a given requirement. In other words, the satisfy
relationship, which links a structure type diagram with a require-
ment diagram, shows which system component is meant to satisfy
a system requirement.

The value binding relationship is used to link a value property
from a block to systems equations. In other words, system compo-
nent characteristics that are represented by values, such as mass,
and volume, can be assigned to system equations presented in the
Parametric Diagram through this value binding relationship.

The verify relationship is used to represent how a test can be
run to make sure a requisite is being satisfied. This verification is
represented by linking a parameter in the parametric diagram to a
requirement in REQ. It should be noted that the satisfy relation-
ship does not imply that the requirement is actually been satisfied
by the block, just that the block is supposed to satisfy it, that is
why the verify relationship is useful.

The purpose of having the nine diagrams and the cross-
connecting relationships described above is to allow the system to
be represented by different perspectives and at the same time to
maintain consistency among the different views [45].

Fig. 7 Example of a system BDD

Fig. 8 Example of STM diagram with system operating states

Fig. 9 Example of an ACT diagram of one of the system operat-
ing states

Fig. 10 Example of STM diagram with sensor reading states

Fig. 11 Example of a BDD of a single system component
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Several authors have used SysML for supporting reliability and
safety analysis. The advantage of using a system model such as
SysML in these analyses is that comparison and trade-offs
between alternative designs can be done in an easier way. Helle
[47], for example, proposes a methodology that uses SysML for
an automated safety analysis.

Since FMEA and FTA techniques are widely used for reliability
and safety analysis, some researches have focused on the automa-
tion of generation of FMEA tables and FTA diagrams. David
et al. [48], for example, present a reliability study of complex
physical systems by using SysML for automating FMEA. Hecht
et al. [49] propose a different approach for an automated genera-
tion of FMEA mainly based on state machine diagrams (STMs)
from SysML.

Yakymets et al. [50] and Mhenni et al. [51] propose similar
ways of generating a FTA from an IBD. Recently, Mhenni et al.
[52] presented the SafeSysE, a tool that automatically generates
both FMEA and FTA from SysML diagrams, and applied it to a
electromechanical actuator.

Since SysML language is relatively new, few researchers use
such a tool to diagnose system faults. In fact, the only published
work found on the subject is that of Suiphon et al. [53], which pro-
motes an initial discussion of how SysML can be used to diagnose
faults, but without presenting a method for such.

From the study of the modeling of a system in SysML lan-
guage, it was found that this modeling conveys a lot of informa-
tion about it. This amount of information can be used to diagnose
system faults. Indeed, the fact of being able to relate the structural
parts of the model to dynamic behaviors can make it easier to
trace the faulty components of a system. Section 3 presents the
proposed method for mapping ACT into BN for system fault
diagnosis.

3 The Proposed Method

As in current diagnostic methods, the detection of a fault is
made when the system deviates from its nominal behavior. This
deviation is detected by sensors that monitor the operation of the

Fig. 12 Example of a BDD of a system sensor

Table 2 �violates� Relationship matrix

System operational state 1

Action 1 Action 2 Monitor system parameter 1 Monitor system parameter 2

Component A Failure mode 1 �
Failure mode 2 �

Component B Failure mode 3 �
Failure mode 4 �
Failure mode 5

Sensor 1 Failure mode 6 �
Sensor 2 Failure mode 7 �
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system. As soon as a fault is detected, an inference engine must
reason about which system component is most probably responsi-
ble for the detected deviation, i.e., which is the faulty component.
The inference engine used in this method is the Bayesian network,
which uses as input not only the reading of the sensors but also
the reliability of the components of the system.

In order for the Bayesian network to perform the inference pro-
cess, its graph must be previously defined. For this to happen,
SysML diagrams are developed and mapped into a BN. Figure 6
presents, using the business process model and notation (BPMN),
the framework of the proposed method for system fault diagnosis.
Sections 3.1 and 3.2 describe in detail the two major steps of the
method, which are the development of SysML diagrams and their
translation into BNs.

3.1 Creating Systems Modeling Language Diagrams. One
of the main features of SysML is its ability to represent all the
knowledge about a given system and, from there, contribute to
several analysis and consequent improvements. In order to obtain
the Bayesian network for fault diagnosis, some SysML diagrams
must be developed and some specific information must be inserted
into them. These requirements, however, do not limit or impair
the designer’s ability to create other diagrams or add more infor-
mation to those already created. This means that the proposed
method can be part of the design of new systems without harming
its development.

As Fig. 6 shows, the first diagram to be developed is the block
definition diagram (BDD) of the system. This diagram is impor-
tant for the method because it identifies all components of the sys-
tem whose faults should be diagnosed. Figure 7 illustrates how
this BDD should look like.

Next, a STM diagram should be developed to represent the sys-
tem operating states, or system operating modes. A system can
have several operating states and behave differently in each one
of them, meaning that its sensors readings may be different in
each state. This means that the fault diagnosis process must take
into account the mode of operation the system is in to avoid mis-
leading results. Figure 8 shows how this diagram should look like.
It is important to note that when a fault or failure occurs, the sys-
tem can be reconfigured and operate in another way. This is very
common in systems that have redundant components (when one
fails, the other starts to operate in its place). In this case, each
mode of operation (before and after the fault) must be represented
in the STM.

Once the operating states of the system have been defined, it is
necessary to know how the system behaves in each of them, that
is, what are the actions of each of its components. For that, an
ACT diagram like the one in Fig. 9 is developed, where each
action is allocated to its respective component.

Besides knowing how the system behaves, it is also necessary
to know how the readings of its sensors must be interpreted. An
STM must, therefore, be developed in order to represent the dif-
ferent reading states that will be used to reason about the compo-
nent failure that may be in progress, as shown in Fig. 10. It is
important to note that any different behavior from the readings of
a sensor that can help to distinguish a fault (such as “readings are
above expectation” or “fluctuating readings”) must be represented
in this diagram. The transition from one reading state to another is
determined by thresholds that can be set by the system expert or
by detection methods.

Last but not least, a BDD of each component (including sen-
sors) needs to be developed. In this diagram the failure modes of
this component as well as its actions should be represented. It is
important to remember that a component can perform different
functions, or actions, in each mode of operation, but all of them
must be represented in this diagram. In addition, it is necessary to
show which of these actions are impacted or impaired by failure
modes. This is done using the �violates� relationship. It is also
necessary to represent how a failure mode impacts the readings of

Table 3 �triggers� Relationship matrix

Component A Component B Sensor 1 Sensor 2

Failure
mode 1

Failure
mode 2

Failure
mode 3

Failure
mode 4

Failure
mode 5

Failure
mode 6

Failure
mode 7

Sensor 1 readings Readings are higher than expected � � � �

Readings are as expected �

Readings are lower than expected � �

Sensor readings are intermittent or inactive �

Sensor 2 readings Readings are higher than expected � � �

Readings are as expected �

Readings are lower than expected � � �

Sensor readings are intermittent or inactive �

Fig. 13 Obtained Bayesian network
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system sensors, and this is done by a �triggers� relationship.
Examples of this diagram are shown in Figs. 11 and 12.

It is important to note that although �allocate� and
�violates� relationships already exist in the SysML formalism,
the �triggers� relationship is being introduced in this work.
According to Friedenthal et al. [45], SysML can be
customized for specific domains and therefore the �triggers�
relationship is proposed here to enhance the analysis to be done
with the model.

The purpose of using the �triggers� relationship is to show
how the progression of a fault into a failure can be noticed by a
sensor. This means that the faults to be detected in the method
correspond to the progression of the failure modes represented in
the BDD.

Figure 12 illustrates how the BDD of a sensor may look like if
it is unknown how it will behave in case of failure. It is noted that
sensor failure implies that its reading may behave in any of the
states previously defined in the STM sensor.

Fig. 14 Flowchart of how to fill in the Bayesian network CPTs
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Once all the above diagrams have been developed, the neces-
sary knowledge to develop the Bayesian network for fault diagno-
sis is already represented in SysML language. The next step of the
method, therefore, is to map such knowledge into a BN graph, as
stated in Fig. 6.

3.2 Mapping Systems Modeling Language Diagrams Into
Bayesian Networks. The first step in mapping the SysML dia-
grams to BNs is to identify the actions of each operating state of
the system. This process is done because each operational state
must have a unique Bayesian network, since the behavior of the
components and, consequently, of the sensors, may be different in
each of them.

Once these actions have been identified, the �violates� rela-
tionship matrix is extracted. The goal of this matrix is to show
which failure modes are linked to which actions by the
�violates� relationship using a mark (like a black dot, for exam-
ple), as illustrated in Table 2. In addition, the �triggers� rela-
tionship matrix must also be extracted, showing which failure
modes are linked to which sensor readings by the �triggers�
relationship, as illustrated by Table 3.

These relationship matrices contribute, in the proposed method,
to the development of the BN graph and to the task of filling in
the CPTs. To obtain the graph, two types of nodes will be consid-
ered in the BN: those representing failure modes and those repre-
senting the sensor reading. The failure mode nodes will have only
two states: true or false. The sensor reading nodes will have as
many states as shown in the corresponding STM diagram.

The first step to the creation of the BN graph is to verify in the
�violates� matrix which failure modes are linked to the actions
of a system operating state. Those with the mark get a node in the
Bayesian network. All sensors also get a node in the BN, and to
show the dependence between the failure mode nodes and the sen-
sor nodes, i.e., to connect them through an arc, the existence of a
mark between some sensor reading state and a failure mode in the
�triggers� matrix should be verified. Figure 13 shows the

Bayesian network obtained using the previously presented
matrices.

The last and most challenging step in obtaining the BN graph is
the task of correctly filling in the CPTs. Both types of nodes, those
representing failure modes and those representing sensors read-
ings, have their CPTs filled in according to the BPMN diagram
presented in Fig. 14.

Since the failure mode node has only two mutually exclusive
states, true or false, its conditional probability tables for compo-
nents must be filled in with its reliability and failure probability
values for a given time of operation. Reliability, R(t), is the likeli-
hood that a product, machine, system, or equipment will perform
its function without failure for a predetermined period of time
within the specifications for which it was designed [54]. Once the
reliability is defined, the failure probability, P(t), can be obtained
by using the following equation:

P tð Þ ¼ 1� RðtÞ (7)

Table 4 CPT of “sensor 1 readings” node

Failure mode 1 True False

Failure mode 3 True False True False

Failure mode 4 True False True False True False True False

Failure mode 6 T F T F T F T F T F T F T F T F

Readings are higher than expected 0.25 0.5 0.25 0.5 0.25 1 0.25 1 0.25 0.5 0.25 0 0.25 1 0.25 0

Readings are as expected 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 1

Readings are lower than expected 0.25 0.5 0.25 0.5 0.25 0 0.25 0 0.25 0.5 0.25 1 0.25 0 0.25 0

Sensor readings are intermittent or inactive 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0

Table 5 CPT of “sensor 2 readings” node

Failure mode 1 True False

Failure mode 2 True False True False

Failure mode 3 True False True False True False True False

Failure mode 7 T F T F T F T F T F T F T F T F

Readings are higher than expected 0.25 0.5 0.25 0 0.25 0.5 0.25 0 0.25 0.5 0.25 0 0.25 1 0.25 0

Readings are as expected 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 1

Readings are lower than expected 0.25 0.5 0.25 1 0.25 0.5 0.25 1 0.25 0.5 0.25 1 0.25 0 0.25 0

Sensor readings are intermittent or inactive 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0

Fig. 15 Water storage system
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The reliability of any given piece of equipment is intrinsically
dependent upon its nature, operating conditions, and environment.
Because of this, it can be represented by different probability dis-
tributions and can be calculated by parameters such as failure rate.

Since reliability and probability of failure are used in the proposed
method, the availability of realistic, specific, and updated data is
of utmost importance. Such data may be obtained through failure
history of the piece of equipment and, if such histories do not
exist, may be obtained from databases such as OREDA [55] and
NPRD [56]. In the latter case, however, it is important to verify
that the piece of equipment listed in the database has the same or
similar nature, operating conditions, and environment as the one
under study. Alternatively, these values could also be obtained in
a database created in a SysML environment, as suggested by Cres-
sent et al. [57]. This type of information can also be displayed in
the block definition diagram (as suggested in Fig. 6).

Fig. 16 BDD of water storage system

Fig. 17 STM of water storage system

Fig. 18 STM diagram with flow sensor reading states Fig. 19 ACT diagram for the delivering water operating state
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For nodes representing sensors readings, filling in their CPTs is
particularly problematic when multiple failure modes occur. Since
the developed SysML diagrams do not contemplate the effect of
simultaneous faults on the sensor readings (because the exponen-
tially growth of the number of failure modes combinations would
make such a representation unfeasible in diagram form), an alter-
native approach is presented in Fig. 14. It is considered that if dif-
ferent failure modes (or rather the faults whose progression will
lead to these failure modes) trigger different readings from the
same sensor but they occur simultaneously, then the probability
that any of these readings will occur is the same. This is clearly an
approximation, since a combination of faults may result in differ-
ent sensor readings compared to the individual occurrence of these
faults. Such method approach can be manually corrected by the
designer after the automatic filling in of the CPTs.

Tables 4 and 5 show the obtained CPTs for the two sensors pre-
sented in the example from the previously presented�violates�
and�triggers� relationship matrices.

Once the graph is defined, along with the CPTs, the BN can be
used to perform fault diagnosis. It is hoped that the results shown
by the BN will not only reveal which failure is most likely based
on sensor readings but also which failures are not being properly
monitored.

The proposed method, therefore, uses SysML to help system
experts in obtaining a BN for fault diagnosis in a structured and
organized manner. The main purpose of SysML is to concentrate

all knowledge about a system in one place. Through its nine dia-
grams, it is possible to represent how a system works, what com-
ponents it is made of, how it interacts with its operators and
maintainers, how it behaves under different operating conditions,
etc. If used correctly, the authors believe that not only fault diag-
nosis, but other types of analysis can be developed using the infor-
mation represented in SysML, such as reliability, availability,
maintainability, efficiency, risk management, and asset

Fig. 20 BDD of the valve

Table 6 �violates� Relationship matrix

Delivering water

Open valve Provide water Conduct water Monitor water flow Monitor water level

Water tank Leakage �

Valve Fails closed �
Fails open

Pipeline 1 Clogging �
Leakage �

Pipeline 2 Clogging �
Leakage �

Operator Does not open the valve �
Flow sensor Does not monitor water flow �
Level sensor Does not monitor water level �

Fig. 21 BN graph
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Table 7 �triggers� Relationship matrix

Flow sensor Level Sensor

Readings are
higher
than

expected

Readings
are
as

expected

Readings are
Lower
than

expected

Sensor
readings are
intermittent
or inactive

Readings are
higher
than

expected

Readings
are
as

expected

Readings
are

lower than
expected

Sensor
readings are
intermittent
or inactive

Water tank Leakage �
Valve Fails closed � �

Fails open
Pipeline 1 Clogging � �

Leakage �
Pipeline 2 Clogging � �

Leakage �
Operator Does not open

the valve
� �

Flow sensor Does not monitor
water flow

� � � �

Level sensor Does not monitor
water level

� � � �

Table 8 Reliability and failure probability for the CPTs

k True False

Water tank Leakage 2.00� 10�6 0.017367 0.982633

Valve Fails closed 1.00� 10�5 0.083873 0.916127
Fails open 1.00� 10�5 0.083873 0.916127

Pipeline 1 Clogging 1.00� 10�6 0.008722 0.991278
Leakage 1.50� 10�5 0.123133 0.876867

Pipeline 2 Clogging 1.00� 10�6 0.008722 0.991278
Leakage 1.50� 10�5 0.123133 0.876867

Operator Does not open the valve 1.60� 10�5 0.130781 0.869219

Flow sensor Does not monitor water flow 1.20� 10�6 0.010457 0.989543

Level sensor Does not monitor water level 1.40� 10�6 0.012189 0.987811

Table 9 Posterior probabilities of the TRUE state of each failure mode

Water tank Valve Pipeline 1 Pipeline 2 Operator Flow sensor Level sensor

Flow
sensor
readings

Level
sensor

readings Leakage
Fails

closed Clogging Leakage Clogging Leakage

Does not
open the

valve

Does not
monitor

water flow

Does not
monitor

water level

HIGHER HIGHER 0.009 0.381 0.04 0.123 0.04 0.123 0.595 1 0.014
HIGHER NORMAL < 0.001 < 0.001 < 0.001 0.123 < 0.001 0.123 < 0.001 1 0.004
HIGHER LOWER 0.837 0.053 0.006 0.123 0.006 0.123 0.083 1 0.166
HIGHER INTERMITTENT 0.017 0.084 0.009 0.123 0.009 0.123 0.131 1 1
NORMAL HIGHER 0.015 0.091 0.009 0.029 0.009 0.029 0.141 0.237 0.766
NORMAL NORMAL < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.003 0.003
NORMAL LOWER 0.852 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.004 0.151
NORMAL INTERMITTENT 0.017 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.004 1
LOWER HIGHER 0.009 0.385 0.04 0.124 0.04 0.124 0.6 0.003 0.006
LOWER NORMAL < 0.001 < 0.001 < 0.001 0.527 < 0.001 0.527 0.002 0.011 0.007
LOWER LOWER 0.807 0.157 0.016 0.363 0.016 0.363 0.245 0.008 0.196
LOWER INTERMITTENT 0.017 0.21 0.022 0.308 0.22 0.308 0.327 0.007 1
INTERMITTENT HIGHER 0.009 0.381 0.04 0.123 0.04 0.123 0.595 1 0.014
INTERMITTENT NORMAL < 0.001 < 0.001 < 0.001 0.123 < 0.001 0.123 < 0.001 1 0.004
INTERMITTENT LOWER 0.837 0.053 0.006 0.123 0.006 0.123 0.083 1 0.166
INTERMITTENT INTERMITTENT 0.017 0.084 0.009 0.123 0.009 0.123 0.131 1 1
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management. For each analysis to be developed on a system, how-
ever, there was not a single source of information. Now, with the
use of SysML, system knowledge is unified. Section 4 shows a
case study of the presented method.

4 A Case Study: Water Storage System

To illustrate how the proposed method works and what are
some of its capabilities, it is applied in a simple water storage sys-
tem. The system under consideration consists of a tank (T1),

Fig. 22 Hydraulic turbine thrust bearing system

Fig. 23 BDD of lubricating system
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responsible for storing water, and a valve (V1) and two pipes (P1
and P2), responsible for distributing the water present in the tank
when necessary. A water level sensor in the tank (L-1) and a water
flow sensor (F-1) in the P2 pipeline are responsible for monitoring
the system. Figure 15 illustrates the described system.

The first step for the development of the method is the creation
of the SysML diagrams of the described system. Figure 16 shows
the BDD of the system, while Fig. 17 shows its STM. The system
has three states of operation: “storing water,” “receiving water,”
and “delivering water,” and a BN for each of them must be
obtained, although in this work only the Bayesian network for the
delivering water mode is presented. Enterprise Architect was the
software used to model the SysML diagrams [58].

Figure 18 shows the STM for the flow sensor. A similar dia-
gram has been developed for the level sensor. Figure 19 shows the
ACT for the delivering water operational state, which starts with
the operator opening valve 1. The water output system then con-
ducts the water provided by the tank out of the system. By being
responsible for the “open valve” action, the operator is also
inserted into the Bayesian network as a parent node. This means
that one of the features of the proposed method is to make it possi-
ble to consider human error as the cause of a possible system fail-
ure. Figure 20 shows as an example the valve BDD.

After the necessary diagrams for the method having been con-
structed, the relationship matrices are extracted, as shown in
Tables 6 and 7. Such tables will support the construction of the
BN graph, according to the previously presented method steps.
Figure 21 shows the graph obtained from these tables. Genie
Modeler was the software used to model the Bayesian network
[59].

Once the BN graph has been obtained, the analyst must com-
plete the CPTs. For parent nodes, i.e., failure mode nodes, the reli-
ability values of each failure mode are required. With the
exception of operator reliability, these values were calculated by
Eq. (8) using failure rates (k) obtained from the database [55],
considering one year of operation. The reliability of the compo-
nents which need to be inserted in the respective CPTs is pre-
sented in Table 8.

R ¼ e�kt (8)

Regarding the operator’s failure to perform his task, several
authors propose different methods for the calculation of human
reliability [60–64]. However, diagnostic methods generally disre-
gard human errors as the cause of system failures. This happens
either because of a limitation of the method used or because such
an error is not relevant to the analysis. The proposed method is
able to consider human error in the diagnosis process, since
SysML can also represent human actions necessary for the system
to properly work. In this example, it has been assumed an opera-
tor’s failure rate, shown in Table 8, so that the method can be fully
presented. For an actual application, it is recommended to use a
method for acquiring such a probability.

Table 9 shows, for each possible combination of system sensor
readings, the diagnostic results obtained by the BN through a pos-
teriori probability calculation. For example, if the flow sensor has
a normal reading (as expected), but the level sensor has a lower
than expected reading, the BN indicates that a leak in the water
tank is most likely (with a posterior probability of 85.2%).

It can be seen that if any of the sensors has a reading incompati-
ble with any of the component failure modes, BN indicates that
the sensor is at fault. For example, if the flow sensor shows a
higher than expected reading, its failure probability is 100%, as no
failure mode of the other components would imply this reading.

In addition, it can be noted that some failure modes always
have the same posterior probability, no matter the combination of
the sensor readings. Leakages from both pipelines, as well as clog-
ging from both of them, for example, have always the same

Fig. 24 STM of lubricating system

Fig. 25 ACT diagram for the main unit operating state
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outcome. This happens because such faults have the same effects
on sensors as well as the same reliability. This means that the cur-
rent monitoring system cannot differentiate between these faults.
For this distinction to be made, it is necessary that more sensors,
in different positions or measuring different parameters, be added
to the system.

If a given fault is never shown to be the most likely to have
occurred by BNs a posteriori probability calculation, it means that
the monitoring system is not able to differentiate it from other
faults. Knowing these results, it is up to the designer or system
operator to decide whether the monitoring system needs to be
updated so that such a fault can be properly observed. If the occur-
rence of such a failure has serious consequences, whether finan-
cial, environmental, or in personnel safety, such update is of the
utmost importance.

5 A Case Study: Lubricating System of Thrust

Bearing

To emphasize the generality of the proposed method, it is
applied in a lubricating system of hydraulic turbine thrust bearing
used in hydro-electric power plant from S~ao Paulo state in Brazil.
The hydro-electric power plant has a generation capacity of
120 MW.

Thrust bearings or hydrodynamic bearings operate on the prin-
ciple of hydrodynamic lubrication and are used to carry loads in
applications where roller bearings are unsuitable due to dimen-
sional limitations, demands for operational lifespan, or high load-
ing requirements. In it, the load carrying surfaces are completely
separated by an oil film, eliminating the risk of surface wear as
long as a film of sufficient thickness is maintained.

Figure 22 shows the lubricating and cooling systems of hydrau-
lic turbine thrust bearing, which is composed by an oil reservoir
and three other subsystems: the high-pressure system, the lubricat-
ing system, and the cooling system. The high-pressure system
ensures the formation of the oil film during starting and stopping
of the generating unit by elevating oil pressure, avoiding the

bearing metal-to-metal contact anchor. The lubricating system
ensures the formation of the oil film between stator and rotor dur-
ing all the steady-state operation of the turbine, when the oil pres-
sure needed is not as high as in the starting and stopping of the
unit. Finally, the cooling system is responsible for refrigerating
the oil that circulates in the system through the use of heat
exchangers.

The proposed method is applied only on the lubricating system.
There are two oil pumps in the lubrication system, the main and
the auxiliary. Only one of them should be on when the system is
in operation. In addition, the system also has relief valves to pre-
vent pipeline overpressure and check valves to drive oil into the
bearing.

The first step for the development of the method is the creation
of the SysML diagrams of the described system. Figure 23 shows
the BDD of the system, while Fig. 24 shows its STM. The system
has three operating states: “main unit operating,” “auxiliary unit
operating,” and “stand by,” which means a BN for each of them
must be obtained. In this work, though, only the BN for the “main
unit operating” state is presented.

Figure 25 shows the ACT for the “main operating unit” state,
which presents the function of each of the components working in
this operating state.

After also building the STM of each sensor and the BDD for
each component, the relationship matrices are extracted and the
BN graph is built, as shown in Fig. 26. Once the BN graph has
been obtained, the analyst must complete the CPTs. For parent
nodes, i.e., failure mode nodes, the reliability values of each fail-
ure mode are required. These values, calculated similarly to the
previous case study, are presented in Table 10.

Since the system has four sensors, each with four possible read-
ing states, there are 256 possible combinations of sensor readings
that can be used for a posteriori probability calculation. Table 11
shows, for some of the possible combination of system sensor
readings, the diagnostic results obtained by the BN through a pos-
teriori probability calculation. For example, if all four pressure
sensors present a normal reading (as expected), BN indicates that

Fig. 26 BN graph for the main unit operating state
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all failure modes have a very low probability of happening. If
only the fourth sensor presents a lower than expected reading,
however, BN indicates that the most probable scenario for that to
happen is a clogged filter, since both filters have a posteriori prob-
ability of 44.7%. On a different scenario, if the first sensor
presents a normal reading, but the second one shows a higher than
expected reading and the last two show a lower than expected
reading, BN indicates that there is a 99.9% probability of check
valve #2 failing open. Finally, if all sensors present a
higher than expected reading except for the second one, BN indi-
cates a fault in the relief valve, with a 99.9% of a posteriori
probability.

By analyzing the results obtained by the method, it is possible
to notice some limitations of the monitoring system. For example,
while the oil tank plays an important role in the operation of the
lubricating system, its failure cannot be identified by the online
sensors present in the system. For this to happen, an oil level sen-
sor could be installed. Diagnostic accuracy in this case is limited
by the lack of information obtained by system monitoring. The

results of the method can therefore contribute to decision-making
regarding the number and types of sensors to be installed in a sys-
tem. The designer of a new system or the operator of an existing
one can decide whether an improvement in monitoring can con-
tribute to the diagnosis of critical failures based on the results of
the method.

6 Conclusions

The proposed method translates SysML diagrams into BN
graphs by means of a novel structured procedure. The graphs
obtained are used to perform system fault diagnosis by calculating
posterior probabilities.

One of the great advantages of the proposed method is the pos-
sibility of developing a fault diagnosis process during the initial
phases of a project, since SysML is widely used during the design
of new and complex systems. The resulting BNs will allow the
designer to identify, during a certain mode of operation, which
component is at fault given the reading of the sensors.

Table 11 Posterior probabilities of the TRUE state of each failure mode

Pressure sensor #1 readings NORMAL NORMAL NORMAL HIGHER

Pressure sensor #2 readings NORMAL NORMAL HIGHER NORMAL

Pressure sensor #3 readings NORMAL NORMAL LOWER HIGHER

Pressure sensor #4 readings NORMAL LOWER LOWER HIGHER

AC motor Does not start the pump 1.14� 10�7 1.85� 10�5 0.00167524 0.00056489
Pump #1 Does not pressurize fluid 9.41� 10�8 1.52� 10�5 0.00137944 0.00046515
Relief valve #1 Fails closed 5.53� 10�7 4.58� 10�5 0.00217702 0.99999597

Fails open 2.45� 10�7 2.51� 10�5 0.00157734 0.01132349
Check valve #1 Fails closed 0.00075378 0.1271972 0.06769114 0.04785644
Pipeline #1 Clogging 2.65� 10�8 2.70� 10�6 0.00016818 0.00123947

Leakage 3.74� 10�7 3.82� 10�5 0.0023744 0.01749873
Pipeline #2 Clogging 5.96� 10�7 0.00010013 0.00926188 0.00343954

Leakage 8.41� 10�6 0.00141365 0.13075869 0.04855915
Check valve #2 Fails open 2.61� 10�8 4.39� 10�6 0.99005974 0.00015081
Filter #1 Clogging 0.00264855 0.44693379 0.2378469 0.16815355
Filter #2 Clogging 0.00264855 0.44693379 0.2378469 0.16815355
Pipeline #5 Clogging 9.71� 10�5 0.01639138 0.00872308 0.00616706

Leakage 0.00137136 0.23141253 0.12315192 0.08706622
Pressure sensor #1 Does not monitor pressure 0.00527006 0.0053181 0.00963597 0.00655336
Pressure sensor #2 Does not monitor pressure 0.00526977 0.00527411 0.01515761 0.00541975
Pressure sensor #3 Does not monitor pressure 0.00527936 0.00684549 0.00545421 0.00568214
Pressure sensor #4 Does not monitor pressure 0.01113723 0.00990403 0.0052819 0.00741729

Table 10 Reliability and failure probability for the CPTs

k True False

Oil tank Leakage 2.00� 10�6 0.017367 0.982633

AC motor Does not start the pump 2.10� 10�5 0.168031 0.831969

Pump #1 Does not pressurize fluid 1.70� 10�5 0.138362 0.861638
Relief valve #1 Fails closed 1.00� 10�5 0.083873 0.916127

Fails open 1.00� 10�5 0.083873 0.916127

Filter #1 Clogging 3.10� 10�5 0.23781 0.76219
Check valve #1 Fails closed 8.00� 10�6 0.067681 0.932319

Fails open 8.00� 10�6 0.067681 0.932319
Pipeline #1 Clogging 1.00� 10�6 0.008722 0.991278

Leakage 1.50� 10�5 0.123133 0.876867
Pipeline #2 Clogging 1.00� 10�6 0.008722 0.991278

Leakage 1.50� 10�5 0.123133 0.876867

Pressure sensor #1 Does not monitor pressure 1.80� 10�6 0.015644 0.984356

Pressure sensor #2 Does not monitor pressure 1.80� 10�6 0.015644 0.984356

Pressure sensor #3 Does not monitor pressure 1.80� 10�6 0.015644 0.984356

Pressure sensor #4 Does not monitor pressure 1.80� 10�6 0.015644 0.984356
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It should be noted, however, that the contributions of the
method are not limited to the design phase of the system. It can
also be useful when it is necessary to implement a fault diagnosis
process in an already operating system. In addition, it can also
contribute to an assessment regarding the need to upgrade the
original system in order to make it better monitored.

Since the mapping process is automated, a software that accom-
plishes this task can be developed, drastically reducing the time of
implementation. Such software can, in addition to streamlining
the mapping process, provide an interface that helps the system
expert refine BN conditional probability tables.

In order to test the adaptability of the method, the authors
intend to apply it to different systems, evaluating its effectiveness
in different situations. In addition, future work will explore the
ability to perform other types of system analysis, not limited to
Bayesian networks or fault diagnosis using SysML system repre-
sentation. The main purpose of SysML is to concentrate all knowl-
edge about a system in one place. Through its nine diagrams, it is
possible to represent how a system works, what components it is
made of, how it interacts with its operators and maintainers, how
it behaves under different operating conditions, etc. If used cor-
rectly, the authors believe that not only fault diagnosis, but other
types of analysis can be developed using the information repre-
sented in SysML, such as reliability, availability, maintainability,
efficiency, risk management, and asset management.

For each analysis to be developed on a system, however, there
was not a single source of information. Now, with the use of
SysML, system knowledge is unified. The proposed method
shows that it is possible to perform fault diagnosis through SysML
and the authors intend, in future works, to present other system
analysis to be done using SysML, showing how adaptable and
comprehensive is this technique.
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