

20 a 23 de outubro de 2025

Majestic Hotel - Águas de Lindóia - SP - Brasil

Electrochemical Surface Engineering to Improve Nitrate-to-Ammonia Conversion Efficiency

Manuel E. G. Winkler^{1,2,3}, Rafael G. Yoshimura¹, Matheus P. Sales¹, Kauan G. Lemos¹, Pamella S. Rodrigues^{3,4}, Itamar T. Neckel⁵, Santiago J. A. Figueroa⁵, João B. Souza Jr.^{1,5}, Nirala Singh⁶, Edson A. Ticianelli⁴, Fabio H. B. Lima⁴, Serhiy Cherevko³, Raphael Nagao^{1,2,*}

¹University of Campinas, ²Center for Innovation on New Energies, ³Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, ⁴University of Sao Paulo, ⁵Brazilian Center for Research in Energy and Materials, ⁶University of Michigan.

*e-mail: nagao@unicamp.br

NH₃ production is a process of high scientific and technological interest due to its wide range of applications, such as fertilizers and fuels. Electrochemical nitrate reduction (NO₃RR) emerges as a promising alternative to the Haber-Bosch process, 1 as the energy required can be supplied in the form of electricity and produced by renewable sources. Cobalt/Copper-based dual site electrocatalysts have shown promising results for NO₃RR, such as high efficiency, selectivity and stability.² Herein, we developed a Co₃O₄/Cu_xO_y electrocatalyst and activated it by different pre-treatments, enhancing the selectivity for NH₃ production. SEM/EDX revealed Cu_xO_y porous agglomerates (1.7 to 3.2 μ m) and Co_3O_4 nanowires ($\sim 0.4 \, \mu m$ diameter) homogeneously distributed over the catalyst surface. XRD patterns identified the presence of Cu₂O and Co₃O₄ cubic phases and planes of monoclinic CuO. The electroactivity was evaluated by slow CV of 1 mV s⁻¹, which shows the onset for NO₃RR at 0.20 V_{RHE} and a multi-step reaction to NH₃. Aiming to boost nitrate-to-NH₃ efficiency, two electrochemical surface activation protocols were applied: i) 10 CV cycles from 0.15 to -0.40 V_{RHE} at 20 mV s⁻¹ (CV-activated) and 1-h chronoamperometry at -0.30 V_{RHE} (CA-activated). At -0.2 V_{RHE} , CA-activated enhanced the FE (and YR) of NH₃ to 94.4 \pm $3.1\% \text{ V}_{\text{RHE}}$ (43.4 ± 3.2 µmol h⁻¹ cm⁻²) vs. $38.8 \pm 6.9\%$ (26.8 ± 9.2 µmol h⁻¹ cm⁻²) of the CVactivated. Surface (XPS) and structural characterization (in situ XAS) suggest that the increased performance and selectivity is due to the formation of Cu⁰/Cu⁺ and Co₃O₄/Co(OH)₂ active sites favored by the chronoamperometric pre-treatment. The dissolution process during electrochemical activation was evaluated by on line ICP-MS. Overall, the dissolution of Cu and Co in negative potentials were observed, however, much less pronounced in CA-activated method which clearly indicates the preservation of the active sites. Identification of the reaction intermediates was assessed by in situ FTIR and on line DEMS, converging to the idea that NH3 was mainly formed by sequential hydrogenation of NO instead of the decomposition of hydroxylamine.

Acknowledgments:

FAPESP (17/11986-5, 23/02841-4, 23/10045-3, and 24/03807-7); CNPq (151227/2023-3 and 421313/2023-4).

References:

[1] Costa, G. F.; Winkler, M. E. G.; Mariano, T.; Pinto, M. R.; Messias, I.; Souza, J. B.; Neckel, I. T.; Santos, M. F. C.; Tormena, C. F.; Singh, N.; Nagao, R. *Chem Catalysis* **2024**, *4*, 100850. [2] He, W.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. *Nature Communications* **2022**, *13*, 1129.