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A B S T R A C T   

Car microenvironments significantly contribute to the daily pollution exposure of commuters, yet health and so-
cioeconomic studies focused on in-car exposure are rare. This study aims to assess the relationship between air 
pollution levels and socioeconomic indicators (fuel prices, city-specific GDP, road density, the value of statistical life 
(VSL), health burden and economic losses resulting from exposure to fine particulate matter ≤2.5 µm; PM2.5) during 
car journeys in ten cities: Dhaka (Bangladesh); Chennai (India); Guangzhou (China); Medellín (Colombia); São Paulo 
(Brazil); Cairo (Egypt); Sulaymaniyah (Iraq); Addis Ababa (Ethiopia); Blantyre (Malawi); and Dar-es-Salaam 
(Tanzania). Data collected by portable laser particle counters were used to develop a proxy of car-user exposure 
profiles. Hotspots on all city routes displayed higher PM2.5 concentrations and disproportionately high inhaled doses. 
For instance, the time spent at the hotspots in Guangzhou and Addis Ababa was 26% and 28% of total trip time, but 
corresponded to 54% and 56%, respectively, of the total PM2.5 inhaled dose. With the exception of Guangzhou, all the 
cities showed a decrease in per cent length of hotspots with an increase in GDP and VSL. Exposure levels were in-
dependent of fuel prices in most cities. The largest health burden related to in-car PM2.5 exposure was estimated for 
Dar-es-Salam (81.6 ± 39.3 μg m− 3), Blantyre (82.9 ± 44.0) and Dhaka (62.3 ± 32.0) with deaths per 100,000 of the 
car commuting population per year of 2.46 (2.28–2.63), 1.11 (0.97–1.26) and 1.10 (1.05–1.15), respectively. 
However, the modest health burden of 0.07 (0.06–0.08), 0.10 (0.09–0.12) and 0.02 (0.02–0.03) deaths per 100,000 
of the car commuting population per year were estimated for Medellin (23 ± 13.7 μg m− 3), São Paulo (25.6 ± 11.7) 
and Sulaymaniyah (22.4 ± 15.0), respectively. Lower GDP was found to be associated with higher economic losses 
due to health burdens caused by air pollution in most cities, indicating a socioeconomic discrepancy. This assessment 
of health and socioeconomic parameters associated with in-car PM2.5 exposure highlights the importance of imple-
menting plausible solutions to make a positive impact on peoples’ lives in these cities.  
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1. Introduction 

Exposure to airborne fine particulate matter is amongst the top ten 
environmental health risk factors globally (GBD, 2019). PM2.5 exposure 
is a function of the concentration of pollutants and the time spent by 
individuals in any microenvironment (Bigazzi and Figliozzi, 2014; 
Kumar et al., 2018). Commuters are exposed to high levels of pollutants 
(de Nazelle et al., 2012), which often do not meet air quality standards. 
Here, we analysed first-hand datasets of PM2.5 concentrations measured 
in-car during commuting in ten global cities to provide unique insights 
in relation to excessive PM2.5 exposure, traffic conditions, fuel prices, 
health burden and economic losses. Mitigation strategies were devel-
oped that meet inter-related Sustainable Development Goals (UN, 
2018): Good health (SDG3), Clean energy (SDG7), and Sustainable cities 
(SDG11). By studying in-car aerosol exposure in a range of different 
cities, effective air pollution mitigation measures and best practice 
guidance may be developed including, using electric buses, public 
transport and active urban mobility. 

Commuters’ exposure to concentrations of traffic-related air pollut-
ants (TRAP) can be 3–10 times greater than their exposure to back-
ground pollutants (Krzyzanowski et al., 2005). The high concentrations 
of TRAP tend to accumulate near, or on, roads (Kumar et al., 2021; 
Leavey et al., 2017), with the highest exposure zones identified within 
200–300 m of busy roads and highways (HEI, 2010; Goel and Kumar, 
2015). Exposure levels to TRAP in transport microenvironments are 
related to factors such as time and activity patterns, travel mode, vehicle 
settings, ambient pollutant concentrations, traffic density, road char-
acteristics, and meteorological conditions (Rivas et al., 2017; Bauer 
et al., 2018; Kolluru et al., 2018). It is important to identify individual 
TRAP contributions from different transport microenvironments to 
enable accurate and effective information to be obtained for reducing 
respective personal exposure. 

Within cities, areas with higher pollutant levels than their sur-
roundings are known as “hotspots”. Hotspots are usually characterised 
by large spatial and temporal concentration gradients and people 
working or living in these zones have the possibility of being exposed to 
elevated air pollution levels. Therefore, it is vital to understand the 
spatio-temporal distribution of exposure levels in road hotspots to carry 
out a comprehensive risk assessment that can consider both actual and 
representative exposure levels. The distribution of air pollutants has 
been found to be inequitable, with people living in most deprived areas 
generally suffering from high levels of exposure (Richardson et al., 2013, 
Yu and Stuart, 2016). The associations between exposure levels and the 
geographical distribution of vulnerable communities are, however, 
more complicated and less universal than often implied (Fecht et al., 
2015). Relationships between socioeconomic and environmental risk 
factors have been revealed to diverge between study areas, status and 
scales of socioeconomic measurement, but population characteristics 
which explain these associations at a local level are still not fully un-
derstood (Goodman et al., 2011; Vrijheid et al., 2012). 

Policy measures to control transport sector pollution is challenging 
to implement since transport emissions result from non-point sources 
where there is an absence of proof for individual responsibility (Abou- 
Ali and Thomas, 2011). Thus, alternative demand-side policy measures 
(e.g. controlling fuel prices through subsidy removal) can discourage 
owners from using their cars frequently and instead encourage them to 
seek alternatives, resulting in reduced congestion and pollution levels 
(Parry and Timilsina, 2015; Abou-Ali and Thomas, 2011). It has been 
proven that a 50% increase in fuel prices could lower congestion costs by 
US$22 million in the short-term and by US$69 million in the 
medium-term (TWB, 2018). Another study showed that imposing gas-
oline tax and removing fuel subsidies would reduce gasoline use by 43%, 
resulting in a 25% reduction in auto and microbus miles driven 
(Abou-Ali and Thomas, 2011). However, other studies showed that 
petrol price changes had no impact on air pollution (Barnett and Knibbs, 
2014; Chen and Lin, 2015). Therefore, elucidating the effect of fuel price 

as an air pollution mitigation measure is still an open scientific question 
that has been investigated here. 

Several studies have attempted to quantify the health impact and 
economic losses attributed to ambient PM2.5 exposure levels that exceed 
health standards (Fantke et al., 2019; Kumar et al., 2020a; Maji et al., 
2018; Nansai et al., 2020; Gustafsson et al., 2018). The health burden 
resulting from PM2.5 exposure is quantified using exposure–response 
functions based on four components: the exposed population size; the 
baseline incidence rate; the effect estimated from epidemiological 
studies; and the change in air quality (Fann et al., 2012; Gustafsson 
et al., 2018). 

Translating pollutant concentrations and exposure into the number 
of deaths caused and national economic losses occurred highlights this 
important issue for policy makers in more relatable terms. Literature has 
focused on estimating the health burden and economic losses caused by 
exposure to ambient PM2.5 levels in several global cities. However, 
studies have not focused on the direct burden and losses incurred by 
anthropogenic activities such as working in certain industries or traffic 
commutes. Such assessments for short-term exposure, especially for in- 
car exposure, are rare and hence is one of the focus areas for this work. 

As shown in Table 1, limited studies have reported PM exposure in 
transport microenvironments in cities in least developed, low-income or 
developing countries. A summary of relevant previous research reveals a 
lack of studies quantifying and comparing the length of hotspots on 
typical routes and variations in time spent at them in different cities 
(Table 1). Most cities follow the international trend where private cars 
remain a preferred means of transport; however, their focus has gener-
ally not been on estimating the potential inhaled doses of PM2.5 at 
hotspots and the effect of fuel pricing on air pollution exposure in each 
city. 

Studies have also not focused on health burden and economic cost 
evaluation of PM exposure in transport microenvironments. Our earlier 
work (Kumar et al., 2021) produced an internationally comparable in- 
car PM2.5 exposure data across ten global cities (Section 2.1). Thus, 
this work aims to carry out an in-depth complimentary analysis for 
understanding the PM2.5 hotspot lengths and time spent on the routes as 
a function of total commuting length/time in these cities and their as-
sociation with potential inhaled doses, health burden (i.e. premature 
deaths) and socioeconomic (i.e. GDP, fuel pricing, economic losses) 
factors, and discussing the associated underlying reasons. 

2. Methodology 

2.1. Study area and data 

Fig. S1 shows the location of the 10 cities studied across four regions: 
Asia (India, Bangladesh, China), Latin America (Colombia and Brazil), 
Africa (Tanzania, Malawi, and Ethiopia), and the Middle-East (Egypt 
and Iraq). The cities among them included: Dhaka (Bangladesh), 
Chennai (India), Guangzhou (China), Medellín (Colombia), São Paulo 
(Brazil), Cairo (Egypt), Sulaymaniyah (Iraq), Addis Ababa (Ethiopia), 
Blantyre (Malawi), and Dar-es-Salaam (Tanzania). A brief description of 
each city is as follows, and a summary of detailed information on cities’ 
climatic and topographical features can be found in the Supplementary 
Information (SI) Table S1.  

• Dhaka (DAC; 23.7N, 90.4E) is a densely populated megacity and the 
capital of Bangladesh. It is situated in southeast Asia and covers a 
total area of 1640 km2. In 2018, the city’s population accounted for 
19.6 M (UN, 2018) with about 335 k cars (BRTA, 2018). The average 
elevation of DAC above the mean sea level (MSL) is ~5 m. DAC ex-
periences four major seasons: winter (December-February), summer 
(March-May), monsoon (June–August), and post-monsoon 
(September-November). The climate in DAC is mostly tropical, 
with temperature ranges of 15–33 ◦C and relative humidity ranging 
from 37% in February to 74% in August, wind velocity varying from 
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Table 1 
Summary of relevant studies on air pollution exposure assessment in transport microenvironments of least developed/developing countries.  

City (Country) Study focus Key findings Author (year) 

Ten cities (Asia, Latin 
America, Africa and 
Middle-East) 

Global assessment of PM exposure in cars 
across ten cities.  

● Coarse particles dominated the PM fraction during windows-open while 
fine particles dominated during fan-on and recirculation.  

● For windows-open, pollution hotspots made up to a third of the total 
route-length.  

● For windows-open, PM2.5 exposure during off-peak hours was 91% and 
40% less than morning and evening peak hours, respectively. 

Kumar et al. 
(2021) 

Dhaka (Bangladesh) PM2.5 in different transportation modes.  ● PM2.5 in motorised areas was ~4-times and 2-times higher than the WHO 
standard and national standards, respectively, than in vehicle-free areas.  

● Improving public transport services may reduce air pollution in Dhaka. 

Hossain et al. 
(2019) 

Chennai (India) Effect of ambient CO levels on its in-car 
concentrations.  

● Ambient concentration of CO at ~1 km away from a traffic intersection 
was ~74% lower than at the intersection.  

● Hourly exposure of in-car CO during AC-On fresh air mode was ~1.5-times 
higher than AC-On recirculation and ~1.5-times less than windows-open. 

Giri et al. (2020) 

Effect of modes of transport on PM2.5 and 
NO-2 exposure.  

● Maximum exposure concentrations of PM2.5 and NO2 in the bus were 709 
μg m− 3 and 312 μg m− 3, respectively. 

Raj and 
Karthikeyan 
(2019) 

Vellore (India) Commuter exposure concentrations and 
inhalation doses in traffic and residential 
areas  

● Morning trips were significantly more polluted than afternoon trips in the 
traffic route, while in the residential route, afternoon trips had a slightly 
higher concentration.  

● In traffic and residential roads, pedestrians and cyclists recorded 
maximum inhaled doses per trip, respectively, compared to other 
motorised transport modes. 

Manojkumar et al. 
(2021) 

Bangalore (India) Use of personal samplers to measure 
exposure for assessing environmental justice  

● Several methodological problems in calculating real exposures to 
commuters on an individual basis are addressed in the study.  

● The findings do not support the environmental justice hypothesis for 
commuting in Bangalore, mostly because the gains of lower pollutant 
concentrations are compensated by higher-income groups’ longer 
commute times. 

Sabapathy et al. 
(2015) 

Delhi (India) Analysis of various transport modes to 
evaluate personal exposure to PM2.5  

● Closed AC transport modes were found to be the safest to avoid elevated 
PM2.5 concentrations, but other conditions (such as time of day, car 
window open or closed) had a major impact on exposure levels.  

● Walking, rickshaw, and non-AC vehicle transportation modes showed the 
highest average respiratory deposition doses among transport modes. 

Maji et al. (2021) 

Guangzhou (China) Health risk of volatile organic compounds 
(VOC) in commuting modes.  

● Exposure time is the most influential parameter for carcinogenic and non- 
carcinogenic risk, followed by ambient levels of VOCs and exposure 
duration.  

● Subway, non-AC bus and bicycle are recommended for city dwellers to 
reduce health risks from traffic emissions. 

Tong et al. (2019) 

Pollution exposure at bus commuter 
stations.  

● Pollutant concentrations were significantly higher at bus stops compared 
with those at the fixed monitoring station (located away from the bus 
stop).  

● Exposure of bus passengers to PM, NOX and CO was higher than near 
roadside or at the bus stop. 

Xu et al. (2016) 

Zhengzhou (China) Commute-related exposures to a variety of 
pollutants  

● The travel mode usually described the greatest variability in pollutant 
exposure, in comparison to route, time of day, and background pollutant 
concentrations.  

● Cycling emerged as the commuting mode with the maximum inhaled dose 
when breathing rate was taken into account to compute pollutant doses. 

deSouza et al. 
(2021) 

Nanjing (China) Commuter exposure to particulate matters in 
four common transportation modes  

● The majority of particles in a subway cabin come from the subway station, 
and the majority of particles in a bus cabin come from the ambient air, 
with little contribution from indoor sources.  

● The amount of PM inhaled during a subway ride is lowest, while the 
amount inhaled while walking and cycling is>5 times higher. 

(Shen and Gao, 
2019) 

Bogotá (Colombia) Exposure to PM in transport 
microenvironments.  

● Exposure to PM concentrations inside the fleet of diesel buses was 
significantly higher than exposure of pedestrians and cyclists.  

● High pollution levels inside bus cabins can affect a large population. 

Morales et al. 
(2017) 

Exposure to PM2.5, black carbon (BC), and 
particle number in transport 
microenvironments.  

● Commuter’s exposure in public transport was ~3-times higher than for 
pedestrians.  

● Exposure concentration to PM for commuters in a car was significantly 
lower than for commuters in other motorised transport modes. 

Betancourt et al. 
(2017) 

Bogotá (Colombia) Personal exposure to air pollutants in a Bus 
Rapid Transit System  

● Commuters in newer vehicles have slightly lower intake and inhaled doses 
of PM2.5, BC, and CO, suggesting that fleet renewal may have a 
disproportionately high effect on reducing population exposure to air 
pollutants  

● The data in this study indicates that in-bus and in-station levels are many 
times higher than outdoor concentrations, independent of month-to- 
month variations in air pollution levels in the region. 

Betancourt et al. 
(2019) 

Bogotá and Medellín 
(Colombia) 

Personal Exposure to PM2.5 in the Massive 
Transport System  

● Medellín Transport system(electric and gas natural vehicles) users are 
exposed to 5-times lower PM2.5 levels than Bogotá Transport system 
(powered by diesel) users.  

● The personal exposure in old and new vehicles in Bogotá was also found to 
be comparable due to the low proportion of new vehicles during the study 
period. 

Castillo-Camacho 
et al. (2020) 

São Paulo (Brazil) 

(continued on next page) 
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7.5 to 18.4 km/h, and with wind direction is mostly from either north 
or south.  

• Chennai (CHE; 13.0N, 80.2E) is the capital city of the south Indian 
state of Tamil Nadu. CHE covers a total area of 426 km2 and its 
metropolitan area covers 1189 km2. In 2018, it had a population of 
over 10.4 M (UN, 2018) with about 1 M cars in 2016 (SYBI, 2017). 
The average elevation of CHE above the MSL is ~15.8 m. CHE ex-
periences four major seasons: winter (December-February), summer 
(March-May), monsoon (June-August), and post-monsoon 
(September-November). The weather is generally hot and humid, 
with January being the coldest month with the daily minimum 
temperatures of 21 ± 2 ◦C, and May the hottest month in the year 
with the daily maximum temperatures at 36 ◦C. The average annual 
relative humidity is 70%. The region is considered a rain shallow 
region as during the pre-monsoon period it receives only about 32% 
rainfall. The dominant wind direction, observed from Chennai 
airport, is towards the south (21%), followed by the west (16%) and 
the east (15%) (Kumar et al., 2020a).  

• Guangzhou (CAN; 23.1N, 113.2E) is a city in south-eastern China, 
located in the heart of the Pearl River Delta. CAN covers a total area 
of 7434 km2. In 2018, it had a population of over 14.9 M (GBS, 2019) 
and a car fleet of around 1.8 M in 2018 (GPB, 2019). The average 
elevation of CAN above the MSL is ~21 m. CAN experiences four 
major seasons: winter (December-February), spring (March-May), 
summer (June-August), and autumn (September-November). CAN 
climate is humid subtropical. The average annual precipitation, 

humidity and temperature variation are 1690 mm, 68–78%, and 18- 
22℃, respectively (Rahman et al. 2019).  

• Medellín (MDE; 6.2N, 75.5W) is the second-largest city in Colombia. 
MDE covers an area of 1165 km2. In 2018, it had a population of 
around 4 M (UN, 2018), and a car fleet of over 467 k in 2018 (AMVA, 
2012). The average elevation of MDE above the MSL is ~1495 m. 
MDE has a tropical climate with an annual mean temperature of 
21.5 ◦C and relative humidity of 67%. The precipitation is at its 
maximum during March-May and October-November, with an 
annual average of 1687 mm.  

• São Paulo (SAO; 23.5S, 46.6W) is the most economically important 
region of Brazil. SAO covers a total area of 1521 km2. In 2018, it had 
a population of around 21 M (UN, 2018) and a car fleet of over 5 M in 
2017 (CETESB, 2019). The average elevation of SAO above the MSL 
is ~769 m. The region is characterised by a dry season with 
comfortable temperatures (winter, June to August), a rainy season in 
which it is hot and wet (summer, December to March), and inter-
mediate conditions (in spring and autumn) with an annual precipi-
tation average of 1340 mm. SAO has a humid subtropical climate, 
with minimum daily temperatures in July of 18.5 ◦C and minimum 
relative humidity in August of 78.7%.  

• Cairo (CAI; 30.0N, 31.2E) is the capital of Egypt and is a densely 
populated megacity. CAI covers a total area of 3085 km2. In 2018, it 
had a population above 20 M (UN, 2018) and its car fleet was around 
2.4 M in 2017 (CAPMAS, 2017). The average elevation of CAI above 
the MSL is ~23 m, with annual precipitation between 22 and 29 mm 

Table 1 (continued ) 

City (Country) Study focus Key findings Author (year) 

Evaluating air pollutants from urban buses 
under real-world conditions.  

● Incorporating buses with new technologies (electric buses) can have a 
significant impact of up to 40% on reducing NO and CO2 emissions.  

● Trace elements showed that vehicle emissions made substantial 
contributions to fine and coarse fractions of hazardous metals, such as Cr, 
Zn, V, and Pb. 

Nogueira et al. 
(2019) 

Londrina (Brazil) Commuter exposure to BC on diesel buses, 
bicycles and walking  

● BC concentrations for the two active modes were lower than those inside 
buses, with bus/walk and bus/bicycle ratios of up to six.  

● High in-bus concentrations were found on congested roads due to 
increased traffic density surrounding the bus, lower driving speed and 
frequent stops. 

Targino et al. 
(2018) 

Variations in individuals’ exposure to BC 
particles during their daily activities  

● There were no statistical differences in total average exposure and dose by 
gender.  

● Exposure was higher on bus journeys, while with pedestrians, cyclists and 
bus drivers affected by lower exposure. 

Carvalho et al. 
(2018) 

Curitiba (Brazil) Bus commuter exposure and the impact of 
switching from diesel to biodiesel  

● Switching from diesel to biodiesel could help minimise commuters’ 
exposure to BC particles on Bus Rapid Transit buses, but it would need to 
be complemented with after-treatment technologies to reduce emissions.  

● Further exposure reductions (especially to peaks) could be accomplished 
by switching bus routes to avoid passing through narrow urban street 
canyons. 

Targino et al. 
(2020) 

Cairo (Egypt) Car users exposure to PM pollution  ● PM2.5 was highest during windows-open car settings.  
● PM concentrations were higher during evening peak hours than morning 

peak. 

Abbass et al. 
(2020) 

Sulaymaniyah (Iraq) Characterisation and biological effects of 
PM10  

● A passive sampler was used to collect dust particles at three different sites.  
● Dust from industrial and urban sites triggered cytotoxic and genotoxic 

effects, whereas minor effects were observed for rural sites. 

Arif et al. (2018) 

Addis Ababa (Ethiopia) Commuter exposure to PM and total VOCs  ● Highest and lowest values for PM (diameter ≤ 7 and ≤ 10 µm µm and total 
suspended particles) were noticed at Addis Ketema and Gulelle sub-cities.  

● Highest and lowest values for total VOCs were found at Addis Ketema and 
Nefas Silk-Lafto sub-cities. 

Embiale et al. 
(2019) 

Blantyre (Malawi) Air quality assessment of CO, NO2 and SO2 

levels  
● Variations in hourly, diurnal, monthly and seasonal CO, SO2 and NO2 

indicated the considerable contribution of industrial and transportation 
activities in the city.  

● CO levels (2.5 mg m− 3) were below the Malawian limit value (10.3 mg 
m− 3) while NO2 (4.0 mg m− 3) and SO2 (8.6 mg m− 3) were significantly 
higher. 

Mapoma et al. 
(2014) 

Dar-es-Salaam (Tanzania) Risk evaluation of roadside levels of gaseous 
pollutants and PM  

● Hourly average NO2 concentration ranged from 18 to 53 μg m− 3. The 
maximum hourly NO2 concentration at 53 μg m− 3 was below the WHO 
guideline.  

● Risk assessment focused on people who spend a significant time near 
roads. 

Jackson (2005)  
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and temperatures between 18 and 45 ◦C (Hassanien and Abdel-Latif 
2008). CAI has a typically hot desert climate.  

• Sulaymaniyah (SUL; 35.5N, 45.4E) is one of the largest cities of the 
Kurdistan Region in Iraq. In 2018, it had a population of about 1.9 M 
(CPP, 2019) with a car fleet of around 80 k (KRSO, 2019). The 
average elevation of SUL above the MSL is ~882 m. SUL experiences 
four main seasons: winter (December-February); spring (March- 
May); summer (June-August); and autumn (September-November). 
SUL has a semi-arid climate with an annual average temperature of 
18.5 ◦C and relative humidity ranging from 70.3% to 24.9. The 
annual precipitation is around 600 mm and a dry season (summer) 
with no rain. The wind comes from the southwest direction at an 
annual average of 2.1 m/s.  

• Addis Ababa (ADD; 9.0N, 38.7E) is the capital of Ethiopia. It covers 
a total area of 527 km2. In 2018, it had a population of over 4.4 M 
(UN, 2018), and its car fleet was 750 k (EMT, 2019). The average 
elevation of ADD above the MSL is ~2355 m. ADD experiences four 
main seasons: winter (December-February), spring (March-May), 
summer (June-August) and autumn (September-November). ADD 
has a subtropical highland climate. The temperature ranges from a 
minimum of 8 ◦C to a maximum of 25 ◦C. The rainfall ranges from a 
minimum of 7 mm (November/December) to 280/290 mm (July/ 
August). The relative humidity ranges from 45.5% in December to 
79.5% in July.  

• Blantyre (BLZ; 15.7S, 35.0E) is the main commercial center of 
Malawi and its second largest city. It covers a total area of 240 km2. 
In 2018, it had a population of around 0.8 M (CPP, 2019) and a car 
fleet of about 130 k in 2015 (CEIC, 2016). It has diverse topography 
and an average elevation above the MSL ranging from 780 to 1612 
m. It has a hot rainy season (mid-November to April) and relatively 
cold and dry season in austral winter (mid-May to mid-August). The 
district is hilly and mountainous and has a sub-tropical climate. The 
average of temperature ranges from 19 ◦C during the cold to 26 ◦C 
during the hot seasons (Mapoma et al., 2016). The mean annual 
rainfall is 1,122 mm and about 80% falls between November and 
March.  

• Dar-es-Salaam (DAR; 6.8S, 39.2E) is the capital of Tanzania. It 
covers a total area of 1590 km2. In 2018, it had a population of 
around 6 M (UN, 2018) and its car fleet was around 707 k in 2012 
(Kiunsi, 2013). The average elevation of DAR above the MSL is ~24 
m. DAR has a tropical wet and dry/savanna climate. DAR experi-
ences two rainy seasons: the short rainy season (October to 
December); and the long rainy season (March to May), with 
maximum and minimum temperatures of 35 ◦C and 25 ◦C, respec-
tively. DAR has an annual rainfall of approximately 1,200 mm and an 
annual relative humidity of 77.9%. 

In order to carry out a detailed analysis of hotspots, socioeconomic 
correlations, the impact of fuel pricing on pollution exposure levels, 
national health burdens and economic costs, we used a primary set of 
PM2.5 data collected simultaneously from the ten global cities in 2019. 
These PM2.5 data were collected every one-minute using a portable laser 
particle counter from the backseat of a passenger car. The same route 
and the same car in each city were used for all runs including three car 
settings (windows-open; windows-closed with fan-on; windows-closed 
with recirculation) and three times during the day: morning peak (MP); 
evening peak (EP); off-peak (OP). Owing to much adverse health im-
pacts compared with its larger-sized counterparts, we focused on PM2.5 
exposure data during windows-open settings as the highest concentra-
tions were recorded compared with windows-closed (fan-on and recir-
culation). Moreover, the inside to outside concentration ratio of PM2.5 
are usually reported to be close to unity during windows-open condition 
(Matthaios et al., 2020; Kumar et al., 2021), substantiating the fact that 
the windows-open scenario can be considered as a proxy for on-road 
ambient concentrations. SI Table S2 presents the summary of statistics 
on the average route length and the corresponding time taken to 

complete the trips under windows-open setting. Further description on 
the data collection, type of passenger car (SI Table S3) and the route 
characteristics can be found in SI Sections S1 and S2, respectively. To 
ensure the quality control and harmonisation of the data, we carried out 
co-location measurements over five days where all the aerosol equip-
ment (Dylos OPCs) were co-located with a research-grade optical par-
ticle spectrometer (GRIMM model 11-C) to assess the inter-comparison 
among the Dylos OPCs as well as their comparison with research-grade 
equipment. High agreement was found among all monitors as the 
Pearson correlation coefficient (r) ranged from 0.92 to 0.99 PM2.5 (SI 
Fig. S2). A reasonable good correlation was found between the monitors 
and the research-grade equipment (GRIMM), with r ranging from 0.82 to 
0.91 for PM2.5 (SI Fig. S3). Further details on data collection, route se-
lection, and quality assurance can be found in Kumar et al. (2021). 

2.2. Hotspot analysis 

Hotspots along the routes in cities studied were identified by 
counting data points exceeding 90th percentiles (P90) of the one-minute 
average PM2.5 concentrations during windows-open setting. The P90 
was calculated for each city using the overall dataset, including the three 
measured car settings, following the methodology described in Kumar 
et al. (2021). To carry out the hotspot analysis, PM2.5 concentrations 
were used to compare the inhaled doses at the hotspots versus those at 
free-flow segments of roads across the ten cities (Section 2.3). Further-
more, the inhaled doses at hotspots were compared to different socio-
economic parameters for each city including: gross domestic product; 
the value of statistical life; and road density (Section 2.3). To investigate 
the effect of fuel price variations on PM2.5 concentrations, relevant data 
was sourced for each city from secondary sources including: fuel prices; 
city specific congestion parameters such as car density and average 
speeds; population size; number of cars per inhabitant (Section 2.4); and 
the inhaled doses per unit distance (Section 2.3). Finally, health burden 
and economic losses were derived using published methodologies 
(Section 2.5) utilising PM2.5 concentration data, baseline mortality 
rates, car commuter population size and value of statistical life. Data 
processing and statistical analyses for this section were carried out using 
Excel and R statistical software (R Core Team, 2019) with the software 
package openair (Carslaw and Ropkins, 2012). 

2.3. Inhaled dose estimation 

The data collected under windows-open setting was used to quantify 
the time spent in hotspots or free-flow conditions and their potential 
inhaled PM2.5 doses. For each city, the average time spent in hotspots 
was calculated as the number of PM2.5 data points (one-minute aver-
aged) exceeding P90 (Section 2.2); the rest of the data points were 
considered as occurring during free-flow conditions. It is worth noting 
that because the P90 was calculated using the data collected in all three 
car settings (as described in SI Section S1), therefore the time spent in 
hotspots during windows-open setting is not always 10%. The mean 
lengths of hotspots (Table 5) were calculated by multiplying the average 
speed of the car during the journey (Table 2) and average time spent in 
hotspots (Table 5). The quantity of potential inhaled dose is a function of 
the PM2.5 concentration (C; μg m− 3) inside a car, time spent during a 
journey and the respiratory rate of the commuter, which is influenced by 
gender, age and health. We estimated inhaled dose both by per unit time 
basis (IDt; µg kg-1h− 1) and per unit distance travelled basis (IDd; μg 
km− 1). IDt during a car journey was estimated using Eq. (1) (USEPA, 
1992): 

IDt = (C × IR)/BW (1)  

where IR (m3 h− 1) is the inhalation rate, which was taken as 0.8184 m3 

h− 1 for adult males while seated (Hinds, 1999), and BW (kg) is body-
weight for an individual, which was taken as an average of 75.4 kg for 
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the age group of 30–44 years (Nogueira et al., 2020). Since the estimated 
inhaled doses for male (0.8184 m3 h− 1) and female (0.6642 m3 h− 1) 
follow the same trend due to the constant value of IR used in Eq. (1), the 
discussion remains valid for both the genders. Therefore, we only refer 
to male doses in the subsequent discussion for the purpose of brevity. 
The IDd allowed the elimination of the differences in route length and 
the time spent inside cars among the ten cities, thus allowing a relative 
comparison to be made, as shown by Eq. (2): 

IDd = (C × IR× t)/l (2)  

where t (h− 1) is the time of each trip and l (m) is the distance travelled 
along the route in each city. Eqs. (1) and (2) also allowed us to calculate 
the percentage of time spent at hotspots, percentage of inhaled PM2.5 
doses, and the ratio of PM2.5 levels at hotspots and free-flow conditions. 

Further analysis enabled us to assess the relationships between so-
cioeconomic factors of cities and their hotspot parameters. We consid-
ered the following socioeconomic factors in our analysis: city-specific 
gross domestic product per capita (GDP; US$), value of statistical life 
(VSL; US$/person), road density, fuel prices, health burden and eco-
nomic losses. City-specific GDP per capita is shown in SI Table S4. VSL is 
an economic value that is used to quantify the benefit of avoiding a 
fatality and differs from one country to another (Table 3), and road 
density (DR; km− 1) which is a ratio of the total length (L; km) of all roads 
in the administrative area of the city (A; km2) to the total population (P) 
of the city (Eq. (3)): 

DR = L/(A× P) (3) 

The details of the administrative area of cities, the total population 
living in the respective administrative area, and length of different 
categories of roads in the cities are provided in SI Table S4. 

2.4. Fuel pricing and PM2.5 concentrations 

Parameters used for this analysis include fuel prices, average PM2.5 
concentrations, inhaled doses per unit distance, city-specific time spent 
in traffic per year such as car density and average speeds, population size 
and the number of cars per inhabitant (Table 2). Fuel prices (US$ per 
litre) can be considered as a reflection of subsidy levels in a country. For 
instance, lower fuel prices indicate higher subsidies considering a uni-
form international market price for the fuel. Average in-car PM2.5 con-
centrations during windows-open and the corresponding total daily 
inhaled doses indicate levels of air pollution that car commuters are 
exposed to during travel. We considered the average speed as a measure 
of congestion since higher speeds mean a relatively higher free-flow of 
traffic and vice-versa. Finally, the number of cars per inhabitant is 
considered an indication of both the purchasing power in a country as 
well as commuter reliance on cars due to a lack of transport alternatives. 
The results of this analysis were used to draw correlations between fuel 
pricing and air pollution levels (Section 3.3). 

2.5. Health burden and economic cost of PM2.5 exposure 

We estimated the health burden resulting from exposure to PM2.5 
levels during car commutes to the exposed population of car commuters 
(CC). CC (# of car commuters) in each city is estimated as a product of 
car density (# of cars/city) and average car occupancy (# of car com-
muters/car), using the Eq. (4) and the parameters listed in Tables 2 and 3 
show the exposed population (CC) and % of CC from city population 

CC = Car density × Average car occupancy (4) 

HB was estimated using Eq. (5) (Maji et al. 2018; Kumar et al., 
2020a; Li et al. 2019; Nansai et al. 2020). 

HB = [(RR − 1)/RR ] × B × CC (5)  

where HB (# of premature deaths) is the health burden; B (deaths per 

100,000 people) is the baseline mortality rate within the population of 
interest; and CC (# of car commuters) is the exposed population of car 
commuters (Eq. (4)). RR (-) is the relative risk of mortality when an 
entire population is exposed to pollution levels that exceed a reference 
concentration (Maji et al. 2018; Nansai et al., 2020). Numerous types of 
RR functions have been developed and used in the literature (e.g. Fantke 
et al., 2019; Hu et al., 2015; Maji et al., 2018; Orellano et al., 2020; 
Shang et al., 2013). For example, some studies have assumed a linear 
relation between mortality and PM2.5 exposure; however, these tend to 
underestimate the number of premature deaths (Li et al., 2019). Inte-
grated exposure response (IER) functions have been adopted by several 
studies that focused on indoor microenvironments such as vehicles 
(Xiang et al. 2019; WHO 2016); however, there is considerable uncer-
tainty about the IER function and its fitted parameters. Statistical 
time-series analysis carried out in epidemiology studies have been 
typically used for short-term exposures where log-linear functions have 
been employed for both long-term (one-year or more) and short-term 
(defined as a few hours to one day) exposures (Maciejewska, 2020; 
Orellano et al., 2020; U.S. EPA, 2010; WHO, 2006; Zheng et al., 2021). 
Considering the above limitations and the context of our work involving 
short-term exposure, we adopted the log-linear function (Azimi and 
Stephens, 2020; Ji and Zhao, 2015). RR is estimated using Eq. (6) that 
has been used in a diverse range of previous studies (e.g. Azimi and 
Stephens, 2020; Kumar et al., 2020a; Shen et al., 2020; Maji et al., 2018; 
U.S. EPA, 2010). RR is estimated using Eq. (6) (Kumar et al., 2020a; Maji 
et al., 2018). 

RR = exp(βPM2.5(Ci − C0))orCi > C0 (6)  

RR = 1 for Ci ≤ C0  

where Ci is the average in-car PM2.5 concentration under windows-open 
setting, as listed in Table 2 for each city; C0 is the threshold concen-
tration below which no additional health impacts are calculated (Maji 
et al. 2018). The average exposure concentrations are based on mea-
surements taken on a specific route in each city that is considered a 
representation of a car commuter’s average exposure levels despite the 
variations such representation might introduce (Abbass et al., 2021). 
Standard deviation ranges of Ci are taken into consideration for pro-
ducing HB numbers with 95% confidence intervals (CI) as listed in 
Table S5. For the purpose of comparison, average in-car PM2.5 concen-
trations under recirculation setting (Table S5) are also used to produce 
estimates for HB (Section 3.4). WHO guidelines suggest annual mean 
PM2.5 concentration at 10 μg m− 3 and 24-hour mean at 25 μg m− 3 

(WHO, 2018). Here, we set C0 to be equal to the daily mean exposure 
standards of 25 μg m− 3, which was also used as a threshold in a study 
that investigates the impact of daily excess PM2.5 concentrations hours 
on mortalities (Lin et al., 2017). βPM2.5 is the exposure–response coef-
ficient, indicating an increase in mortality due to an increase in PM2.5 
concentrations; it is taken as 0.038% per 1 μg m− 3 increase in PM2.5, 
based on a systematic review of studies on short-term (24-hr averages) 
exposure to air pollution and daily mortality of all ages (Hu et al., 2015; 
Kumar et al., 2020a; Shen et al., 2020). Most studies that estimate 
mortality associated with PM2.5 exposure focus on long-term ambient 
exposures despite the evident impact of short-term PM2.5 exposure on all 
cause mortalities and morbidities (e.g. Maciejewska, 2020; Orellano 
et al., 2020; Li et al., 2019). There is limited work that investigates 
mortalities caused by short-term exposures based on 24-hr average 
PM2.5 concentrations (e.g. Maciejewska, 2020; Orellano et al., 2020; Li 
et al., 2019; Akbarzadeh et al., 2018; Kloog et al., 2013) while most 
recent works have extrapolated hourly concentrations during 
commuting to 24-hr average PM concentrations (e.g. Zheng et al., 2021). 
These studies assessed the correlation between PM2.5 exposure con-
centrations preceding the incident of mortality by one or two days 
(Guiqin et al., 2020; Maciejewska 2020; Kloog et al., 2013; U.S. EPA, 
2010). This current work adopts these basic concepts and extends to 
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provide a unique insight by translating the cumulative impact of daily 
short-term exposure during car commutes over one year into the ex-
pected premature deaths (Abbass et al., 2021). 

B in Eq. (5) is country-specific all-cause mortality rates per 100,000 
people (Table 3; GBD, 2019). It is reasonably assumed that B for each 
city is equal to the country-specific mortality rate (Bjorn, 2019) due to 
the lack of availability of city-specific data for all cities. Moreover, it was 
preferable to reference our data to a common source (GBD, 2019) to 
reduce uncertainties and make estimates comparable. This figure is used 
to derive the hourly baseline mortality by dividing the annual rate into 
365 days and 24 h, to accommodate for the hourly exposures focused on 
in this work (Abbass et al., 2021). 

Since RR and B are based on hourly observations and rates, the HB 
indicates deaths resulting from hourly exposure to excess PM2.5 con-
centrations during car commutes at peak and off-peak hours. Average 
concentrations (Ci) during MP, OP and EP are used to produce an RR 

corresponding to each time of the day. The whole exposed population of 
car commuters (CC) are used with each of the RR’s derived for the three 
periods (MP, OP and EP) as it is assumed that the whole car commuting 
population will probably travel for at least an hour during all three-time 
segments throughout the year. Time spent in traffic by a car commuter 
for each city is derived using field data collected from the campaign and 
normalised over the average trip length across all cities (Table S5). It is 
assumed that a typical commuter does three trips (MP, EP, OP) per day 
during weekdays (5 days/week) giving the total number of hours spent 
in traffic per year for this study (Table 3). The percentage of time spent 
in traffic in each time segment (MP, OP and EP) is derived for each city 
based on the field campaign data (Table S5). Then annual HB is calcu-
lated for each time of the day and summed to produce the total (and per 
100,000 exposed population of car commuters) HB attributed to the 
excess PM2.5 car exposure. 

The βPM2.5 used to calculate RR is based on 24-hr average while the 

Table 2 
The summary of the city-specific data utilised for fuel price versus PM2.5 pollution exposure analysis; and number of car commuters in each city estimated using Eq. (4), 
city population and the percentage of car commuters for each city.  

Cities Fuel 
price 
(US$ L- 

1)a 

Average PM2.5 

concentrations (μg 
m− 3)b 

Total daily 
inhaled dose 
(μg km− 1)c 

Average 
speed (km 
hr-1)d 

Car density 
(cars/city) 

Population size 
(#) for 2018o 

Number of cars/ 
inhabitantsr (#) 

Exposed Population 
(car commuters 
exposed to 
pollution) 

% of car 
commuters from 
city population 

DAC 1.05 62 3.7 14 335,660e 19,578,000 0.02 503,490 2.6 
CHE 1.14 65 2.4 23 1,043,500f 10,456,000 0.10 1,200,025 11.5 
CAN 0.94 72 1.4 43 1,869,270g 1,4900,000p 0.13 3,177,759 21.3 
MDE 0.56 23 1.2 15 466,974h 3,934,000 0.12 1,046,021 26.6 
SAO 0.76 26 1.3 15 5,249,040i 21,650,000 0.24 8,083,521 37.3 
CAI 0.54 61 2.0 24 2,429,797j 20,076,000 0.12 3,012,948 15.0 
SUL 0.63 22 0.6 34 80,264k 1,879,000q 0.04 176,580 9.4 
ADD 0.59 75 3.6 18 750,000l 4,400,000 0.17 2,775,000 63.1 
BLZ 0.92 83 3.1 20 129,996m 800,264q 0.16 194,994 24.4 
DAR 0.73 82 7.3 9 707,521n 6,048,000 0.12 2,617,827 43.3  

a GPP (2020). Average fuel prices were taken between June and August 2020.  

b Average PM2.5 concentrations for windows-open runs for each city.  

c Inhaled dose is calculated using Eq. (5) in Kumar et al. (2021) and averaged for windows-open trips.  

d Average car speed during trips for each city.  

e BRTA (2018) for whole city.  

f SYBI (2017).  

g GPB (2019), for whole city.  

h SIGAIRE (2017), for whole city.  

i CETESB (2019), for the Metropolitan Area of São Paulo.  

j CAPMAS (2017), for Greater Cairo which is the megacity made up of Cairo and Giza.  

k KRSO (2019), for whole city.  

l EMT (2019), for whole city;  

m CEIC (2016), for whole city (most reference was not available).  

n Kiunsi (2013), for whole city.  

o UN (2018).  

p GBS (2019).  

q CPP (2019).  

r The number of cars per inhabitant is calculated by dividing car density (number of cars in each city) by its population (number of inhabitants).  
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concentrations are based on hourly average observations. We assume 
that the temporal variations in the exposure–response coefficient used to 
calculate RR provide preliminary estimates on the mortalities caused by 
in-car exposure to PM2.5 concentrations since the data on the impact of 
certain hours in the day (car commutes in this case) on mortality rates 
are unavailable, especially for the studied cities. Also, βPM2.5 indicates a 
percentage increase in mortalities for every corresponding 1 μgm− 3 in-
crease in PM2.5 concentrations, regardless of exposure time. However, 
the calculations need to be modified to reflect the fraction of time spent 
in this microenvironment (Azimi and Stephens, 2020). Ideally 24-hr 
average PM2.5 concentrations should be used to be consistent with the 
exposure–response coefficient adopted from literature. However, varied 
approaches are applied. For example, Zheng et al. (2021) used PM 
exposure during other activities throughout the day, in addition to 
commuting, such as sleep and work to derive the average daily PM2.5 
concentrations to be able to use daily RR values. However, this approach 
has not been adopted in this study due to unavailability of data on other 
daily activities in the ten cities but also because the aim of this work has 
been to focus on in-car exposure related health impacts. 

Most epidemiological studies are focused on the exposure to ambient 
PM2.5 concentrations despite the fact that PM2.5 exposure in microen-
vironments like households, schools and vehicles, can account for a 
substantial proportion of ambient PM2.5 exposure-related total mortal-
ities such as 40–60% in the United States (Azimi and Stephens, 2020), 
71–87% in urban China (Xiang et al., 2019) and 81–89% on a global 
scale (Ji and Zhao, 2015). Nevertheless, exposure–response functions 
derived for ambient PM2.5 exposure can be used for exposure in a 
microenvironment setting, provided that coefficients are rescaled for 
population size (Milner et al., 2017). Furthermore, our study focuses on 

windows-open setting for in-car PM2.5 exposure, which is a proxy for on- 
road ambient concentrations (Kumar et al., 2021; Matthaios et al., 
2020). Hence, it was considered acceptable to use Eqs. (5) and (6) to 
derive health burden caused by in-car PM2.5 exposure. 

Economic loss (EL; US$) is quantified based on the probable number 
of premature deaths and the Value of Statistical Life (VSL; US$) (Kumar 
et al., 2020a; Viscusi and Masterman, 2017), using Eq. (7). 

EL = HB× VSL (7)  

3. Results and discussion 

3.1. Inhaled doses at hotspots 

Fig. 1 shows the density plot of in-car PM2.5 concentrations measured 
under windows-open in all studied cities during MP, EP and OP hours. 
These plots show areas where values are more concentrated over a 
particular range of PM2.5 concentrations and also indicate how differ-
ently the hotspots condition frequency occurs in each city. Similar 
behaviour regarding the PM2.5 concentration distribution may be 
observed in some cities. For example, ADD, BLZ, and DAR show a low- 
density spread over the concentration range, especially during morning 
peak hours as opposed to those (MDE, SAO, and SUL) having stark peaks 
in a small concentration range. The hotspots frequency of PM2.5 con-
centrations was consistently lower during OP hours for all the cities, 
indicated by their shapes being mostly more skewed to the left during 
OP hours than other times of the day. The exception was CAI, where the 
EP hours showed slightly lower occurrences of extreme values than OP 
(mid-day) hours (Fig. 1) mainly because mid-day is not considered OP 

Table 3 
The summary of key parameters used to calculate the health burden and economic losses using Eqs. (3)–(6). ΔC (Ci− Co) is the difference between the reference (25 μg 
m− 3) and average observed concentrations for each city and time of the day. RR is estimated using ΔC and βPM2.5 is calculated based on a 0.038% increase per 1 μg m− 3. 
When Ci do not exceed Co, the value of ΔC is denoted by (-) and RR is 1.00, as indicated in Eq. (6).  

Cities ΔC (μg m− 3) RR Baseline mortality (B)a (deaths per 100,000 
people) in 2019 

Car occupancy 
(passengers/ car) 

Time spent in traffic/ 
year (hours) 

VSL ($ 
million)k 

MP OP EP MP OP EP 

DAC 40 30 42 1.84 1.40 1.96 533.44 1.5b 1213 0.205 
CHE 49 28 43 2.48 1.36 2.05 675.31 1.2c 600 0.275 
CAN 83 26 31 13.97 1.28 1.45 749.00 1.7d 344 1.364 
MDE 12 – – 1.06 1.00 1.00 516.32 2.2e 782 1.228 
SAO 14 – – 1.08 1.00 1.00 651.32 1.5f 973 1.695 
CAI 62 24 22 4.21 1.25 1.21 566.83 1.2g 643 0.575 
SUL 7 – – 1.02 1.00 1.00 426.44 2.2g 481 1.001 
ADD 111 12 25 109.82 1.06 1.28 520.49 3.7h 850 0.102 
BLZ 72 18 83 7.13 1.14 14.06 632.63 1.5i 665 0.058 
DAR 81 31 57 12.03 1.45 3.50 624.56 3.7j 1638 0.158  

a GBD (2019), All causes deaths per 100,000 both sexes, all ages.  

b Labib et al. (2014).  

c STO (2014).  

d Cox (2019).  

e AMVA (2012).  

f Farmer (2020).  

g Osra (2016).  

h TMCRTE (2009).  

i Fraser and Haworth (2017).  

j Assumed Dar-es-Salam car occupancy is the same as Addis Ababa.  

k Viscusi and Masterman (2017).  
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on the chosen route in Cairo, rather it has been reported as between 
midnight and sunrise (Nakat et al., 2013). The MP hours showed the 
highest frequency of hotspot conditions in all cities, except in CHE and 
DAC, where the frequency of extreme values during MP and EP hours 
were similar despite higher traffic congestion during evenings shown by 
longer trip durations compared to MP (Fig. S4). This might be due to 
favorable meteorological conditions (wind speed) during evening hours 
that contribute to the dispersion of pollutants. These results demonstrate 
that, in most cities, relatively high concentrations of PM2.5 are more 
frequent during MP hours whilst low concentrations occur more 
frequently during OP hours. 

The values of P90 during windows-open across cities varied from 34 
µg m− 3 (SUL) to 117 µg m− 3 (DAR), Fig. 1. PM2.5 concentrations in free- 
flow driving conditions greatly varied among the cities (Table 4). Afri-
can and Asian cities (ADD, BLZ, DAR, DAC, CHE, and CAN) showed 
relatively higher concentration levels of PM2.5 at hotspots compared 
with Latin American (SAO, MDE) and Middle Eastern cities (SUL). The 
increase in hotspot concentrations compared with those of free-flow 
conditions ranged from 2-times (CHE) to 3.5-times (CAN and SUL). 
This range is greater than that observed in a small town in the UK, where 
traffic intersections can result in 16% higher PM2.5 compared with those 
on the rest of the route with free-flow conditions (Kumar and Goel, 
2016). 

In order to understand the magnitude of the impact of hotspots 
compared to free-flow conditions in the total potential inhaled dose, we 
calculated a statistical summary of PM2.5 concentrations in all the cities 
studied, both during free-flow and hotspots driving conditions during 
windows-open car setting (Table 5). The time-based inhaled doses 
ranged from 0.59 (SAO) to 1.78 (BLZ) μg kg− 1h− 1 at the hotspots, 
whereas relatively lower values of 0.17 (SUL) to 0.71 (DAR) μg kg− 1h− 1 

were recorded during free-flow (Table 5). The distance-based inhaled 
doses provided a better understanding of exposure resulting from the 
hotspots emerging from traffic congestion. These ranged from 0.4 to 5.9 
µg km− 1 and 1.5–14.3 µg km− 1 for free-flow and hotspots, respectively. 
DAR recorded the highest inhaled doses (14.3 µg km− 1), followed by the 
other African cities (ADD and BLZ), and along with DAC displayed 
comparatively higher values of 6–8.1 µg km− 1 (Table 5). The highest 
inhaled doses for DAR are due to higher PM2.5 concentrations in free- 
flow conditions combined with longer time spent at hotspots 
(Table 5). Other factors such as presence of street canyons along the 
routes may have contributed to a disproportionate effect on concentra-
tion accumulation on some part of the routes but this information was 
not available precisely to be able to apportion their effects. Conversely, 
other cities (SAO, MDE, CAI, CHE and CAN) reported a lower range 
(2.3–3.7 µg km− 1; Table 5). The ratio of distance-based free-flow to 
hotspots inhaled doses ranged from 2 to 3.5, which followed the cor-
responding PM2.5 concentration ratios (Table 4). Interestingly, cities 
(MDE, SUL and CAN) showing relatively lower inhaled doses at hotspots 
displayed the highest hotspot PM2.5 doses/free-flow PM2.5 doses of 3.4 
to 3.5. These findings highlight that in these cities the identification of 
hotspot locations is important, and also that in other cities car com-
muters are exposed to high concentrations in both free-flow and hotspot 
conditions. The vehicle fleet is quite different among the studied cities, 
as shown in SI Table S6. Interestingly, the PM2.5 concentration appears 
to increase with the number of buses per 10,000 inhabitants in cities 
(Fig. S5), indicating that although cities such as BLZ and ADD may need 
to consider cleaner buses. In contrast, a lower number of buses per 
inhabitant in cities like SAO and MDE associated with low PM2.5 con-
centrations can be associated with a greater availability of underground 
trains, which use electricity. Finally, it was observed that the high 
number of two- and three-wheeler vehicles also seems to contribute to 
the high concentrations of PM2.5 in CHE and DAC, while in MDE the 
contribution of these kinds of vehicles does not seem to be relevant to 
increased PM2.5 concentration. In addition, driving routes varied from 
single to double road lanes. The on-road environment is usually turbu-
lent due to the movement of the vehicles (e.g., Carpentieri et al., 2012) 

and the first few meters of the road is generally considered as a well- 
mixed environment (Kumar et al., 2009). However, the spatial concen-
tration gradients could be expected, which are challenging to capture 
through in-car studies (e.g., Capentieri and Kumar, 2011). Both lanes 
were used during the monitoring, following the left- or right-hand 
driving rules in the studied cities. For example, CAN, MDE, SAO, CAI, 
SUL, and ADD used right-hand lanes of the road as opposed to the other 
cities using right-hand lanes (SI Table S6). 

A more comprehensive understanding of PM2.5 inhalation in hot-
spots and free-flow conditions emerged by plotting the percentage time 
spent in hotspot and free-flow driving conditions with the corresponding 
percentage of the inhaled PM2.5 doses (Fig. 2b). The mean time spent in 
the car at hotspots across the cities accounted for only about 16% (SAO) 
to 28% (ADD) of the total time spent on each route but corresponded to 
much higher inhaled doses, 30% (CHE) to 56% (ADD) of the total 
commuting doses (Fig. 2b). Such a disproportionate distribution of 
inhaled doses has also been reported in previous work. For example, 
Goel and Kumar (2015) found that as little as 2% of the time spent at 
traffic intersections during a car commute corresponded to up to 25% of 
total respiratory deposition doses during a car trip. Cross-comparison of 
cities showed that more than half of the inhaled PM2.5 doses along the 
route accounted for spending only 26% (CAN) and 28% (ADD) of total 
time at hotspots. SUL and MDE followed the trend by showing high 
hotspot to free-flow PM2.5 doses by reporting 41% of inhaled PM2.5 at 
hotspots, which corresponded to only about 17% of the total commuting 
time. The contribution of hotspots to the amount of inhaled PM2.5 varied 
according to the time spent and the PM2.5 concentrations at the hotspots. 
Irrespective of the cities, the time spent at hotspots was found to be 
disproportionately lower compared with the inhaled doses (Fig. 2b) 
suggesting that a relatively small time spent at hotspots could still lead 
to a significant portion of total inhaled doses during a car commute and 
the policies targeting the hotspot lengths could bring considerable 
health benefits to city dwellers. 

3.2. Socioeconomic factors and hotspots parameters 

The relationship between the hotspots-related parameters and socio- 
economic factors were assessed for each city to understand their mutual 
relationship and to allow for comparison between the cities. Correla-
tions between percent length of hotspots and per capita GDP (Fig. 3a), 
road density (Fig. 3b) and the VSL (Fig. 3c) were drawn for each city, 
reflecting the influence of varied levels of economic development of the 
different countries (Levinson, 2002). Linear, quadratic, cubic and 
exponential regression models have been found to describe the rela-
tionship between air pollution and socio-economic factors (Luo et al. 
2014) as also observed in our case. Fig. 3a shows an opposite trend 
between percent length of hotspots and per capita GDP for each city, 
except for CAN. Low-income (US$ <953) African cities (ADD and BLZ) 
showed the highest percent length of hotspots. This trend starts to 
decrease following a quadratic regression model, among the cities under 
study reaching the lowest for SAO (16%), which has the second highest 
GDP across all cities (US$ 5.9 k). CAN showed the highest GDP (US$ 
13.4 k) as well as a high percent length of hotspots, which makes it an 
outlier. These findings are consistent with earlier studies that show an 
exponential decay between outdoor PM2.5 concentration and GDP 
(Anenberg et al., 2019; Hasenkopf et al., 2016; Kumar et al., 2021). The 
percent length of hotspots showed an increasing trend with an increase 
in road density (Fig. 3b). This positive correlation, despite being weak, is 
as expected since road density is an indicator of the congestion of roads 
in a specific area, suggesting that high percent length of hotspots in cities 
may be due to high road densities. Finally, the benefits of avoided air 
pollution mortality are monetised using the VSL. VSL ranged from 0.058 
(BLZ) to 1.695 (SAO) million US$ amongst the studied cities, where the 
percent length of hotspot shows a negative correlation with increase in 
VSL (Fig. 3c). This shows that cities with high VSL have lower percent 
length of hotspots, except for CAN. The above findings suggest 
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correlations between socio-economic factors and conditions of envi-
ronmental degradation, expressed here as percent length of hotspots in 
which car commuters are exposed to excess PM2.5 concentrations above 
daily WHO limits in each city. Presenting this dynamic put matters in 
perspective for governmental bodies, enabling them to plan urban 
mobility strategies in cities with consideration to hotspot areas, as it 
reflects on the local economy. For example, Xie et al. (2016) reported 
that without mitigation, PM2.5 pollution will lead to ~2% GDP loss in 
China in 2030. Furthermore, scatterplots explored the relationship be-
tween hotspot parameters (such as percentage inhaled PM2.5 and the 
ratio of hotspot to free-flow PM2.5) and socio-economic factors 
(including city-specific per capita GDP, road density and VSL) (SI 
Fig. S6). An increase in the ratio of hotspot to free-flow PM2.5 is observed 
for higher city-specific per capita GDP and VSL values (SI Figs. S6d and 

S6e). A higher ratio of hotspot to free-flow PM2.5 (>3) was seen for cities 
with relatively higher GDP such as CAN, SAO and MDE. Such informa-
tion could benefit cities in addressing the issue of higher congestion 
zones on frequently traveled routes, such as those followed in this study. 
Moreover, higher inhaled PM2.5 doses are associated with higher road 
density (Fig. S6a), which is expected due to traffic congestion. Unfor-
tunately, Fig. S6b, c and f did not exhibit strong trends to draw mean-
ingful observations. We believe that mapping pollution parameters 
against socio-economic parameters on a global scale would provide 
meaningful trends that would allow cities to understand local pollution 
drivers and share best practices. However, due to data availability 
constraints, this study has only provided preliminary concepts that can 
be built on in future studies 

Fig. 1. Density plot of one-minute PM2.5 concentration (µg m− 3) in all cities under windows-open car setting during morning and evening peak hours (red and blue 
lines, respectively) and off-peak hours (green line). The dotted lines represent the WHO PM2.5 24-hour mean guideline of 25 µg m− 3 and the P90 value that varies for 
each city. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.3. Fuel pricing and exposure levels 

Fig. 4a–d shows fuel prices versus PM2.5 exposure levels and inhaled 
doses of car commuters under the windows-open setting. Fig. 4a and b 
allow categorising cities into three groups. Group 1 (MDE, SAO and SUL) 
has relatively low fuel prices and the lowest PM2.5 concentrations, 
defying the expectation that lower fuel prices would encourage traffic 
and hence increase pollution. The number of cars per inhabitant (indi-
cated by bubble sizes in Fig. 4a) are also low, moderate and high for SUL, 
MDE and SAO, respectively, showing no trend amongst this group. 
Furthermore, average speeds (indicated by bubble sizes in Fig. 4b) are 
relatively low for MDE and SAO and high for SUL; again showing no 
trend. Low exposure level in MDE and SAO are independent of low fuel 
prices, high car reliance and low car speeds, and therefore could be due 
to more green areas around the route (Kumar et al., 2021), usage of 
different fuel types (Ramírez et al., 2019) and less hotspots as discussed 
in Section 3.1. For example, Brazil has adopted the use of biofuel ethanol 
since the 1980s, and currently, all passenger cars can choose between 
using 100% ethanol or a 27% ethanol +73% gasoline mixture, thus 
contributing to a reduction of PM concentrations in the last decade in 
SAO (Andrade et al., 2017). As for SUL, low PM2.5 concentrations could 
be due to flowing traffic, indicated by high speed, and a low number of 
cars per inhabitant. Group 2 (CAI and ADD; Fig. 4a–b) exhibits the 
lowest fuel prices, high PM2.5 concentrations, a relatively high number 
of cars per inhabitant and moderately lower car speeds. This group 
follows the expected trend where low fuel prices encourage car 
ownership and in turn high congestion and high pollution levels as 

anticipated by several policy reports (Delsalle, 2002; Levin et al., 2017; 
Rouhani, 2014; Litman, 2011). Group 3 (DAC, CHE, CAN, BLZ and DAR; 
Fig. 4a-b) showed high PM2.5 concentrations despite the relatively high 
fuel prices. This could be due to increased car reliance shown by large 
bubble sizes in all cities, except for DAC (Fig. 4a), thus indicating that 
despite the high fuel prices, commuters still resort to car transport, 
possibly due to the lack of alternative transport modes. High PM2.5 
concentrations in DAC could also be due to complex road in-
frastructures, faulty traffic signalling systems and narrow roads resulting 
in congestion despite the limited number of cars per inhabitant (Mah-
mud et al., 2012). Furthermore, Fig. 4b shows relatively low speeds for 
all cities of this group, except CAN, indicating congestion. Despite the 
flowing traffic in CAN, exposure is high due to economic advancement 
rates that surpass environmental control efforts (Managi and Kaneko, 
2006; Shi et al., 2011). Overall, it can be deduced that controlling fuel 
price cannot stand as an effective policy measure on its own in con-
trolling air pollution as fuel cost is not the only component of transport 
cost (Delsalle, 2002). Furthermore, PM2.5 levels vary in response to 
other factors in addition to cost-controlled congestion levels including, 
urban infrastructure and design, transport alternatives and green spaces. 

To further understand the impact of fuel price on pollution levels, 
Fig. 4c and d combine cities into groups 1 and 2. Group 1 includes cities 
that have fuel prices less than US$ 0.75 per litre and experience PM2.5 
inhaled doses of less than 2 µg km− 1 travelled. BLZ, however, has 
slightly higher inhaled doses. Group 2 has cities that have more 
expensive fuel prices and higher inhaled doses with DAR seen as 
exceptionally high owing to its high PM2.5 exposure concentrations and 
long trip durations. Variations in the number of cars per inhabitant and 
average speeds indicated by bubble sizes in Fig. 4c and d, respectively, 
do not justify pollution variations in response to fuel cost variations. This 
representation further confirms pollution levels inhaled by car com-
muters are to an extent independent to fuel price variations. Fuel price 
control measures could mitigate congestion and transport pollution; 
however, they cannot stand alone as effective measures since they are 
not the only factor in transport cost. 

3.4. Health and economic impact 

3.4.1. Heath burden 
Table 6 provides a summary of HB in terms of number of deaths per 

year and the corresponding economic losses for each city. The annual 
deaths within the car commuters population resulting from PM2.5 
exposure during windows-open vary between MP, OP and EP. The 
highest number of deaths occurred as a result of MP exposure for all 
cities, except for DAR. This is due to the highest PM2.5 concentrations 

Table 4 
Descriptive statistics of PM2.5 concentrations during free-flow and hotspot dis-
tances under windows-open settings for each city. SE and STD refer to standard 
error of mean, and standard deviation, respectively.   

PM2.5 during free-flow (<90 
percentile) (µg m− 3) 

PM2.5 at hotspots distances (>90 
percentile) (µg m− 3) 

Cities Median Mean SE STD Median Mean SE STD 

DAC 49.3 49.9 0.4 19.2 110.7 121.3 1.1 30.6 
CHE 58.2 56.0 1.0 16.5 103.8 112.4 4.0 30.4 
CAN 41.6 43.2 0.8 18.2 105.4 149.3 7.9 103.7 
MDE 14.7 16.3 0.2 8.4 50.5 55.0 1.0 17.6 
SAO 17.6 18.7 0.2 6.9 56.6 54.5 0.6 9.9 
CAI 44.1 45.8 0.4 12.3 97.8 105.5 1.8 28.9 
SUL 15.0 15.8 0.2 7.5 52.5 55.1 1.2 17.1 
ADD 40.8 43.5 1.1 17.8 126.0 142.8 4.6 47.0 
BLZ 60.4 61.2 1.7 28.6 141.7 164.3 6.7 65.2 
DAR 63.5 65.5 0.8 26.0 145.1 158.4 3.4 46.6  

Table 5 
Mean length of segments of free-flow and hotspot driving conditions in each city with average time spent in those sections of study route. IDt (μg kg-1h− 1) and IDd (μg 
km− 1) for traffic hotspots and free-flow for each city.  

Cities Mean length (km)a Average time spent at (min)b Potential inhaled dose per unit time basis (IDt; µg kg- 

1h− 1) 
Potential inhaled dose per distance driven (IDd; µg 
km− 1)  

Hotspots Free-flow Hotspots Free-flow Hotspots Free-flow Hotspots Free-flow 

DAC 6.59 25.81 32.24 126.16 1.32 0.54 8.09 3.33 
CHE 2.42 11.28 5.84 27.26 1.22 0.61 3.71 1.85 
CAN 6.32 18.28 8.76 25.34 1.62 0.47 2.82 0.82 
MDE 2.80 13.80 8.83 43.47 0.60 0.18 2.36 0.70 
SAO 2.00 10.60 7.83 41.57 0.59 0.20 2.92 1.00 
CAI 3.22 12.98 8.35 33.65 1.15 0.50 3.73 1.62 
SUL 5.61 27.49 10.87 53.33 0.60 0.17 1.46 0.42 
ADD 3.00 7.60 10.29 26.01 1.55 0.47 6.67 2.03 
BLZ 2.71 8.19 7.26 21.94 1.78 0.66 6.00 2.24 
DAR 3.37 16.83 22.24 111.06 1.72 0.71 14.26 5.90  

a Mean length of hotspots (PM2.5 concentration≥P90) and free-flow (PM2.5 concentration≤P90) are calculated from the average time spent in corresponding traffic 
flow conditions and average speed of the car during the journey as described in Section 2.3.  

b Average time spent in hotspots and free-flow represent the time corresponding to the mean number of data points (one-minute averaged) in each flow condition.  
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during MP compared with OP and EP for all cities (Table 2). The highest 
concentrations during MP hours are associated with higher vehicle 
emissions during these periods in most cities, together with unfavorable 
pollutant dispersion conditions caused by the usually lower planetary 
boundary layer during mornings compared with mid-day (Quan et al., 
2013). This is despite the fact that car commuters spend slightly more 
time in traffic during EP than MP (Table S5), indicating that pollutant 
concentrations are a higher contributor to HB than the time spent in 
traffic. However, for DAR, MP concentrations are higher than EP but the 
time spent in traffic during EP is 1.7-times that spent during MP causing 
deaths to be slightly higher during EP. DAR has the highest absolute 
number of deaths per year of 64 (95% CI: 60–69), followed by ADD 24 
(95% CI: 22–27), CAN 16 (95% CI: 13–19) and CAI 15 (95% CI: 14–17) 
as shown in Fig. 4e and spatially in Fig. S7a. These cities, spreaded 
across all studied continents except Latin America (Fig. S7a), experience 
the highest in-car PM2.5 concentrations and thereby lead to a higher 
number of premature deaths. However, other cities have high average 
PM2.5 concentrations but fewer deaths per year, e.g. DAC: 6 (95% CI: 
5–6), CHE: 9 (95% CI: 8–10) and BLZ: 2 (95% CI: 2–2); Fig. 4e. The 
average PM2.5 concentrations in DAR and BLZ is 81.6 ± 39.3 and 82.9 ±
44.0 μgm− 3, respectively, which indicates that PM2.5 concentrations are 
not the only variables driving the absolute number of annual premature 
deaths in each city. It is also driven by the exposed population, which is a 
product of the number of cars in a city and the car occupancy, which is 
evidently high for DAR, ADD, CAN and CAI and is in the order of 2–3 
million people. Conversely, the exposed population of BLZ is almost 
200,000 people which is only ~7% of that of DAR. Furthermore, the 
exposed population in SAO is ~8 million, but its average in-car PM2.5 
concentration is 25.6 ± 11.7 μgm− 3, resulting in 8 (95% CI: 7–9) deaths 
per year that is almost equal to those in CHE, which experiences an 
average PM2.5 concentration of 65.2 ± 26.7 μgm− 3 (2.5-times that of 
SAO) but has 15% of SAO’s exposed population. Fig. 4f shows the na-
tional HB per year against average PM2.5 concentrations. The baseline 
mortality is another variable used to derive HB. However, all mortality 
caused across cities varied within a limited range of around an average 
of 589.6 (95% CI: 531.2–648.1) deaths per 100,000 (Table 3) and, 
therefore, was not a major driver in reflecting HB variations between 
cities. This shows that the number of premature deaths experienced 
among cities is largely dependent on the exposure to pollution as well as 
car reliance in a city. This indicates the importance of accounting for 
both the pollution levels and the choice of transport mode in addressing 
the issue of commuter exposure. 

Table 6 also shows the premature annual deaths resulting in the car 
commuting population under the windows-closed and recirculation-on 
scenarios to compare with the windows-open setting, which is dis-
cussed further in Section S3 and Fig. S8. The number of deaths per year 
resulting from recirculation varies between 0 and 2 for most cities except 
DAR owing to the low PM2.5 concentrations experienced by car com-
muters who have windows-closed and recirculation on. This further 
proves the impact of car settings on PM2.5 concentrations and in turn, 
the national health burden. 

The discussion thus far has focused on the absolute number of deaths 
per year for each city. However, deaths are typically discussed as per 
100,000 to provide for a normalised comparison as summarised in 
Table 6. This analysis eliminates the impact of variations in exposed 
population variations where DAR showed the highest deaths per 
100,000 of car commuting population per year of 2.46 (95% CI: 
2.28–2.63), followed by BLZ 1.11 (95% CI: 0.97–1.26) and DAC at 1.10 
(95% CI: 1.05–1.15), which had a less absolute number of deaths despite 
the high PM2.5 levels. ADD, CHE, CAI and CAN experienced air pollution 
levels of 0.88 (95% CI: 0.79–0.97), 0.71 (95% CI: 0.63–0.8), 0.51 (95% 
CI: 0.48–0.55) and 0.5 (95% CI: 0.41–0.59) deaths per 100,000 of car 
commuting population/year, respectively. MED, SAO and SUL have 
modest deaths due to considerably low PM2.5 levels. Table 6 lists the 
deaths per 100,000 resulting from exposure to ambient PM2.5 pollution 
reported by GBD (GBD, 2019). These death rates have been adapted for 

Fig. 2. (a) Bar Plots showing ratios of traffic hotspots/free-flow conditions for 
IDd (blue) in studied cities. (b) Pie charts showing the percentage of time spent 
(outer circle) and inhaled PM2.5 doses (inner circle) at traffic hotspots and 
during free-flow conditions. The colours red and green denote traffic hotspots 
and free-flow conditions, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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the car commuting population size derived for each city in Table 3 to 
enable comparison with the absolute annual deaths derived from our 
analysis. Fig. 4g shows the annual deaths resulting from in-car PM2.5 
exposure as a percentage of the total annual deaths within the car 
commuting population as a result of exposure to ambient PM2.5 pollu-
tion. The percentage of car exposure deaths varies between 0 and 2% for 
most cities, which signifies that deaths caused by personal exposure to 
PM2.5 in-car commutes are a small portion of the overall ambient PM2.5 
pollution which is caused by more factors than traffic pollution, such as 
industrial pollution. However, for the African cities (ADD, BLZ and 
DAR), the percentages are higher between 10 and 22%, showing that 
personal exposure to in-car PM2.5 has a larger representation in terms of 
deaths per year due to the overall ambient PM2.5 exposure. This is due to 
both the high in-car PM2.5 concentrations as well as the smaller number 
of deaths per 100,000 caused by ambient PM2.5 pollution reported by 
GBD (Table 6) in African cities compared to other cities. Overall, this 
analysis has allowed for translating pollution concentrations into asso-
ciated premature deaths, which has provided a real-world dimension to 
scientific data, making it more relatable to policymakers and 
commuters. 

3.4.2. Economic loss 
To further quantify the losses felt by each city, EL for each city caused 

by short-term PM2.5 exposure is calculated as a factor of the country’s 
VSL in addition to pollution levels. Fig. 4h depicts GDP per capita versus 
national economic losses incurred by exposure to high PM2.5 levels 
during car commutes showing that lower GDP is associated with higher 
economic losses caused by air pollution for most cities. This indicates a 
socioeconomic discrepancy which has been globally acknowledged 
where air pollution is more evident in developing countries (UNEP, 
2019). CAN and SAO are outliers having higher GDP per capita and high 
economic losses. Both cities are located in opposite continents 
(Fig. S7b). For CAN, it is due to increased pollution exposure levels 
caused by economic advancement occurring at the expense of compro-
mised environmental efforts (Managi and Kaneko, 2006; Shi et al., 
2011). High EL is experienced by SAO despite the low PM2.5 levels due to 
the combination of the relatively large proportion of the population 
using cars (37%) and to have the highest VSL amongst the group of 
considered cities (Table 3). MDE and SUL have modest EL as the 
observed PM2.5 exposure concentrations did not exceed threshold con-
centrations. Overall, HB and EL are primarily dependent on pollution 
exposure levels; however, other factors such as the number of cars per 
city, car occupancy and national VSL play an important role in such 
metrics. This analysis reinforces the global nature of air pollution impact 
as a common issue that costs lives in all cities around the world 
regardless of the amount of EL incurred. 

4. Conclusions and future outlook 

We have presented an assessment of the trend between exposure 
levels, hotspots and socioeconomic indicators such as fuel prices, city- 
specific GDP, health burden and economic losses resulting from expo-
sure to in-car PM2.5 concentrations in ten cities across four continents 
(Asia, Latin America, Middle-East, and Africa). The following key con-
clusions are drawn:  

• Irrespective of the cities, a relatively short time spent at hotspots 
contributed to a significant portion of total inhaled air pollution 
doses during a car commute. For example, the mean time spent in the 
car at hotspots in CAN and ADD accounted for only about 26–28% of 
the total time spent on each route, but corresponded to much higher 
(54–56%) of the total inhaled doses during a trip.  

• An increase in the per cent length of the hotspot was observed with 
an increase in road density. The per cent length of hotspot shows a 
negative correlation with an increase in GDP and VSL among cities, 
except the CAN. 

Fig. 3. Scatter plots showing relationships between percent length of hotspots 
versus (a) city-specific per capita GDP, (b) road density, and (c) VSL. The dotted 
line are drawn to simply visualise a trend. Size of the bubble points vary with 
respect to city-specific per capita GDP. 
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Fig. 4. Scatter plots of the relationship between 
average PM2.5 concentrations and fuel price showing, 
via size of bubbles, (a) number of cars per inhabitant 
and (b) average car speeds. Likewise, (c) and (d) 
show the relationship between inhaled dose per unit 
distance driven and fuel price with (c) number of cars 
per inhabitant and (d) average car speeds via the size 
of the bubbles, respectively. Further plots show the 
relationship between (e) average premature annual 
deaths with CI-95% resulting from in-car PM2.5 
exposure; (f) average PM2.5 concentrations and the 
national HB per year; (g) the percentage of deaths per 
year resulting from PM2.5 car exposure out of deaths 
per year resulting from ambient PM pollution - both 
numbers referenced to the car commuters population 
for each city; and (h) city-specific per capita GDP and 
national EL owing to the in-car exposure to PM2.5.   
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• Only CAI and ADD follow the expected trend of high pollution levels 
and low fuel costs. MDE, SAO and SUL have low pollution levels 
despite low fuel prices, and the rest of the cities studied experience 
high pollution levels despite high fuel prices. PM2.5 exposure has 
proven to be independent of fuel prices indicating that controlling 
fuel price cannot stand as an effective policy measure on its own in 
mitigating air pollution since there are other factors that contribute 
to transport costs and commuter transport choices.  

• The highest health burden was experienced by DAR, BLZ and DAC 
where 2.46 (95% CI: 2.28–2.63), 1.11 (95% CI: 0.97–1.26) and 1.10 
(95% CI: 1.05–1.15) deaths per 100,000 of the car commuting 
population occurred per year, respectively, due to having the highest 
PM2.5 car exposure concentrations amongst all cities of 81.6 ± 39.3, 
82.9 ± 44.0 and 62.3 ± 32.0μgm− 3, respectively. However, MDE, 
SAO and SUL experienced low PM2.5 levels of 23 ± 13.7, 25.6 ± 11.7 
and 22.4 ± 15.0 μg m− 3, respectively, and hence experienced 
negligible health burden of 0.07 (95% CI: 0.06–0.08), 0.1 (95% CI: 
0.09–0.12) and 0.02 (95% CI: 0.02–0.03) deaths per 100,000 of the 
car commuting population per year, respectively.  

• The economic losses related to the health burden caused by PM2.5 car 
exposure was measured against GDP per capita showing that lower 
GDP is associated with higher economic losses caused by in-car PM2.5 
exposure for most cities, increasing to 8.9 and 10.2 million US$ per 
year for CAI and DAR, respectively. This indicates a socioeconomic 
discrepancy where air pollution and its health and economic costs 
are more felt in developing countries. However, CAN and SAO incurs 
the highest economic losses of 21.8 and 14 million US$ per year due 
to high VSL for these countries.  

• Clear correlation showing increases in health burden and economic 
losses were observed with hotspot parameters highlighting the pos-
itive impact that would be achieved if hotspots were tackled as major 
problem areas within an urban environment. 

An assessment of in-car PM2.5 health burden, economic cost and 
potential inhaled doses at hotspots have been estimated for ten cities. 
Similar studies in different modes of transport such as trains and buses 
considering gaseous pollutants are recommended to build a similar 
database for a more holistic assessment of the impact of transport 
emissions. This work would be further enhanced if other factors that 
contribute to transport costs are taken into consideration and assessed 

for their effectiveness as pollution mitigation measures. Further, the 
methodology adopted to calculate health burden and economic loss 
would be more accurate if city-specific information was available. This 
includes disease response parameters that are directly linked to PM2.5 as 
well as economic metrics that would more thoroughly assess the cost of 
morbidity associated with PM2.5 in addition to m ortality. Temporal 
variations introduced by 24-hr exposure–response coefficients used for 
this study can be more thoroughly addressed (e.g. Zheng et al., 2021), 
which was not feasible in this work given the limitations posed by the 
data availability and complexity (Section 2.5). Hence, health burden and 
economic losses results (Section 3.4) should be considered as indicative 
estimates and interpreted cautiously. Overall, this work has provided a 
preliminary basis for better employing short-term air pollution exposure 
data to set the ground for more detailed analysis in cities elsewhere. 
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Table 6 
HB indicates the absolute number of deaths within the car commuting population owing to hourly exposure to high PM2.5 levels under windows-open setting during 
MP, OP, EP and the sum of all three-time segments resulting from all commutes within one year. Numbers are represented as averages with a CI of 95% of (low-
er–upper). The corresponding annual EL are listed based on the total absolute number of deaths. HB is also listed for the recirculation setting based on data in Table S5. 
The total HB for windows-open is calculated per 100,000 people of the car commuting population to be compared with the deaths per 100,000 in 2019 reported by GBD 
resulting from ambient PM pollution.  

City HB for different time segments 
(deaths/year)a 

Total HB 
(deaths/year)a 

EL ($million/ 
year)a 

Total HB for recirculation 
setting (deaths/year) 

HB (deaths per 100,000 
car commuters/year)a 

GBD of ambient PM pollution 
(deaths per 100,000)b  

MP OP EP      

DAC 2 (2–2) 1 (1–1) 3 (2–3) 6 (5–6) 1.1 (1.1–1.2) 0 (0–0) 1.10 (1.05–1.15) 46.45 (30.33–64.34) 
CHE 3 (3–3) 2 (1–2) 4 (3–4) 9 (8–10) 2.4 (2.1–2.6) 1 (1–2) 0.71 (0.63–0.8) 70.44 (55.37–85.7) 
CAN 9 (8–11) 3 (3–4) 4 (3–4) 16 (13–19) 21.8 

(17.8–25.7) 
2 (2–2) 0.5 (0.41–0.59) 100.09 (82.03–119.03) 

MDE 1 (1–1) 0 (0–0) 0 (0–0) 1 (1–1) 0.9 (0.7–1.0) 0 (0–0) 0.07 (0.06–0.08) 27.28 (18.55–38.14) 
SAO 8 (7–9) 0 (0–0) 0 (0–0) 8 (7–9) 14 (12.2–15.8) 0 (0–0) 0.1 (0.09–0.12) 20.11 (14.38–26.44) 
CAI 7 (7–9) 4 (4–4) 4 (4–5) 15 (14–17) 8.9 (8.3–9.5) 2 (1–2) 0.51 (0.48–0.55) 91.41 (67.45–117.97) 
SUL 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0.1) 0 (0–0) 0.02 (0.02–0.03) 60.25 (45.96–75.02) 
ADD 18 

(16–19) 
3 (2–3) 4 (4–5) 24 (22–27) 2.5 (2.2–2.8) 1 (1–2) 0.88 (0.79–0.97) 8.32 (3.89–15.05) 

BLZ 1 (1–1) 0 (0–0) 1 (1–1) 2 (2–2) 0.1 (0.1–0.1) 0 (0–0) 1.11 (0.97–1.26) 7.11 (3.22–13.47) 
DAR 24 

(23–26) 
11 
(10–12) 

29 
(27–32) 

64 (60–69) 10.2 
(9.4–10.9) 

23 (21–26) 2.46 (2.28–2.63) 11.01 (5.84–18.38)  

a Data is derived based on in-car PM2.5 concentrations of windows-open setting.  

b GBD (2019).  
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microenvironments in Bogotá, Colombia. J. Transp. Health 5, S59. 

Nakat, Z., Herrera, S., Cherkaoui, Y., 2013. Cairo Traffic Congestion Study. World Bank. 
https://openknowledge.worldbank.org/handle/10986/18735 (accessed 
10.02.2018). 

Nansai, K., Tohno, S., Chatani, S., Kanemoto, K., Kurogi, M., Fujii, Y., Kagawa, S., 
Kondo, Y., Nagashima, F., Takayanagi, W., Lenzen, M., 2020. Affluent countries 
inflict inequitable mortality and economic loss on Asia via PM2.5 emissions. Environ. 
Int. 134, 105238. 

Nogueira, T., Dominutti, P.A., Vieira-Filho, M., Fornaro, A., Andrade, M.D.F., 2019. 
Evaluating atmospheric pollutants from urban buses under real-world conditions: 
implications of the main public transport mode in São Paulo, Brazil. Atmosphere 10, 
108. 

Nogueira, T., Kumar, P., Nardocci, A., de Fatima Andrade, M., 2020. Public health 
implications of particulate matter inside bus terminals in Sao Paulo, Brazil. Sci. Total 
Environ. 711, 135064. 

Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., Ciapponi, A., 2020. Short-term 
exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and 
ozone (O3) and all-cause and cause-specific mortality: systematic review and meta- 
analysis. Environ. Int. 142, 105876. 

Osra, 2016. Vehicle occupancy rates and trip purposes in Makkah during Ramadan and 
Hajj periods. Umm Al-Qura University, Saudi Arabia. https://www.researchgate.ne 
t/publication/311400958_VEHICLE_OCCUPANCY_RATES_AND_TRIP_PURPOSE_IN_ 
MAKKAH_DURING_RAMADAN_AND_HAJJ_PERIODS (accessed 10.10.2020). 

Parry, I.W.H., Timilsina, G.R., 2015. Demand-side instruments to reduce road 
transportation externalities in the greater Cairo Metropolitan Area. Int. J. Sustain. 
Transport. 9, 203–216. 

Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., Meng, J., Chen, P., Zhao, D., 2013. 
Evolution of planetary boundary layer under different weather conditions, and its 
impact on aerosol concentrations. Particuology 11, 34–40. 

Rahman, A., Luo, C., Khan, M.H.R., Ke, J., Thilakanayaka, V., Kumar, S., 2019. Influence 
of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the 
concentration of airborne pollen in Guangzhou, China. Atmos. Environ. 212, 
290–304. 

Raj, M.G., Karthikeyan, S., 2019. Effect of modes of transportation on commuters’ 
exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) in Chennai, 
India. Environ. Eng. Res. 25, 898–907. 

R Core Team, 2019. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 

Ramírez, J., Pachón, J.E., Casas, O.M., González, S.F., 2019. A new database of on-road 
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